1
|
Cheng L, Han Q, Hao Y, Qiao Z, Li M, Liu D, Yin H, Li T, Long W, Luo S, Gao Y, Zhang Z, Yu H, Sun X, Li H, Zhao Y. Genome assembly of Stewartia sinensis reveals origin and evolution of orphan genes in Theaceae. Commun Biol 2025; 8:354. [PMID: 40032980 DOI: 10.1038/s42003-025-07525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Orphan genes play crucial roles in diverse biological processes, but the evolutionary trajectories and functional divergence remain largely unexplored. The Theaceae family, including the economically and culturally important tea plant, offers a distinctive model to examine these aspects. Here, we integrated Nanopore long-read sequencing, Illumina short-read sequencing, and Hi-C methods to decode a pseudo-chromosomal genome assembly of Stewartia sinensis, from the earliest-diverging tribe of Theaceae, spanning 2.95 Gb. Comparative genomic analysis revealed the absence of recent whole-genome duplication events in the Theaceae ancestor, highlighting tandem duplications as the predominant mechanism of gene expansion. We identified 31,331 orphan genes, some of which appear to have ancient origins, suggesting early emergence with frequent gains and losses, while others seem more specific and recent. Notably, orphan genes are distinguished by shorter lengths, fewer exons and functional domains compared to genes that originate much earlier, like transcription factors. Moreover, tandem duplication contributes significantly to the adaptive evolution and characteristic diversity of Theaceae, and it is also a major mechanism driving the origination of orphan genes. This study illuminates the evolutionary dynamics of orphan genes, providing a valuable resource for understanding the origin and evolution of tea plant flavor and enhancing genetic breeding efforts.
Collapse
Affiliation(s)
- Lin Cheng
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Qunwei Han
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Yanlin Hao
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Zhen Qiao
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Mengge Li
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Daliang Liu
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Hao Yin
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Tao Li
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Wen Long
- Xinyang Normal University Library, Xinyang Normal University, Xinyang, China
| | - Shanshan Luo
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Ya Gao
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Zhihan Zhang
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Xinhao Sun
- College of Science, Northeastern University, Boston, USA
| | - Hao Li
- School of Life Sciences, East China Normal University, Shanghai, China.
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, China.
| | - Yiyong Zhao
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China.
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China.
| |
Collapse
|
2
|
Li H, Li J, Li X, Li J, Chen D, Zhang Y, Yu Q, Yang F, Liu Y, Dai W, Sun Y, Li P, Schranz ME, Ma F, Zhao T. Genomic investigation of plant secondary metabolism: insights from synteny network analysis of oxidosqualene cyclase flanking genes. THE NEW PHYTOLOGIST 2025; 245:2150-2169. [PMID: 39731256 DOI: 10.1111/nph.20357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/28/2024] [Indexed: 12/29/2024]
Abstract
The clustered distribution of genes involved in metabolic pathways within the plant genome has garnered significant attention from researchers. By comparing and analyzing changes in the flanking regions of metabolic genes across a diverse array of species, we can enhance our understanding of the formation and distribution of biosynthetic gene clusters (BGCs). In this study, we have designed a workflow that uncovers and assesses conserved positional relationships between genes in various species by using synteny neighborhood networks (SNN). This workflow is then applied to the analysis of flanking genes associated with oxidosqualene cyclases (OSCs). The method allows for the recognition and comparison of homologous blocks with unique flanking genes accompanying different subfamilies of OSCs. The examination of the flanking genes of OSCs in 122 plant species revealed multiple genes with conserved positional relationships with OSCs in angiosperms. Specifically, the earliest adjacency of OSC genes and CYP716 genes first appeared in basal eudicots, and the nonrandom occurrence of CYP716 genes in the flanking region of OSC persists across different lineages of eudicots. Our study showed the substitution of genes in the flanking region of the OSC varies across different plant lineages, and our approach facilitates the investigation of flanking gene rearrangements in the formation of OSC-related BGCs.
