1
|
Lu X, Wu J, Shi Q, Sun S, Cheng Y, Zhou G, Li R, Wang H, van der Knaap E, Cui X. A feedback loop at the THERMOSENSITIVE PARTHENOCARPY 4 locus controls tomato fruit set under heat stress. Nat Commun 2025; 16:4184. [PMID: 40328814 PMCID: PMC12056112 DOI: 10.1038/s41467-025-59522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
High temperatures compromise crop productivity worldwide, but breeding bottlenecks slow the delivery of climate-resilient crops. By investigating tomato fruit set under high temperatures, we discover a module comprising two linked genes, THERMOSENSITIVE PARTHENOCARPY 4a (TSP4a) and TSP4b, which encode the transcriptional regulators IAA9 and AINTEGUMENTA (ANT), respectively, to control thermosensitive parthenocarpy. TSP4a and TSP4b form a positive feedback loop upon heat stress to repress auxin signaling in ovaries. Natural TSP4a and TSP4b alleles bear regulatory-region polymorphisms and are differentially expressed to overcome the trade-off between fruit set and wider plant development. Gene editing of the TSP4a promoter and TSP4b 3' UTR in open-chromatin regions results in expression down-regulation, increased parthenocarpy without yield penalties and maintenance of fruit-sugar levels without broad auxin-related pleiotropic defects in greenhouse-grown plants. These mechanistic insights into heat-induced parthenocarpy and auxin signaling in reproductive organs demonstrate breeding utility to safeguard tomato yield under warming scenarios.
Collapse
Affiliation(s)
- Xiaonan Lu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianxin Wu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - QianQian Shi
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Esther van der Knaap
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics University of Georgia, Athens, GA, 30602, USA
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Wang Y, Kelley S, Zentella R, Hu J, Wei H, Wang L, Shabanowitz J, Hunt DF, Sun TP. O-Fucosyltransferase SPINDLY attenuates auxin-induced fruit growth by inhibiting ARF6/8-coactivator mediator complex interaction in Arabidopsis. Nat Commun 2025; 16:3965. [PMID: 40295503 PMCID: PMC12037827 DOI: 10.1038/s41467-025-59095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
The phytohormone auxin plays a pivotal role in promoting fruit initiation and growth upon fertilization in flowering plants. Upregulation of auxin signaling by genetic mutations or exogenous auxin treatment can induce seedless fruit formation from unpollinated ovaries, termed parthenocarpy. Recent studies suggested that the class A AUXIN RESPONSE FACTOR6 (ARF6) and ARF8 in Arabidopsis play dual functions by first inhibiting fruit initiation when complexed with unidentified corepressor IAA protein(s) before pollination, and later promoting fruit growth after fertilization as ARF dimers. However, whether and how posttranslational modification(s) regulate ARF6- and ARF8-mediated fruit growth were unknown. In this study, we reveal that both ARF6 and ARF8 are O-fucosylated in their middle region (MR) by SPINDLY (SPY), a unique nucleocytoplasmic protein O-fucosyltransferase, which catalyzes the addition of a fucose moiety to specific Ser/Thr residues of target proteins. Epistasis, biochemical and transcriptome analyses indicate that ARF6 and ARF8 are downstream of SPY, but ARF8 plays a more predominant role in parthenocarpic fruit growth. Intriguingly, two ARF6/8-interacting proteins, the co-repressor IAA9 and MED8, a subunit of the coactivator Mediator complex, are also O-fucosylated by SPY. Biochemical assays demonstrate that SPY-mediated O-fucosylation of these proteins reduces ARF-MED8 interaction, which leads to enhanced transcription repression activity of the ARF6/8-IAA9 complex but impaired transactivation activities of ARF6/8. Our study unveils the role of protein O-fucosylation by SPY in attenuating auxin-triggered fruit growth through modulation of activities of key transcription factors, a co-repressor and the coactivator MED complex.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Seamus Kelley
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Rodolfo Zentella
- Department of Biology, Duke University, Durham, NC, 27708, USA
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, NC, 27607, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jianhong Hu
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Hua Wei
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
3
|
Du M, Sun C, Deng L, Zhou M, Li J, Du Y, Ye Z, Huang S, Li T, Yu J, Li C, Li C. Molecular breeding of tomato: Advances and challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:669-721. [PMID: 40098531 PMCID: PMC11951411 DOI: 10.1111/jipb.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
The modern cultivated tomato (Solanum lycopersicum) was domesticated from Solanum pimpinellifolium native to the Andes Mountains of South America through a "two-step domestication" process. It was introduced to Europe in the 16th century and later widely cultivated worldwide. Since the late 19th century, breeders, guided by modern genetics, breeding science, and statistical theory, have improved tomatoes into an important fruit and vegetable crop that serves both fresh consumption and processing needs, satisfying diverse consumer demands. Over the past three decades, advancements in modern crop molecular breeding technologies, represented by molecular marker technology, genome sequencing, and genome editing, have significantly transformed tomato breeding paradigms. This article reviews the research progress in the field of tomato molecular breeding, encompassing genome sequencing of germplasm resources, the identification of functional genes for agronomic traits, and the development of key molecular breeding technologies. Based on these advancements, we also discuss the major challenges and perspectives in this field.
