1
|
Zhang S, Zhong H, Zhang F, Zheng J, Zhang C, Yadav V, Zhou X, Nocker SV, Wu X, Wang X. Identification of grapevine BASIC PENTACYSTEINE transcription factors and functional characterization of VvBPC1 in ovule development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112491. [PMID: 40189153 DOI: 10.1016/j.plantsci.2025.112491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/17/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Seedless grapes are gaining increasingly attention in the market because of their desirable traits. Therefore, understanding the molecular genetic regulation of seed development and abortion is crucial for the advancement of seedless cultivars. Recent studies have shown that AGAMOUS-LIKE11 (VvAGL11), an ortholog of Arabidopsis SEEDSTICK (STK), plays a key role in grape ovule development, and amino acid substitution mutations result in seed abortion. However, the regulatory pathways involved in this process are poorly understood in grapevines. In this study, we identified four BASIC PENTACYSTEINE (BPC) genes in the grapevine (Vitis vinifera L.) genome and analyzed their evolutionary relationships, subcellular localization, and expression patterns. VvBPC1 was identified as an upstream regulatory factor of VvAGL11 in a yeast one-hybrid assay. Dual-luciferase assays confirmed that VvAGL11 is negatively regulated by VvBPC1, and the production of small seeds by heterologous overexpression of VvBPC1 in tomatoes results from the suppression of VvAGL11 expression. Furthermore, assays in yeast cells demonstrated that VvBPC1 interacts with VvBELL1. Taken together, this study not only establishes the foundation for further exploration of the molecular mechanisms of the VvBPC1-VvBELL1-VvAGL11 module in regulating grape seed development but also provides new insights into the genetic improvement of seedless grapes.
Collapse
Affiliation(s)
- Songlin Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Haixia Zhong
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Fuchun Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Jinling Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chuan Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Vivek Yadav
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xiaoming Zhou
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI, USA.
| | - Xinyu Wu
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xiping Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan, Xinjiang 838000, China.
| |
Collapse
|
2
|
Han N, Zhu H, Li F, Wang M, Tian Z, Wei J, Zhang Z. Genome-wide identification of YABBY genes and functional characterization of CRABS CLAW (AktCRC) in flower development of Akebia trifoliata. Int J Biol Macromol 2025; 311:143892. [PMID: 40319987 DOI: 10.1016/j.ijbiomac.2025.143892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
As a representative species of basal eudicots, Akebia trifoliata has a unique unisexual flower development model, while the internal mechanism of its transition from a bisexual to unisexual flower is still lacking. Here, 6 AktYABs genes were firstly identified from A. trifoliata and divided into five clades: YAB2, FIL/YAB3, INO, CRC, and YAB5. Collinearity analysis and structure analysis proved that AktYABs members were highly conservative. Promoter cis-acting element analysis and RT-qPCR indicated that AktYABs were relative to various development, environmental stress, and hormone response events. All AktYABs members were located in the nucleus and membrane, but only AktYAB2 showed transcriptional activation activity. GUS staining manifested that the AktCRC transcript was strongly accumulated in the leaf, flower meristem, carpel, and tip of mature silique in Arabidopsis. Heterologous expression of AktCRC in Arabidopsis crc-1 mutants could significantly rescue the short siliques phenotype and the defect of apical carpel fusion. The AktCRC regulated carpellary development by affecting the expression levels of auxin synthesis, transport-related genes YUC4, TRN2, and floral meristem homeostasis regulation factor WUS. These results reveal the function of AktCRC in regulating the development of unisexual flowers in A. trifoliata and also lay a foundation for understanding the evolutionary status of the YABBY family in basal eudicots.