Collapse
Affiliation(s)
- Haochen Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jiale Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Xinchu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jialin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Dan Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yangxin Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Qiaoming Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Fan Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yunxiao Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Weidong Dai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China
| | - Yaqiang Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Tao Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
3
|
Liu Z, Shen S, Li C, Zhang C, Chen X, Fu Y, Yu T, Zhou R, Liu D, Yang QY, Song X. SoIR: a comprehensive Solanaceae information resource for comparative and functional genomic study. Nucleic Acids Res 2025; 53:D1623-D1632. [PMID: 39526372 PMCID: PMC11701577 DOI: 10.1093/nar/gkae1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
The Solanaceae family, which includes economically important crops such as tomatoes, potatoes and peppers, has experienced a rapid expansion in genomic data due to advancements in sequencing technologies. However, existing databases are limited by incomplete species representation, a lack of comprehensive comparative genomic tools and the absence of systematic pan-genomic analyses. To address these gaps, we developed the Solanaceae Information Resource (SoIR, https://soir.bio2db.com), a comprehensive genomics database for the Solanaceae family. SoIR integrates genomic data from 81 species and transcriptomic data from 41 species, encompassing a total of 3 908 408 gene annotations derived from Gene Ontology, nonredundant protein, Pfam, Swiss-Prot and TrEMBL databases. The resource also includes 3 437 115 CRISPR guide sequences, 212 395 transcription factors and 19 086 genes associated with methylation modification. In addition to species-specific analyses, SoIR provides extensive bioinformatics tools for investigating gene family evolution, phylogenetic relationships and karyotype reconstruction across 25 fully sequenced genomes. With advanced tools such as Blast, Synteny and Sequence Alignment, the platform provides users with interactive and intuitive visualizations for conducting cross-species comparative genomics. As the first comprehensive pan-genomic resource for the entire Solanaceae family, SoIR facilitates in-depth cross-species analysis, supporting global research initiatives in plant evolution, functional genomics and crop improvement.
Collapse
Affiliation(s)
- Zhuo Liu
- School of Life Sciences/School of Basic Medical Sciences/Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shaoqin Shen
- School of Life Sciences/School of Basic Medical Sciences/Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Chunjin Li
- School of Life Sciences/School of Basic Medical Sciences/Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Chenhao Zhang
- School of Life Sciences/School of Basic Medical Sciences/Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiang Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Engineering Technology Research Center of Agricultural Big Data, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanhong Fu
- School of Life Sciences/School of Basic Medical Sciences/Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tong Yu
- School of Life Sciences/School of Basic Medical Sciences/Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Department of Food Science, Aarhus University, Aarhus 8200, Denmark
| | - Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Engineering Technology Research Center of Agricultural Big Data, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Engineering Technology Research Center of Agricultural Big Data, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoming Song
- School of Life Sciences/School of Basic Medical Sciences/Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei 063210, China
| |
Collapse
|
4
|
Zeng Q, Wei M, Li S, Wang H, Mo C, Yang L, Li X, Bie Z, Kong Q. Complete genome assembly provides insights into the centromere architecture of pumpkin (Cucurbita maxima). PLANT COMMUNICATIONS 2024; 5:100935. [PMID: 38689498 DOI: 10.1016/j.xplc.2024.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024]
Affiliation(s)
- Qingguo Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Minghua Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Changjuan Mo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinzheng Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhilong Bie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Qiusheng Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Chen BZ, Li DW, Luo KY, Jiu ST, Dong X, Wang WB, Li XZ, Hao TT, Lei YH, Guo DZ, Liu XT, Duan SC, Zhu YF, Chen W, Dong Y, Yu WB. Chromosome-level assembly of Lindenbergia philippensis and comparative genomic analyses shed light on genome evolution in Lamiales. FRONTIERS IN PLANT SCIENCE 2024; 15:1444234. [PMID: 39157518 PMCID: PMC11327160 DOI: 10.3389/fpls.2024.1444234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Lamiales, comprising over 23,755 species across 24 families, stands as a highly diverse and prolific plant group, playing a significant role in the cultivation of horticultural, ornamental, and medicinal plant varieties. Whole-genome duplication (WGD) and its subsequent post-polyploid diploidization (PPD) process represent the most drastic type of karyotype evolution, injecting significant potential for promoting the diversity of this lineage. However, polyploidization histories, as well as genome and subgenome fractionation following WGD events in Lamiales species, are still not well investigated. In this study, we constructed a chromosome-level genome assembly of Lindenbergia philippensis (Orobanchaceae) and conducted comparative genomic analyses with 14 other Lamiales species. L. philippensis is positioned closest to the parasitic lineage within Orobanchaceae and has a conserved karyotype. Through a combination of Ks analysis and syntenic depth analysis, we reconstructed and validated polyploidization histories of Lamiales species. Our results indicated that Primulina huaijiensis underwent three rounds of diploidization events following the γ-WGT event, rather than two rounds as reported. Besides, we reconfirmed that most Lamiales species shared a common diploidization event (L-WGD). Subsequently, we constructed the Lamiales Ancestral Karyotype (LAK), comprising 11 proto-chromosomes, and elucidated its evolutionary trajectory, highlighting the highly flexible reshuffling of the Lamiales paleogenome. We identified biased fractionation of subgenomes following the L-WGD event across eight species, and highlighted the positive impacts of non-WGD genes on gene family expansion. This study provides novel genomic resources and insights into polyploidy and karyotype remodeling of Lamiales species, essential for advancing our understanding of species diversification and genome evolution.
