1
|
Wójtowicz J, Mazur R, Jakubauskas D, Sokolova A, Garvey C, Mortensen K, Jensen PE, Kirkensgaard JJK, Kowalewska Ł. Shrink or expand? Just relax! Bidirectional grana structural dynamics as early light-induced regulator of photosynthesis. THE NEW PHYTOLOGIST 2025; 246:2580-2596. [PMID: 40289507 PMCID: PMC12095992 DOI: 10.1111/nph.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
Light-induced structural changes in thylakoid membranes have been reported for decades, with conflicting data regarding their shrinkage or expansion during dark-light transitions. Understanding these dynamics is important for both fundamental photosynthesis research and agricultural applications. This research investigated the temporal sequence of thylakoid structural changes during light exposure and their functional significance. We combined high-resolution structural approaches (transmission electron microscopy, confocal microscopy with 3D modeling, and small-angle neutron scattering) with spectroscopic and electrophoretic analyses of the photosynthetic apparatus of Arabidopsis thaliana and Ficus elastica plants. A meta-analysis of published ultrastructural data complemented our experimental approach to resolve existing contradictions. We discovered a three-phase response pattern: initial shrinkage, expansion, and relaxation to dark-state equilibrium. The initial shrinkage specifically regulated the cyclic/linear electron transport ratio, providing rapid photoprotection. We also showed that plants' acclimation to different light regimes modulates the kinetics of this response, with constant-light-grown plants exhibiting faster structural adaptations than those acclimated to glasshouse conditions. This work challenges the traditional binary model of light-induced thylakoid structural dynamics, revealing a sophisticated temporal regulatory mechanism, with the dark-adapted state serving as a relaxed equilibrium. The discovered three-phase response reconciles decades of conflicting observations and reveals how plants achieve rapid photoprotection before engaging longer term adaptive responses.
Collapse
Affiliation(s)
- Joanna Wójtowicz
- Department of Plant Anatomy and Cytology, Faculty of BiologyUniversity of WarsawMiecznikowa 102‐096WarsawPoland
| | - Radosław Mazur
- Department of Metabolic Regulation, Faculty of BiologyUniversity of WarsawMiecznikowa 102‐096WarsawPoland
| | - Dainius Jakubauskas
- Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871CopenhagenDenmark
- Niels Bohr Institute, University of CopenhagenUniversitetsparken 5DK‐2100CopenhagenDenmark
| | - Anna Sokolova
- Australian Nuclear Science and Technology OrganisationSydneyNSW2234Australia
| | - Christopher Garvey
- Heinz Maier‐Leibnitz Zentrum (MLZ)Technische Universität MünchenLichtenbergstraße 185748GarchingGermany
| | - Kell Mortensen
- Niels Bohr Institute, University of CopenhagenUniversitetsparken 5DK‐2100CopenhagenDenmark
| | - Poul Erik Jensen
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26DK‐1958CopenhagenDenmark
| | - Jacob J. K. Kirkensgaard
- Niels Bohr Institute, University of CopenhagenUniversitetsparken 5DK‐2100CopenhagenDenmark
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26DK‐1958CopenhagenDenmark
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of BiologyUniversity of WarsawMiecznikowa 102‐096WarsawPoland
| |
Collapse
|
2
|
Zhang F, Li D, Li G, Xu S. New horizons in smart plant sensors: key technologies, applications, and prospects. FRONTIERS IN PLANT SCIENCE 2025; 15:1490801. [PMID: 39840367 PMCID: PMC11747371 DOI: 10.3389/fpls.2024.1490801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/05/2024] [Indexed: 01/23/2025]
Abstract
As the source of data acquisition, sensors provide basic data support for crop planting decision management and play a foundational role in developing smart planting. Accurate, stable, and deployable on-site sensors make intelligent monitoring of various planting scenarios possible. Recent breakthroughs in plant advanced sensors and the rapid development of intelligent manufacturing and artificial intelligence (AI) have driven sensors towards miniaturization, intelligence, and multi-modality. This review outlines the key technologies in developing new advanced sensors, such as micro-nano technology, flexible electronics technology, and micro-electromechanical system technology. The latest technological frontiers and development trends in sensor principles, fabrication processes, and performance parameters in soil and different segmented crop scenarios are systematically expounded. Finally, future opportunities, challenges, and prospects are discussed. We anticipate that introducing advanced technologies like nanotechnology and AI will rapidly and radically revolutionize the accuracy and intelligence of agricultural sensors, leading to new levels of innovation.