Collapse
Affiliation(s)
- Ning Han
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Huiqin Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fengjiao Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Meiling Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Zhen Tian
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Jiayu Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Zheng Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
3
|
Han K, Lai M, Zhao T, Yang X, An X, Chen Z. Plant YABBY transcription factors: a review of gene expression, biological functions, and prospects. Crit Rev Biotechnol 2025; 45:214-235. [PMID: 38830825 DOI: 10.1080/07388551.2024.2344576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/08/2023] [Indexed: 06/05/2024]
Abstract
Transcription factors often contain several different functional regions, including DNA-binding domains, and play an important regulatory role in plant growth, development, and the response to external stimuli. YABYY transcription factors are plant-specific and contain two special domains (N-terminal C2C2 zinc-finger and C-terminal helix-loop-helix domains) that are indispensable. Specifically, YABBY transcription factors play key roles in maintaining the polarity of the adaxial-abaxial axis of leaves, as well as in regulating: vegetative and reproductive growth, hormone response, stress resistance, and secondary metabolite synthesis in plants. Recently, the identification and functional verification of YABBY transcription factors in different plants has increased. On this basis, we summarize recent advances in the: identification, classification, expression patterns, and functions of the YABBY transcription factor family. The normal expression and function of YABBY transcription factors rely on a regulatory network that is established through the interaction of YABBY family members with other genes. We discuss the interaction network of YABBY transcription factors during leaf polarity establishment and floral organ development. This article provides a reference for research on YABBY function, plant genetic improvement, and molecular breeding.
Collapse
Affiliation(s)
- Kaiyuan Han
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| | - Meng Lai
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Tianyun Zhao
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| | - Xiong Yang
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| | - Xinmin An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Zhong Chen
- State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Liu T, Sharif R, Shi Z, Guo K, Zhang Z, Bao X, Ali A. Transcriptomic analysis reveals the crucial role of YABBY genes family in hormonal induced parthenocarpy in Cucumis sativus L. BMC PLANT BIOLOGY 2025; 25:45. [PMID: 39794697 PMCID: PMC11724556 DOI: 10.1186/s12870-024-06018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The plant-specific YABBY transcription factor family plays several activities, including responding to abiotic stress, establishing dorsoventral polarity, and developing lateral organs. Cucumis sativus L. commonly referred to as cucumber and one of the first vegetable crops with a fully sequenced genome. RESULTS In this work, we examined the application of NAA, CPPU, and GA4 + 7 to inflict parthenocarpy in the cucumber ZK line. The expression pattern of YABBY genes throughout fruit development and performed a genomic census of cucumber (Cucumis sativus L.). Based on peptide classification, we discovered eight CsYABBY genes and divided them into five subfamilies. Similarities in motif composition and exon-intron structure were also observed. The cis-elements and gene ontology (GO) analysis revealed the involvement of CsYABBY genes in vegetative growth and the transition of vegetative to the reproductive phase. The expression analysis revealed the differential expression response to NAA, CPPU, and GA4 + 7. In particular, the CsYABBY1 was induced sharply by NAA and CPPU but not GA4 + 7. The transient expression of CsCRC disclosed that it is localized in the nucleus. CONCLUSION These findings point to the possibility that CsYABBY1 and CsCRC may positively affect fruit development and could be utilized to generate parthenocarpic cucumber fruits.
Collapse
Affiliation(s)
- Tingting Liu
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China.
- Department of Science and Technology, Shanxi Datong University, Datong, Shanxi, 037009, China.
| | - Rahat Sharif
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zetao Shi
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Kehong Guo
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Zhisen Zhang
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Xueping Bao
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Ahmad Ali
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sugarcane Research Center, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, Hainan, 571101, China.