Collapse
Affiliation(s)
- Bao-Zheng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Da-Wei Li
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Kai-Yong Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Song-Tao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Dong
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wei-Bin Wang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xu-Zhen Li
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ting-Ting Hao
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ya-Hui Lei
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Da-Zhong Guo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xu-Tao Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sheng-Chang Duan
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yi-Fan Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wei Chen
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yang Dong
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wen-Bin Yu
- Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Mengla, Yunnan, China
| |
Collapse
|
6
|
Jiang Z, Chen Y, Zhang X, Meng F, Chen J, Cheng X. Assembly and evolutionary analysis of the complete mitochondrial genome of Trichosanthes kirilowii, a traditional Chinese medicinal plant. PeerJ 2024; 12:e17747. [PMID: 39035164 PMCID: PMC11260417 DOI: 10.7717/peerj.17747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Trichosanthes kirilowii (T. kirilowii) is a valuable plant used for both medicinal and edible purposes. It belongs to the Cucurbitaceae family. However, its phylogenetic position and relatives have been difficult to accurately determine due to the lack of mitochondrial genomic information. This limitation has been an obstacle to the potential applications of T. kirilowii in various fields. To address this issue, Illumina and Nanopore HiFi sequencing were used to assemble the mitogenome of T. kirilowii into two circular molecules with sizes of 245,700 bp and 107,049 bp, forming a unique multi-branched structure. The mitogenome contains 61 genes, including 38 protein-coding genes (PCGs), 20 tRNAs, and three rRNAs. Within the 38 PCGs of the T. kirilowii mitochondrial genome, 518 potential RNA editing sites were identified. The study also revealed the presence of 15 homologous fragments that span both the chloroplast and mitochondrial genomes. The phylogenetic analysis strongly supports that T. kirilowii belongs to the Cucurbitaceae family and is closely related to Luffa. Collinearity analysis of five Cucurbitaceae mitogenomes shows a high degree of structural variability. Interestingly, four genes, namely atp1, ccmFC, ccmFN, and matR, played significant roles in the evolution of T. kirilowii through selection pressure analysis. The comparative analysis of the T. kirilowii mitogenome not only sheds light on its functional and structural features but also provides essential information for genetic studies of the genus of Cucurbitaceae.
Collapse
Affiliation(s)
- Zhuanzhuan Jiang
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| | - Yuhan Chen
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| | - Xingyu Zhang
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| | - Fansong Meng
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| | - Jinli Chen
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| | - Xu Cheng
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| |
Collapse
|
7
|
Wang J, Song B, Yang M, Hu F, Qi H, Zhang H, Jia Y, Li Y, Wang Z, Wang X. Deciphering recursive polyploidization in Lamiales and reconstructing their chromosome evolutionary trajectories. PLANT PHYSIOLOGY 2024; 195:2143-2157. [PMID: 38482951 DOI: 10.1093/plphys/kiae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/20/2024] [Indexed: 06/30/2024]
Abstract
Lamiales is an order of core eudicots with abundant diversity, and many Lamiales plants have important medicinal and ornamental values. Here, we comparatively reanalyzed 11 Lamiales species with well-assembled genome sequences and found evidence that Lamiales plants, in addition to a hexaploidization or whole-genome triplication (WGT) shared by core eudicots, experienced further polyploidization events, establishing new groups in the order. Notably, we identified a whole-genome duplication (WGD) occurred just before the split of Scrophulariaceae from the other Lamiales families, such as Acanthaceae, Bignoniaceae, and Lamiaceae, suggesting its likely being the causal reason for the establishment and fast divergence of these families. We also found that a WGT occurred ∼68 to 78 million years ago (Mya), near the split of Oleaceae from the other Lamiales families, implying that it may have caused their fast divergence and the establishment of the Oleaceae family. Then, by exploring and distinguishing intra- and intergenomic chromosomal homology due to recursive polyploidization and speciation, respectively, we inferred that the Lamiales ancestral cell karyotype had 11 proto-chromosomes. We reconstructed the evolutionary trajectories from these proto-chromosomes to form the extant chromosomes in each Lamiales plant under study. We must note that most of the inferred 11 proto-chromosomes, duplicated during a WGD thereafter, have been well preserved in jacaranda (Jacaranda mimosifolia) genome, showing the credibility of the present inference implementing a telomere-centric chromosome repatterning model. These efforts are important to understand genome repatterning after recursive polyploidization, especially shedding light on the origin of new plant groups and angiosperm cell karyotype evolution.