Collapse
Affiliation(s)
- Fucheng Zhang
- Research Center for Agricultural Monitoring and Early Warning, Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Denghua Li
- Research Center for Agricultural Monitoring and Early Warning, Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Research Center of Agricultural Monitoring and Early Warning Engineering Technology, Beijing, China
| | - Ganqiong Li
- Research Center for Agricultural Monitoring and Early Warning, Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Research Center of Agricultural Monitoring and Early Warning Engineering Technology, Beijing, China
| | - Shiwei Xu
- Research Center for Agricultural Monitoring and Early Warning, Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Research Center of Agricultural Monitoring and Early Warning Engineering Technology, Beijing, China
| |
Collapse
|
3
|
Hmidi D, Muraya F, Fizames C, Véry A, Roelfsema MRG. Potassium extrusion by plant cells: evolution from an emergency valve to a driver of long-distance transport. THE NEW PHYTOLOGIST 2025; 245:69-87. [PMID: 39462778 PMCID: PMC11617655 DOI: 10.1111/nph.20207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 10/29/2024]
Abstract
The ability to accumulate nutrients is a hallmark for living creatures and plants evolved highly effective nutrient transport systems, especially for the uptake of potassium (K+). However, plants also developed mechanisms that enable the rapid extrusion of K+ in combination with anions. The combined release of K+ and anions is probably an ancient extrusion system, as it is found in the Characeae that are closely related to land plants. We postulate that the ion extrusion mechanisms have developed as an emergency valve, which enabled plant cells to rapidly reduce their turgor, and prevent them from bursting. Later in evolution, seed plants adapted this system for various responses, such as the closure of stomata, long-distance stress waves, dropping of leaves by pulvini, and loading of xylem vessels. We discuss the molecular nature of the transport proteins that are involved in ion extrusion-based functions of plants and describe the functions that they obtained during evolution.
Collapse
Affiliation(s)
- Dorsaf Hmidi
- Institut des Sciences des Plantes de Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Campus SupAgro‐INRAE34060Montpellier Cedex 2France
| | - Florence Muraya
- Molecular Plant Physiology and Biophysics, Julius‐von‐Sachs Institute for Biosciences, BiocenterWürzburg UniversityJulius‐von‐Sachs‐Platz 2D‐97082WürzburgGermany
| | - Cécile Fizames
- Institut des Sciences des Plantes de Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Campus SupAgro‐INRAE34060Montpellier Cedex 2France
| | - Anne‐Aliénor Véry
- Institut des Sciences des Plantes de Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Campus SupAgro‐INRAE34060Montpellier Cedex 2France
| | - M. Rob G. Roelfsema
- Molecular Plant Physiology and Biophysics, Julius‐von‐Sachs Institute for Biosciences, BiocenterWürzburg UniversityJulius‐von‐Sachs‐Platz 2D‐97082WürzburgGermany
| |
Collapse
|
4
|
Kumar P, Chugh P, Ali SS, Chawla W, Sushmita S, Kumar R, Raval AV, Shamim S, Bhatia A, Kumar R. Trends of Nanobiosensors in Modern Agriculture Systems. Appl Biochem Biotechnol 2025; 197:667-690. [PMID: 39136915 DOI: 10.1007/s12010-024-05039-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
Sustainable agriculture and the provision of food for all become dependent on the availability of efficient diagnostic techniques for the prompt identification of plant diseases. Current scientific findings suggest that nanotechnology can positively affect the agrifood industry by reducing the adverse effects of agricultural practices on human health and the environment, increasing food security and productivity, and fostering social and economic justice. Nanomaterials' unique physical and chemical characteristics have made it possible to employ them as cutting-edge, effective diagnostic instruments for various plant infections and other significant disease biomarkers. By creating diagnostic instruments and methods, nanobiosensors significantly contribute to the revolution of farming. In real time, nanobiosensors can detect infections, metabolites, pesticides, nutrient levels, soil moisture, and temperature. This helps with precision farming techniques and maximises resource use. To better address agricultural concerns, we have included the most recent research on the concept, types, applications, commercial aspects, and future scope of nanobiosensors in this review.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India.