Collapse
Affiliation(s)
- Minmin Du
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijing100193China
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- Sanya Institute of China Agricultural UniversitySanya572025China
| | - Chuanlong Sun
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
| | - Lei Deng
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Junming Li
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Yongchen Du
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Sanwen Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
- State Key Laboratory of Tropical Crop BreedingChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Tianlai Li
- College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Jingquan Yu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Chang‐Bao Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Chuanyou Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| |
Collapse
|
4
|
Gao Y, Lai J, Feng C, Li L, Zu Q, Li J, Du D. Transcriptional Analysis of Tissues in Tartary Buckwheat Seedlings Under IAA Stimulation. Genes (Basel) 2024; 16:30. [PMID: 39858577 PMCID: PMC11764492 DOI: 10.3390/genes16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
Background:Fagopyrum tataricum, commonly referred to as tartary buckwheat, is a cultivated medicinal and edible crop renowned for its economic and nutritional significance. Following the publication of the buckwheat genome, research on its functional genomics across various growth environments has gradually begun. Auxin plays a crucial role in many life processes. Analyzing the expression changes in tartary buckwheat after IAA treatment is of great significance for understanding its growth and environmental adaptability. Methods: This study investigated the changes in auxin response during the buckwheat seedling stage through high-throughput transcriptome sequencing and the identification and annotation of differentially expressed genes (DEGs) across three treatment stages. Results: After IAA treatment, there are 3355 DEGs in leaves and 3974 DEGs in roots identified. These DEGs are significantly enriched in plant hormone signaling, MAPK signaling pathways, phenylpropanoid biosynthesis, and flavonoid biosynthesis pathways. This result suggests a notable correlation between these tissues in buckwheat and their response to IAA, albeit with significant differences in response patterns. Additionally, the identification of tissue-specific expression genes in leaves and other tissues revealed distinct tissue variations. Conclusions: Following IAA treatment, an increase in tissue-specific expression genes observed, indicating that IAA significantly regulates the growth of buckwheat tissues. This study also validated certain genes, particularly those in plant hormone signaling pathways, providing a foundational dataset for the further analysis of buckwheat growth and tissue development and laying the groundwork for understanding buckwheat growth and development.
Collapse
Affiliation(s)
- Yingying Gao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jialing Lai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chenglu Feng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Luyang Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qihang Zu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Juan Li
- College of Nursing and Health Management & College of Life Science and Chemistry, Wuhan Donghu University, Wuhan 430212, China
- Innovation Institute for Biomedical Material, Wuhan Donghu University, Wuhan 430212, China
| | - Dengxiang Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
5
|
Guo Z, Wu Y, Si C, Sun X, Wang L, Yang S. Impact of diverse exogenous hormones on parthenocarpy, yield, and quality of pepino ( Solanum muricatum) in the Qinghai-Tibet plateau's natural conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1853-1869. [PMID: 39687703 PMCID: PMC11646245 DOI: 10.1007/s12298-024-01533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Pepino (Solanum muricatum), native to the Andes Mountains, requires exogenous hormones in its brief frost-free plateau environment to induce parthenocarpy and ensure yield.The effects of different plant growth regulators and application methods on pepino's growth, yield, and fruit quality were analyzed. Results showed that exogenous plant growth regulators had significant effects on various plant traits For instance, plant height decreased by 43.56% in the flower dipping treatment with 40 parts per million (ppm) 2,4-Dichlorophenoxyacetic acid (2,4-D), while stem diameter decreased by 21.6% with 40 ppm 4-Chlorophenoxyacetic acid (4-CPA) spraying, indicating a notable inhibition of vegetative growth. In contrast, reproductive growth improved, with the 20 ppm 2,4-D spray treatment boosting yield by 627.06% compared to the control. Furthermore, the 30 ppm 2,4-D spray produced the highest single fruit weight, a 69.16% increase over the control. However, exogenous hormones also caused fruit cracking, with the highest rate (55.5%) in the 20 ppm 2,4-D spray treatment. As for fruit quality, glucose content decreased, while fructose and sucrose levels significantly increased in hormone-treated fruits compared to the control. No significant differences were observed in flavonoid, total phenol, or vitamin C content. Transcriptome sequencing showed that 16,836 genes were significantly downregulated in pepino flower buds 72 h after a 30 ppm 4-CPA spray. KEGG enrichment analysis suggested that 4-CPA regulates parthenocarpy by influencing amino acid and protein synthesis pathways. Applying plant growth regulators in different concentrations and methods significantly impacts pepino's growth, yield, and fruit quality. These findings could guide other crops facing similar environmental challenges and potentially transform agricultural practices in high-altitude regions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01533-7.
