1
|
Nawade B, Shim SH, Chu SH, Zhao W, Lee SK, Somsri A, Maung TZ, Kang KK, Kim JY, Lee CY, Kim MS, Baik MY, Jeon JS, Park YJ. Integrative transcriptogenomic analyses reveal the regulatory network underlying rice eating and cooking quality and identify a role for alpha-globulin in modulating starch and sucrose metabolism. PLANT COMMUNICATIONS 2025; 6:101287. [PMID: 39980198 DOI: 10.1016/j.xplc.2025.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/03/2024] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
Rice eating and cooking quality (ECQ) is significantly influenced by the physicochemical properties of rice starch. This study integrates whole-genome resequencing, transcriptomic data, and phenotypic analysis to identify the genetic factors that regulate transcript expression levels and contribute to phenotypic variation in rice ECQ traits. A TWAS (transcriptome-wide association study) identified 285 transcripts linked to 6 ECQ traits. Genome-wide mapping of these transcripts revealed 21 747 local eQTLs (expression quantitative trait loci) and 45 158 distal eQTLs. TWAS and eQTL analysis detected several known and novel genes, including starch synthesis-related genes, heat shock proteins, transcription factors, genes related to ATP accumulation, and UDP-glucosyltransferases, showcasing the complex genetic regulation of rice ECQ. WGCNA (weighted gene co-expression network analysis) uncovered key co-expression networks, including a module that links alpha-globulin1 (GLB1) to starch and sucrose metabolism. Genetic diversity analysis of the GLB1 gene across a Korean rice collection identified 26 haplotypes, with indica and aus forming 7 and 3 haplotypes, respectively, which showed significant phenotypic effects on ECQ traits. CRISPR-Cas9-created knockout lines validated these findings, demonstrating that loss of GLB1 function caused significant changes in seed storage proteins, reduced amylose content, altered starch granules, and modified pasting properties without affecting plant phenotypes. By integrating TWAS, eQTL mapping, haplotype analysis, gene expression networks, and CRISPR validation, this study establishes GLB1 as a regulator of ECQ, linking starch biosynthesis and protein accumulation pathways. This transcriptogenomic convergence approach provides novel insights into the genetic regulation of ECQ in rice, demonstrating its effectiveness for characterizing complex traits and enabling precision breeding.
Collapse
Affiliation(s)
- Bhagwat Nawade
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea
| | - Su-Hyeon Shim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sang-Ho Chu
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea
| | - Weiguo Zhao
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea; School of Biotechnology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang, Jiangsu 212100, P.R. China
| | - Sang-Kyu Lee
- Division of Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Aueangporn Somsri
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea
| | - Thant Zin Maung
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea
| | - Kwon Kyoo Kang
- Department of Horticultural Life Science, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jae Yoon Kim
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea
| | - Chang-Yong Lee
- Department of Industrial and Systems Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Min-Seok Kim
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Moo-Yeol Baik
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Yong-Jin Park
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea.
| |
Collapse
|
2
|
Li W, Guo X, Yao W, Li K, Zheng Q, Yu Y, Zhang Z, Wang Y, Yao W, Wu J, Hu H, Hu L, Zhang L, Li X, Dong Y, Li Y. Comparative transcriptomic analysis of heterotic maize development during kernel filling. PLANT MOLECULAR BIOLOGY 2025; 115:53. [PMID: 40172718 DOI: 10.1007/s11103-025-01584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Heterosis, characterized by enhanced performance of a hybrid relative to its parental lines, has been a fundament of plant breeding strategies. Despite the application of heterosis, its molecular mechanisms remain elusive. Here, we focused on the maize heterotic hybrid Yudan132, which showed enhanced agronomic traits compared to its parental lines, including ear and kernel size, kernel weight, and overall yield. Notably, Yudan132 showed increased accumulation of storage substances, characterized by starch, protein contents and grain-filling rates, all of which collectively contribute to the augmented kernel weight. Through gene expression profiling, we identified differentially expressed genes (DEGs) in Yudan132 and its parental lines across four distinct kernel developmental stages (12, 20, 28, and 40 days after pollination). These DEGs displayed both additive and non-additive expression patterns, each contributing to heterosis in maize kernels. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis highlighted their involvement in metabolic pathways, biosynthesis of secondary metabolites, carbon metabolism, starch and sucrose metabolism processes. Within these pathways, the enriched DEGs predominantly associated with the gene categories of peroxidase, cytochrome P450, ketoacyl-CoA synthase, and phospholipase D. Furthermore, we identified the transcription factor bZIP88 among the DEGs, which was involved in the regulation of seed size and weight in transgenic Arabidopsis. These results suggested a potential role for bZIP88 in modulating kernel development, thereby further implicating the involvement of the identified DEGs in the molecular mechanisms of heterosis. These findings provide the genetic role of heterosis in kernel and the molecular mechanism regulating kernel development.
