1
|
Bhowal B, Hasija Y, Singla-Pareek SL. Tracing the intraspecies expansion of glyoxalase genes and their expanding roles across the genus Oryza. Funct Integr Genomics 2024; 24:220. [PMID: 39586889 DOI: 10.1007/s10142-024-01492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024]
Abstract
The genus Oryza is of utmost importance to human civilization as two of its species became agronomically productive and widely cultivated, and also because wild rice is a treasure trove of beneficial alleles that can be used for crop improvement. Most of the wild rice genotypes are known for their stress tolerance several times more than the domesticated rice varieties. In this study, we aimed to carry out an exhaustive genomic survey to identify glyoxalase I (GLYI) and glyoxalase II (GLYII) genes across the 11 rice genomes sequenced so far. Notably, we found the putatively functional metal-dependent GLYI and GLYII enzymes to be conserved throughout domestication and a few homologous pairs to have undergone beneficial mutations to drive positive selection, and thus, acquire newer functions. Interestingly, we also report four newly identified GLYII members in O. sativa subsp. japonica in addition to the three previously reported GLYII genes. The presence of different types of cis-elements in the promoter region of the glyoxalase genes gives insights into their role and regulation under various developmental processes besides stress adaptation. Publicly available data suggests the role of glyoxalase genes particularly in salinity stress in both wild and cultivated rice as is also confirmed through qRT-PCR. Interestingly, we found less accumulation of MG and concurrently higher enzymatic activity of GLYI and GLYII proteins in stressed seedlings of selected wild rice genotypes indicating that glyoxalases indeed contribute to the intrinsic stress tolerance of wild rice.
Collapse
Affiliation(s)
- Bidisha Bhowal
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Shahbad, Daulatpur, Delhi, 110042, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Shahbad, Daulatpur, Delhi, 110042, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
2
|
Gupta R, Verma N, Tewari RK. Micronutrient deficiency-induced oxidative stress in plants. PLANT CELL REPORTS 2024; 43:213. [PMID: 39133336 DOI: 10.1007/s00299-024-03297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Micronutrients like iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), boron (B), nickel (Ni), and molybdenum (Mo) perform significant roles in the regulation of plant metabolism, growth, and development. Micronutrients, namely Fe, Zn, Cu, Mn, and Ni, are involved in oxidative stress and antioxidant defense as they are cofactors or activators of various antioxidant enzymes, viz., superoxide dismutase (Fe, Cu/Zn, Mn, and Ni), catalase (Fe), and ascorbate peroxidase (Fe). An effort has been made to incorporate recent advances along with classical work done on the micronutrient deficiency-induced oxidative stress and associated antioxidant responses of plants. Deficiency of a micronutrient produces ROS in the cellular compartments. Enzymatic and non-enzymatic antioxidant defense systems are often modulated by micronutrient deficiency to regulate redox balance and scavenge deleterious ROS for the safety of cellular constituents. ROS can strike cellular constituents such as lipids, proteins, and nucleic acids and can destruct cellular membranes and proteins. ROS might act as a signaling molecule and activate the antioxidant proteins by interacting with signaling partners such as respiratory burst oxidase homolog (RBOH), G-proteins, Ca2+, mitogen activated protein kinases (MAPKs), and various transcription factors (TFs). Opinions on probable ROS signaling under micronutrient deficiency have been described in this review. However, further research is required to decipher micronutrient deficiency-induced ROS generation, perception, and associated downstream signaling events, leading to the development of antioxidant responses in plants.
Collapse
Affiliation(s)
- Roshani Gupta
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Nikita Verma
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | | |
Collapse
|
3
|
Lilay GH, Thiébaut N, du Mee D, Assunção AGL, Schjoerring JK, Husted S, Persson DP. Linking the key physiological functions of essential micronutrients to their deficiency symptoms in plants. THE NEW PHYTOLOGIST 2024; 242:881-902. [PMID: 38433319 DOI: 10.1111/nph.19645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
In this review, we untangle the physiological key functions of the essential micronutrients and link them to the deficiency responses in plants. Knowledge of these responses at the mechanistic level, and the resulting deficiency symptoms, have improved over the last decade and it appears timely to review recent insights for each of them. A proper understanding of the links between function and symptom is indispensable for an accurate and timely identification of nutritional disorders, thereby informing the design and development of sustainable fertilization strategies. Similarly, improved knowledge of the molecular and physiological functions of micronutrients will be important for breeding programmes aiming to develop new crop genotypes with improved nutrient-use efficiency and resilience in the face of changing soil and climate conditions.
Collapse
Affiliation(s)
- Grmay Hailu Lilay
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Noémie Thiébaut
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
- Earth and Life Institute, Faculty of Bioscience Engineering, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Dorine du Mee
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Ana G L Assunção
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Portugal
| | - Jan Kofod Schjoerring
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Søren Husted
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Daniel Pergament Persson
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| |
Collapse
|
4
|
Li R, Tang F, Che Y, Fernie AR, Zhou Q, Ding Z, Yao Y, Liu J, Wang Y, Hu X, Guo J. MeGLYI-13, a Glyoxalase I Gene in Cassava, Enhances the Tolerance of Yeast and Arabidopsis to Zinc and Copper Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3375. [PMID: 37836115 PMCID: PMC10574700 DOI: 10.3390/plants12193375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Although zinc and copper are the two essential nutrients necessary for plant growth, their excessive accumulation in soil not only causes environmental pollution but also seriously threatens human health and inhibits plant growth. The breeding of plants with novel zinc or copper toxicity tolerance capacities represents one strategy to address this problem. Glyoxalase I (GLYI) family genes have previously been suggested to be involved in the resistance to a wide range of abiotic stresses, including those invoked by heavy metals. Here, a MeGLYI-13 gene cloned from a cassava SC8 cultivar was characterized with regard to its potential ability in resistance to zinc or copper stresses. Sequence alignment indicated that MeGLYI-13 exhibits sequence differences between genotypes. Transient expression analysis revealed the nuclear localization of MeGLYI-13. A nuclear localization signal (NLS) was found in its C-terminal region. There are 12 Zn2+ binding sites and 14 Cu2+ binding sites predicted by the MIB tool, of which six binding sites were shared by Zn2+ and Cu2+. The overexpression of MeGLYI-13 enhanced both the zinc and copper toxicity tolerances of transformed yeast cells and Arabidopsis seedlings. Taken together, our study shows the ability of the MeGLYI-13 gene to resist zinc and copper toxicity, which provides genetic resources for the future breeding of plants resistant to zinc and copper and potentially other heavy metals.
Collapse
Affiliation(s)
- Ruimei Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany;
| | - Fenlian Tang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yannian Che
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Alisdair R. Fernie
- Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany;
| | - Qin Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhongping Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yuan Yao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Jiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Yajie Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Xinwen Hu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jianchun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (R.L.); (F.T.); (Y.C.); (Q.Z.); (Z.D.); (Y.Y.); (J.L.); (Y.W.)
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|