Collapse
Affiliation(s)
- Ziran Guo
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Qinghai University, Xining, 810016 China
| | - Yujiang Wu
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Qinghai University, Xining, 810016 China
| | - Cheng Si
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Qinghai University, Xining, 810016 China
| | - Xuemei Sun
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Qinghai University, Xining, 810016 China
| | - Lihui Wang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Qinghai University, Xining, 810016 China
| | - Shipeng Yang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Qinghai University, Xining, 810016 China
- College of Life Sciences, Northwest A&F University, Shaanxi, 712100 China
| |
Collapse
|
6
|
Li BJ, Bao RX, Shi YN, Grierson D, Chen KS. Auxin response factors: important keys for understanding regulatory mechanisms of fleshy fruit development and ripening. HORTICULTURE RESEARCH 2024; 11:uhae209. [PMID: 39372288 PMCID: PMC11450211 DOI: 10.1093/hr/uhae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/18/2024] [Indexed: 10/08/2024]
Abstract
Auxin response transcription factors (ARFs) form a large gene family, many of whose members operate at the final step of the auxin signaling pathway. ARFs participate directly in many aspects of plant growth and development. Here we summarize recent advances in understanding the roles of ARFs in regulating aspects of fleshy fruit development and ripening. ARFs play a crucial role in regulating fruit size, color, nutrients, texture, yield, and other properties that ultimately influence the ripening and quality of important crops such as tomato, apple, strawberry, and peach. ARFs impact these processes acting as positive, negative, or bidirectional regulators via phytohormone-dependent or -independent mechanisms. In the phytohormone-dependent pathway, ARFs act as a central hub linking interactions with multiple phytohormones generating diverse effects. The three domains within ARFs, namely the DNA-binding domain, the middle region, and the carboxy-terminal dimerization domain, exhibit distinct yet overlapping functions, contributing to a range of mechanisms mediated by ARFs. These findings not only provide a profound understanding of ARF functions, but also raise new questions. Further exploration can lead to a more comprehensive understanding of the regulatory mechanisms of fleshy fruit development and ripening mediated by ARFs.
Collapse
Affiliation(s)
- Bai-Jun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, No.100, East Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Ruo-Xuan Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, No.100, East Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, China
| | - Yan-Na Shi
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Donald Grierson
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Kun-Song Chen
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| |
Collapse
|
7
|
Zhang Z, Zhang H, Liu J, Chen K, Wang Y, Zhang G, Li L, Yue H, Weng Y, Li Y, Chen P. The mutation of CsSUN, an IQD family protein, is responsible for the short and fat fruit (sff) in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112177. [PMID: 38964612 DOI: 10.1016/j.plantsci.2024.112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
The fruit shape of cucumber is an important agronomic trait, and mining regulatory genes, especially dominant ones, is vital for cucumber breeding. In this study, we identified a short and fat fruit mutant, named sff, from an EMS mutagenized population. Compared to the CCMC (WT), sff (MT) exhibited reduced fruit length and increased dimeter. Segregation analysis revealed that the sff phenotype is controlled by a semi-dominant single gene with dosage effects. Through map-based cloning, the SFF locus was narrowed down to a 52.6 kb interval with two SNPs (G651A and C1072T) in the second and third exons of CsaV3_1G039870, which encodes an IQD family protein, CsSUN. The G651A within the IQ domain of CsSUN was identified as the unique SNP among 114 cucumber accessions, and it was the primary cause of the functional alteration in CsSUN. By generating CsSUN knockout lines in cucumber, we confirmed that CsSUN was responsible for sff mutant phenotype. The CsSUN is localized to the plasma membrane. CsSUN exhibited the highest expression in the fruit with lower expression in sff compared to WT. Histological observations suggest that the sff mutant phenotype is due to increased transverse cell division and inhibited longitudinal cell division. Transcriptome analysis revealed that CsSUN significantly affected the expression of genes related to cell division, expansion, and auxin signal transduction. This study unveils CsSUN's crucial role in shaping cucumber fruit and offers novel insights for cucumber breeding.