Collapse
Affiliation(s)
- Wenyu Li
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Xiangkun Guo
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Wen Yao
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Keke Li
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Qi Zheng
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Yongbiao Yu
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Zhiwei Zhang
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Yan Wang
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Weigang Yao
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Ju Wu
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Huan Hu
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Lingwei Hu
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Long Zhang
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Xinyu Li
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Yongbin Dong
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China.
| | - Yuling Li
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China.
| |
Collapse
|
3
|
Liu N, Lyu X, Zhang X, Zhang G, Zhang Z, Guan X, Chen X, Yang X, Feng Z, Gao Q, Shi W, Deng Y, Sheng K, Ou J, Zhu Y, Wang B, Bu Y, Zhang M, Zhang L, Zhao T, Gong Y. Reference genome sequence and population genomic analysis of peas provide insights into the genetic basis of Mendelian and other agronomic traits. Nat Genet 2024; 56:1964-1974. [PMID: 39103648 DOI: 10.1038/s41588-024-01867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Peas are essential for human nutrition and played a crucial role in the discovery of Mendelian laws of inheritance. In this study, we assembled the genome of the elite vegetable pea cultivar 'Zhewan No. 1' at the chromosome level and analyzed resequencing data from 314 accessions, creating a comprehensive map of genetic variation in peas. We identified 235 candidate loci associated with 57 important agronomic traits through genome-wide association studies. Notably, we pinpointed the causal gene haplotypes responsible for four Mendelian traits: stem length (Le/le), flower color (A/a), cotyledon color (I/i) and seed shape (R/r). Additionally, we discovered the genes controlling pod form (Mendelian P/p) and hilum color. Our study also involved constructing a gene expression atlas across 22 tissues, highlighting key gene modules related to pod and seed development. These findings provide valuable pea genomic information and will facilitate the future genome-informed improvement of pea crops.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China, Zhejiang Xianghu Laboratory, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaolong Lyu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China, Zhejiang Xianghu Laboratory, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China, Zhejiang Xianghu Laboratory, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ziqian Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueying Guan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaoyang Chen
- Station of Zhejiang Seed Management, Hangzhou, China
| | - Xiaoming Yang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Zhijuan Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China, Zhejiang Xianghu Laboratory, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wanghong Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Yayuan Deng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Kuang Sheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinwen Ou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China, Zhejiang Xianghu Laboratory, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yumeng Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China, Zhejiang Xianghu Laboratory, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuanpeng Bu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China, Zhejiang Xianghu Laboratory, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Mingfang Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Sanya, China.
| | - Liangsheng Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Yazhouwan National Laboratory, Sanya, China.
| | - Ting Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Yaming Gong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China, Zhejiang Xianghu Laboratory, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
4
|
Zhang L, Fu M, Li W, Dong Y, Zhou Q, Wang Q, Li X, Gao J, Wang Y, Wang H, Li Y, Wang J, Wu Y, Li Y. Genetic variation in ZmKW1 contributes to kernel weight and size in dent corn and popcorn. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1453-1467. [PMID: 38163293 PMCID: PMC11123423 DOI: 10.1111/pbi.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/04/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Kernel weight is a critical factor that essentially affects maize (Zea mays) yield. In natural inbred lines, popcorn kernels exhibit overtly smaller sizes compared to dent corn kernels, and kernel weight, which is controlled by multiple genetic loci, varies widely. Here, we characterized a major quantitative trait locus on chromosome 1, responsible for controlling kernel weight (qKW1) and size. The qKW1 locus encodes a protein containing a seven in absentia domain with E3 ubiquitin ligase activity, expressed prominently from the top to the middle region of the endosperm. The presence and function of qKW1 were confirmed through ZmKW1 gene editing, where the mutations in ZmKW1 within dent corn significantly increased kernel weight, consistent with alterations in kernel size, while overexpression of ZmKW1 had the opposite effect. ZmKW1 acts as a negative regulator of kernel weight and size by reducing both the number and size of the endosperm cells and impacting endosperm filling. Notably, the popcorn allele qKW1N and the dent corn allele qKW1D encode identical proteins; however, the differences in promoter activity arise due to the insertion of an Indel-1346 sequence in the qKW1N promoter, resulting in higher expression levels compared to qKW1D, thus contributing to the variation in kernel weight and size between popcorn and dent corn kernels. Linkage disequilibrium analysis of the 2.8 kb promoter region of ZmKW1 in a dataset comprising 111 maize association panels identified two distinct haplotypes. Our results provide insight into the mechanisms underlying kernel development and yield regulation in dent corn and popcorn, with a specific focus on the role of the ubiquitination system.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
