1
|
Zhang Y, Chen G, Zang Y, Bhavani S, Bai B, Liu W, Zhao M, Cheng Y, Li S, Chen W, Yan W, Mao H, Su H, Singh RP, Lagudah E, Li Q, Lan C. Lr34/Yr18/Sr57/Pm38 confers broad-spectrum resistance to fungal diseases via sinapyl alcohol transport for cell wall lignification in wheat. PLANT COMMUNICATIONS 2024; 5:101077. [PMID: 39233441 PMCID: PMC11671766 DOI: 10.1016/j.xplc.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/26/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
The widely recognized pleiotropic adult plant resistance gene Lr34 encodes an ATP-binding cassette transporter and plays an important role in breeding wheat for enhanced resistance to multiple fungal diseases. Despite its significance, the mechanisms underlying Lr34-mediated pathogen defense remain largely unknown. Our study demonstrates that wheat lines carrying the Lr34res allele exhibit thicker cell walls and enhanced resistance to fungal penetration compared to those without Lr34res. Transcriptome and metabolite profiling revealed that the lignin biosynthetic pathway is suppressed in lr34 mutants, indicating a disruption in cell wall lignification. Additionally, we discovered that lr34 mutant lines are hypersensitive to sinapyl alcohol, a major monolignol crucial for cell wall lignification. Yeast accumulation and efflux assays confirmed that the LR34 protein functions as a sinapyl alcohol transporter. Both genetic and virus-induced gene silencing experiments demonstrated that the disease resistance conferred by Lr34 can be enhanced by incorporating the TaCOMT-3B gene, which is responsible for the biosynthesis of sinapyl alcohol. Collectively, our findings provide novel insights into the role of Lr34 in disease resistance through mediating sinapyl alcohol transport and cell wall deposition, and highlight the synergistic effect of TaCOMT-3B and Lr34 against multiple fungal pathogens by mediating cell wall lignification in adult wheat plants.
Collapse
Affiliation(s)
- Yichen Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Guang Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Yiming Zang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do, de México, Mexico
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou City, Gansu Province 730070, China
| | - Wei Liu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Miaomiao Zhao
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Yikeng Cheng
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Shunda Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Wei Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Wenhao Yan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Hailiang Mao
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Handong Su
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Ravi P Singh
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China; International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do, de México, Mexico
| | - Evans Lagudah
- CSIRO Agriculture & Food, Canberra, ACT 2601, Australia
| | - Qiang Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China.
| | - Caixia Lan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China.
| |
Collapse
|
2
|
Milne RJ, Dibley KE, Bose J, Riaz A, Zhang J, Schnippenkoetter W, Ashton AR, Ryan PR, Tyerman SD, Lagudah ES. Dissecting the causal polymorphism of the Lr67res multipathogen resistance gene. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3877-3890. [PMID: 38618744 PMCID: PMC11233415 DOI: 10.1093/jxb/erae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/14/2024] [Indexed: 04/16/2024]
Abstract
Partial resistance to multiple biotrophic fungal pathogens in wheat (Triticum aestivum L.) is conferred by a variant of the Lr67 gene, which encodes a hexose-proton symporter. Two mutations (G144R and V387L) differentiate the resistant and susceptible protein variants (Lr67res and Lr67sus). Lr67res lacks sugar transport capability and was associated with anion transporter-like properties when expressed in Xenopus laevis oocytes. Here, we extended this functional characterization to include yeast and in planta studies. The Lr67res allele, but not Lr67sus, induced sensitivity to ions in yeast (including NaCl, LiCl, and KI), which is consistent with our previous observations that Lr67res expression in oocytes induces novel ion fluxes. We demonstrate that another naturally occurring single amino acid variant in wheat, containing only the Lr67G144R mutation, confers rust resistance. Transgenic barley plants expressing the orthologous HvSTP13 gene carrying the G144R and V387L mutations were also more resistant to Puccinia hordei infection. NaCl treatment of pot-grown adult wheat plants with the Lr67res allele induced leaf tip necrosis and partial leaf rust resistance. An Lr67res-like function can be introduced into orthologous plant hexose transporters via single amino acid mutation, highlighting the strong possibility of generating disease resistance in other crops, especially with gene editing.
Collapse
Affiliation(s)
- Ricky J Milne
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | | | - Jayakumar Bose
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064, Australia
- School of Science and Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - Adnan Riaz
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
- AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Jianping Zhang
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW 2570, Australia
| | | | | | - Peter R Ryan
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Stephen D Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064, Australia
| | | |
Collapse
|
3
|
Pegler JL, Patrick JW, McDermott B, Brown A, Oultram JMJ, Grof CPL, Ward JM. Phaseolus vulgaris STP13.1 is an H +-coupled monosaccharide transporter, present in source leaves and seed coats, with higher substrate affinity at depolarized potentials. PLANT DIRECT 2024; 8:e585. [PMID: 38651017 PMCID: PMC11033725 DOI: 10.1002/pld3.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Sugar transport proteins (STPs) are high-affinity H+-coupled hexose symporters. Recently, the contribution of STP13 to bacterial and fungal pathogen resistance across multiple plant species has garnered significant interest. Quantitative PCR analysis of source leaves, developing embryos, and seed coats of Phaseolus vulgaris L. (common bean) revealed that PvSTP13.1 was expressed in source leaves and seed coats throughout seed development. In contrast, PvSTP13.1 transcripts were detected at exceedingly low levels in developing embryos. To characterize the transport mechanism, PvSTP13.1 was expressed in Xenopus laevis oocytes, and inward-directed currents were analyzed using two-electrode voltage clamping. PvSTP13.1 was shown to function as an H+-coupled monosaccharide symporter exhibiting a unique high affinity for hexoses and aldopentoses at depolarized membrane potentials. Specifically, of the 31 assessed substrates, which included aldohexoses, deoxyhexoses, fructose, 3-O-methyl-D-glucose, aldopentoses, polyols, glycosides, disaccharides, trisaccharides, and glucuronic acid, PvSTP13.1 displayed the highest affinity (K 0.5) for glucose (43 μM), mannose (92 μM), galactose (145 μM), fructose (224 μM), xylose (1.0 mM), and fucose (3.7 mM) at pH 5.6 at a depolarized membrane potential of -40 mV. The results presented here suggest PvSTP13.1 contributes to retrieval of hexoses from the apoplasmic space in source leaves and coats of developing seeds.
Collapse
Affiliation(s)
- Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John W. Patrick
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Benjamin McDermott
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Anthony Brown
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Jackson M. J. Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John M. Ward
- Plant and Microbial BiologyUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
| |
Collapse
|