Collapse
Affiliation(s)
- Zhengao Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junyan Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kang Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yixin Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Lixia Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI 53706, USA
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Guan H, Yang X, Lin Y, Xie B, Zhang X, Ma C, Xia R, Chen R, Hao Y. The hormone regulatory mechanism underlying parthenocarpic fruit formation in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1404980. [PMID: 39119498 PMCID: PMC11306060 DOI: 10.3389/fpls.2024.1404980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Parthenocarpic fruits, known for their superior taste and reliable yields in adverse conditions, develop without the need for fertilization or pollination. Exploring the physiological and molecular mechanisms behind parthenocarpic fruit development holds both theoretical and practical significance, making it a crucial area of study. This review examines how plant hormones and MADS-box transcription factors control parthenocarpic fruit formation. It delves into various aspects of plant hormones-including auxin, gibberellic acid, cytokinins, ethylene, and abscisic acid-ranging from external application to biosynthesis, metabolism, signaling pathways, and their interplay in influencing parthenocarpic fruit development. The review also explores the involvement of MADS family gene functions in these processes. Lastly, we highlight existing knowledge gaps and propose directions for future research on parthenocarpy.
Collapse
Affiliation(s)
- Hongling Guan
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Xiaolong Yang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yuxiang Lin
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Baoxing Xie
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xinyue Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chongjian Ma
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Rui Xia
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Marash I, Leibman-Markus M, Gupta R, Israeli A, Teboul N, Avni A, Ori N, Bar M. Abolishing ARF8A activity promotes disease resistance in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112064. [PMID: 38492890 DOI: 10.1016/j.plantsci.2024.112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/18/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Auxin response factors (ARFs) are a family of transcription factors that regulate auxin-dependent developmental processes. Class A ARFs function as activators of auxin-responsive gene expression in the presence of auxin, while acting as transcriptional repressors in its absence. Despite extensive research on the functions of ARF transcription factors in plant growth and development, the extent, and mechanisms of their involvement in plant resistance, remain unknown. We have previously reported that mutations in the tomato AUXIN RESPONSE FACTOR8 (ARF8) genes SlARF8A and SlARF8B result in the decoupling of fruit development from pollination and fertilization, leading to partial or full parthenocarpy and increased yield under extreme temperatures. Here, we report that fine-tuning of SlARF8 activity results in increased resistance to fungal and bacterial pathogens. This resistance is mostly preserved under fluctuating temperatures. Thus, fine-tuning SlARF8 activity may be a potent strategy for increasing overall growth and yield.
Collapse
Affiliation(s)
- Iftah Marash
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel; School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Alon Israeli
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Naama Teboul
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Avni
- School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Naomi Ori
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel.
| |
Collapse
|
10
|
Ezura K, Nomura Y, Ariizumi T. Molecular, hormonal, and metabolic mechanisms of fruit set, the ovary-to-fruit transition, in horticultural crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6254-6268. [PMID: 37279328 DOI: 10.1093/jxb/erad214] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Fruit set is the process by which the ovary develops into a fruit and is an important factor in determining fruit yield. Fruit set is induced by two hormones, auxin and gibberellin, and the activation of their signaling pathways, partly by suppressing various negative regulators. Many studies have investigated the structural changes and gene networks in the ovary during fruit set, revealing the cytological and molecular mechanisms. In tomato (Solanum lycopersicum), SlIAA9 and SlDELLA/PROCERA act as auxin and gibberellin signaling repressors, respectively, and are important regulators of the activity of transcription factors and downstream gene expression involved in fruit set. Upon pollination, SlIAA9 and SlDELLA are degraded, which subsequently activates downstream cascades and mainly contributes to active cell division and cell elongation, respectively, in ovaries during fruit setting. According to current knowledge, the gibberellin pathway functions as the most downstream signal in fruit set induction, and therefore its role in fruit set has been extensively explored. Furthermore, multi-omics analysis has revealed the detailed dynamics of gene expression and metabolites downstream of gibberellins, highlighting the rapid activation of central carbon metabolism. This review will outline the relevant mechanisms at the molecular and metabolic levels during fruit set, particularly focusing on tomato.
Collapse
Affiliation(s)
- Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo 102-0083, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yukako Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
11
|
Tian S, Zhang Z, Qin G, Xu Y. Parthenocarpy in Cucurbitaceae: Advances for Economic and Environmental Sustainability. PLANTS (BASEL, SWITZERLAND) 2023; 12:3462. [PMID: 37836203 PMCID: PMC10574560 DOI: 10.3390/plants12193462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Parthenocarpy is an important agricultural trait that not only produces seedless fruits, but also increases the rate of the fruit set under adverse environmental conditions. The study of parthenocarpy in Cucurbitaceae crops has considerable implications for cultivar improvement. This article provides a comprehensive review of relevant studies on the parthenocarpic traits of several major Cucurbitaceae crops and offers a perspective on future developments and research directions.
Collapse
Affiliation(s)
- Shouwei Tian
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Zeliang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yong Xu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| |
Collapse
|