| |
Collapse
|
5
|
Wu J, Li P, Zhu D, Ma H, Li M, Lai Y, Peng Y, Li H, Li S, Wei J, Bian X, Rahman A, Wu S. SlCRCa is a key D-class gene controlling ovule fate determination in tomato. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1966-1980. [PMID: 38561972 PMCID: PMC11182579 DOI: 10.1111/pbi.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 04/04/2024]
Abstract
Cell fate determination and primordium initiation on the placental surface are two key events for ovule formation in seed plants, which directly affect ovule density and seed yield. Despite ovules form in the marginal meristematic tissues of the carpels, angiosperm carpels evolved after the ovules. It is not clear how the development of the ovules and carpels is coordinated in angiosperms. In this study, we identify the S. lycopersicum CRABS CLAW (CRC) homologue SlCRCa as an essential determinant of ovule fate. We find that SlCRCa is not only expressed in the placental surface and ovule primordia but also functions as a D-class gene to block carpel fate and promote ovule fate in the placental surface. Loss of function of SlCRCa causes homeotic transformation of the ovules to carpels. In addition, we find low levels of the S. lycopersicum AINTEGUMENTA (ANT) homologue (SlANT2) favour the ovule initiation, whereas high levels of SlANT2 promote placental carpelization. SlCRCa forms heterodimer with tomato INNER NO OUTER (INO) and AGAMOUS (AG) orthologues, SlINO and TOMATO AGAMOUS1 (TAG1), to repress SlANT2 expression during the ovule initiation. Our study confirms that angiosperm basal ovule cells indeed retain certain carpel properties and provides mechanistic insights into the ovule initiation.
Collapse
Affiliation(s)
- Junqing Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Pengxue Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Danyang Zhu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Haochuan Ma
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Meng Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yixuan Lai
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuxin Peng
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Haixiao Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Shuang Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Jinbo Wei
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Xinxin Bian
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Abidur Rahman
- Department of Plant Bio‐Sciences, Faculty of AgricultureIwate UniversityMoriokaJapan
- United Graduate School of Agricultural SciencesIwate UniversityMoriokaJapan
| | - Shuang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
6
|
Wu J, Li P, Li M, Zhu D, Ma H, Xu H, Li S, Wei J, Bian X, Wang M, Lai Y, Peng Y, Li H, Rahman A, Wu S. Heat stress impairs floral meristem termination and fruit development by affecting the BR-SlCRCa cascade in tomato. PLANT COMMUNICATIONS 2024; 5:100790. [PMID: 38168638 PMCID: PMC11009160 DOI: 10.1016/j.xplc.2023.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/16/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Floral meristem termination is a key step leading to carpel initiation and fruit development. The frequent occurrence of heat stress due to global warming often disrupts floral determinacy, resulting in defective fruit formation. However, the detailed mechanism behind this phenomenon is largely unknown. Here, we identify CRABS CLAW a (SlCRCa) as a key regulator of floral meristem termination in tomato. SlCRCa functions as an indispensable floral meristem terminator by suppressing SlWUS activity through the TOMATO AGAMOUS 1 (TAG1)-KNUCKLES (SlKNU)-INHIBITOR OF MERISTEM ACTIVITY (SlIMA) network. A direct binding assay revealed that SlCRCa specifically binds to the promoter and second intron of WUSCHEL (SlWUS). We also demonstrate that SlCRCa expression depends on brassinosteroid homeostasis in the floral meristem, which is repressed by heat stress via the circadian factor EARLY FLOWERING 3 (SlELF3). These results provide new insights into floral meristem termination and the heat stress response in flowers and fruits of tomato and suggest that SlCRCa provides a platform for multiple protein interactions that may epigenetically abrogate stem cell activity at the transition from floral meristem to carpel initiation.
Collapse
Affiliation(s)
- Junqing Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengxue Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danyang Zhu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haochuan Ma
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huimin Xu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinbo Wei
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxin Bian
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyao Wang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixuan Lai
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxin Peng
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haixiao Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Abidur Rahman
- Department of Plant Bio-Sciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan; United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| | - Shuang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Wu J, Cheng L, Espley R, Ma F, Malnoy M. Focus on fruit crops. PLANT PHYSIOLOGY 2023; 192:1659-1665. [PMID: 37148289 PMCID: PMC10315308 DOI: 10.1093/plphys/kiad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Affiliation(s)
- Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Richard Espley
- New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland 1025, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Mickael Malnoy
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all’Adige 38098, Italy
| |
Collapse
|