| | - Priya Chugh
- School of Agriculture, Graphic Era Hill University, Dehradun, 248002, Uttarakhand, India
| | - Syed Salman Ali
- Lloyd Institute of Management and Technology, Greater Noida, 201306, Uttar Pradesh, India
| | - Wineet Chawla
- School of Agriculture Sciences and Engineering, Maharaja Ranjit Singh Punjab Technical University, Bathind, 151001, Punjab, India
| | - Sushmita Sushmita
- Department of Commerce, Punjabi University, Patiala, 147002, Punjab, India
| | - Ram Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | | | - Shamim Shamim
- IIMT College of Medical Sciences, IIMT University, Meerut, 250001, Uttar Pradesh, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
5
|
Kuang D, Romand S. Optimal photosynthesis requires a balanced diet of ions. THE NEW PHYTOLOGIST 2024; 243:506-508. [PMID: 38794831 DOI: 10.1111/nph.19871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
This article is a Commentary on Kunz et al. (2024), 243: 543–559.
Collapse
Affiliation(s)
- Dominic Kuang
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, SE-75007, Sweden
| | - Shanna Romand
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, SE-75007, Sweden
| |
Collapse
|
6
|
Kunz HH, Armbruster U, Mühlbauer S, de Vries J, Davis GA. Chloroplast ion homeostasis - what do we know and where should we go? THE NEW PHYTOLOGIST 2024; 243:543-559. [PMID: 38515227 DOI: 10.1111/nph.19661] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024]
Abstract
Plant yields heavily depend on proper macro- and micronutrient supply from the soil. In the leaf cells, nutrient ions fulfill specific roles in biochemical reactions, especially photosynthesis housed in the chloroplast. Here, a well-balanced ion homeostasis is maintained by a number of ion transport proteins embedded in the envelope and thylakoid membranes. Ten years ago, the first alkali metal transporters from the K+ EFFLUX ANTIPORTER family were discovered in the model plant Arabidopsis. Since then, our knowledge about the physiological importance of these carriers and their substrates has greatly expanded. New insights into the role of alkali ions in plastid gene expression and photoprotective mechanisms, both prerequisites for plant productivity in natural environments, were gained. The discovery of a Cl- channel in the thylakoid and several additional plastid alkali and alkali metal transport proteins have advanced the field further. Nevertheless, scientists still have long ways to go before a complete systemic understanding of the chloroplast's ion transportome will emerge. In this Tansley review, we highlight and discuss the achievements of the last decade. More importantly, we make recommendations on what areas to prioritize, so the field can reach the next milestones. One area, laid bare by our similarity-based comparisons among phototrophs is our lack of knowledge what ion transporters are used by cyanobacteria to buffer photosynthesis fluctuations.
Collapse
Affiliation(s)
- Hans-Henning Kunz
- Plant Biochemistry, Biology, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Ute Armbruster
- Institute of Molecular Photosynthesis, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Susanne Mühlbauer
- Plant Biochemistry, Biology, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Goettingen Center for Molecular Biosciences (GZMB), Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Geoffry A Davis
- Plant Biochemistry, Biology, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
7
|
Puga MI, Poza-Carrión C, Martinez-Hevia I, Perez-Liens L, Paz-Ares J. Recent advances in research on phosphate starvation signaling in plants. JOURNAL OF PLANT RESEARCH 2024; 137:315-330. [PMID: 38668956 PMCID: PMC11081996 DOI: 10.1007/s10265-024-01545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Phosphorus is indispensable for plant growth and development, with its status crucial for determining crop productivity. Plants have evolved various biochemical, morphological, and developmental responses to thrive under conditions of low P availability, as inorganic phosphate (Pi), the primary form of P uptake, is often insoluble in soils. Over the past 25 years, extensive research has focused on understanding these responses, collectively forming the Pi starvation response system. This effort has not only expanded our knowledge of strategies to cope with Pi starvation (PS) but also confirmed their adaptive significance. Moreover, it has identified and characterized numerous components of the intricate regulatory network governing P homeostasis. This review emphasizes recent advances in PS signaling, particularly highlighting the physiological importance of local PS signaling in inhibiting primary root growth and uncovering the role of TORC1 signaling in this process. Additionally, advancements in understanding shoot-root Pi allocation and a novel technique for studying Pi distribution in plants are discussed. Furthermore, emerging data on the regulation of plant-microorganism interactions by the PS regulatory system, crosstalk between the signaling pathways of phosphate starvation, phytohormones and immunity, and recent studies on natural variation in Pi homeostasis are addressed.
Collapse
Affiliation(s)
- María Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - César Poza-Carrión
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - Iris Martinez-Hevia
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - Laura Perez-Liens
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain.
| |
Collapse
|
8
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|