- College of ForestryHenan Agricultural UniversityZhengzhouChina
| | - Miaomiao Fu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and Ecology Chinese Academy of SciencesShanghaiChina
| | - Wenyu Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Yongbin Dong
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Qiang Zhou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
- College of AgronomyXinyang Agricultural and Forestry UniversityXinyangChina
| | - Qilei Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Xinyu Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Jie Gao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Yan Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Han Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Yayong Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and Ecology Chinese Academy of SciencesShanghaiChina
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and Ecology Chinese Academy of SciencesShanghaiChina
| | - Yuling Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
5
|
Wei Y, Zhu B, Zhang Y, Ma G, Wu J, Tang L, Shi H. CPK1-HSP90 phosphorylation and effector XopC2-HSP90 interaction underpin the antagonism during cassava defense-pathogen infection. THE NEW PHYTOLOGIST 2024; 242:2734-2745. [PMID: 38581188 DOI: 10.1111/nph.19739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Cassava is one of the most important tropical crops, but it is seriously affected by cassava bacteria blight (CBB) caused by the bacterial pathogen Xanthomonas phaseoli pv manihotis (Xam). So far, how pathogen Xam infects and how host cassava defends during pathogen-host interaction remains elusive, restricting the prevention and control of CBB. Here, the illustration of HEAT SHOCK PROTEIN 90 kDa (MeHSP90.9) interacting proteins in both cassava and bacterial pathogen revealed the dual roles of MeHSP90.9 in cassava-Xam interaction. On the one hand, calmodulin-domain protein kinase 1 (MeCPK1) directly interacted with MeHSP90.9 to promote its protein phosphorylation at serine 175 residue. The protein phosphorylation of MeHSP90.9 improved the transcriptional activation of MeHSP90.9 clients (SHI-RELATED SEQUENCE 1 (MeSRS1) and MeWRKY20) to the downstream target genes (avrPphB Susceptible 3 (MePBS3) and N-aceylserotonin O-methyltransferase 2 (MeASMT2)) and immune responses. On the other hand, Xanthomonas outer protein C2 (XopC2) physically associated with MeHSP90.9 to inhibit its interaction with MeCPK1 and the corresponding protein phosphorylation by MeCPK1, so as to repress host immune responses and promote bacterial pathogen infection. In summary, these results provide new insights into genetic improvement of cassava disease resistance and extend our understanding of cassava-bacterial pathogen interaction.
Collapse
Affiliation(s)
- Yunxie Wei
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Binbin Zhu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Ye Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Guowen Ma
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Jingyuan Wu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Luzhi Tang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| | - Haitao Shi
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Hainan Province, 572025, China
| |
Collapse
|
6
|
Ren W, Ding B, Dong W, Yue Y, Long X, Zhou Z. Unveiling HSP40/60/70/90/100 gene families and abiotic stress response in Jerusalem artichoke. Gene 2024; 893:147912. [PMID: 37863300 DOI: 10.1016/j.gene.2023.147912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Heat shock proteins (HSPs) are essential for plant growth, development, and stress adaptation. However, their roles in Jerusalem artichoke are largely unexplored. Using bioinformatics, we classified 143 HSP genes into distinct families: HSP40 (82 genes), HSP60 (22 genes), HSP70 (29 genes), HSP90 (6 genes), and HSP100 (4 genes). Our analysis covered their traits, evolution, and structures. Using RNA-seq data, we uncovered unique expression patterns of these HSP genes across growth stages and tissues. Notably, HSP40, HSP60, HSP70, HSP90, and HSP100 families each had specific roles. We also studied how these gene families responded to various stresses, from extreme temperatures to drought and salinity, revealing intricate expression dynamics. Remarkably, HSP40 showed remarkable flexibility, while HSP60, HSP70, HSP90, and HSP100 responded specifically to stress types. Moreover, our analysis unveiled significant correlations between gene pairs under stress, implying cooperative interactions. qRT-PCR validation underscored the significance of particular genes such as HtHSP60-7, HtHSP90-5, HtHSP100-2, and HtHSP100-3 in responding to stress. In summary, our study advances the understanding of how HSP gene families collectively manage stresses in Jerusalem artichoke. This provides insights into specific gene functions and broader plant stress responses.
Collapse
Affiliation(s)
- Wencai Ren
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishui Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhan Dong
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yue
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohua Long
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaosheng Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Cao D. Something seedy going on: HEAT SHOCK PROTEIN90.6 links carbon and nitrogen metabolism in seed development. PLANT PHYSIOLOGY 2023; 192:705-706. [PMID: 36852892 PMCID: PMC10231349 DOI: 10.1093/plphys/kiad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 06/01/2023]
Affiliation(s)
- Dechang Cao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|