Collapse
Affiliation(s)
- Jiangli Wang
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Bowen Song
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Minran Yang
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Fubo Hu
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Huilong Qi
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Huizhe Zhang
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yuelong Jia
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yingjie Li
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Zhenyi Wang
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Xiyin Wang
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
8
|
Kong X, Zhang Y, Wang Z, Bao S, Feng Y, Wang J, Yu Z, Long F, Xiao Z, Hao Y, Gao X, Li Y, Ding Y, Wang J, Lei T, Xu C, Wang J. Two-step model of paleohexaploidy, ancestral genome reshuffling and plasticity of heat shock response in Asteraceae. HORTICULTURE RESEARCH 2023; 10:uhad073. [PMID: 37303613 PMCID: PMC10251138 DOI: 10.1093/hr/uhad073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/10/2023] [Indexed: 06/13/2023]
Abstract
An ancient hexaploidization event in the most but not all Asteraceae plants, may have been responsible for shaping the genomes of many horticultural, ornamental, and medicinal plants that promoting the prosperity of the largest angiosperm family on the earth. However, the duplication process of this hexaploidy, as well as the genomic and phenotypic diversity of extant Asteraceae plants caused by paleogenome reorganization, are still poorly understood. We analyzed 11 genomes from 10 genera in Asteraceae, and redated the Asteraceae common hexaploidization (ACH) event ~70.7-78.6 million years ago (Mya) and the Asteroideae specific tetraploidization (AST) event ~41.6-46.2 Mya. Moreover, we identified the genomic homologies generated from the ACH, AST and speciation events, and constructed a multiple genome alignment framework for Asteraceae. Subsequently, we revealed biased fractionations between the paleopolyploidization produced subgenomes, suggesting the ACH and AST both are allopolyplodization events. Interestingly, the paleochromosome reshuffling traces provided clear evidence for the two-step duplications of ACH event in Asteraceae. Furthermore, we reconstructed ancestral Asteraceae karyotype (AAK) that has 9 paleochromosomes, and revealed a highly flexible reshuffling of Asteraceae paleogenome. Of specific significance, we explored the genetic diversity of Heat Shock Transcription Factors (Hsfs) associated with recursive whole-genome polyploidizations, gene duplications, and paleogenome reshuffling, and revealed that the expansion of Hsfs gene families enable heat shock plasticity during the genome evolution of Asteraceae. Our study provides insights on polyploidy and paleogenome remodeling for the successful establishment of Asteraceae, and is helpful for further communication and exploration of the diversification of plant families and phenotypes.
Collapse
Affiliation(s)
| | | | | | | | - Yishan Feng
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Jiaqi Wang
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Zijian Yu
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Feng Long
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Zejia Xiao
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Yanan Hao
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Xintong Gao
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Yinfeng Li
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Yue Ding
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Jianyu Wang
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | | | | | | |
Collapse
|
9
|
Yu L, Fei C, Wang D, Huang R, Xuan W, Guo C, Jing L, Meng W, Yi L, Zhang H, Zhang J. Genome-wide identification, evolution and expression profiles analysis of bHLH gene family in Castanea mollissima. Front Genet 2023; 14:1193953. [PMID: 37252667 PMCID: PMC10213225 DOI: 10.3389/fgene.2023.1193953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factors (TFs) gene family is an important gene family in plants, and participates in regulation of plant apical meristem growth, metabolic regulation and stress resistance. However, its characteristics and potential functions have not been studied in chestnut (Castanea mollissima), an important nut with high ecological and economic value. In the present study, 94 CmbHLHs were identified in chestnut genome, of which 88 were unevenly distributed on chromosomes, and other six were located on five unanchored scaffolds. Almost all CmbHLH proteins were predicted in the nucleus, and subcellular localization demonstrated the correctness of the above predictions. Based on the phylogenetic analysis, all of the CmbHLH genes were divided into 19 subgroups with distinct features. Abundant cis-acting regulatory elements related to endosperm expression, meristem expression, and responses to gibberellin (GA) and auxin were identified in the upstream sequences of CmbHLH genes. This indicates that these genes may have potential functions in the morphogenesis of chestnut. Comparative genome analysis showed that dispersed duplication was the main driving force for the expansion of the CmbHLH gene family inferred to have evolved through purifying selection. Transcriptome analysis and qRT-PCR experiments showed that the expression patterns of CmbHLHs were different in different chestnut tissues, and revealed some members may have potential functions in chestnut buds, nuts, fertile/abortive ovules development. The results from this study will be helpful to understand the characteristics and potential functions of the bHLH gene family in chestnut.
Collapse
Affiliation(s)
- Liyang Yu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Cao Fei
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, Hebei, China
| | - Dongsheng Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Ruimin Huang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Wang Xuan
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Chunlei Guo
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Liu Jing
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Wang Meng
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Lu Yi
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Haie Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, Hebei, China
| |
Collapse
|