1
|
Wang X, Shi Y, Wang Q, Xie X, Gui S, Wu J, Zhao L, Zou X, Kai G, Zhou W. Molecular mechanism of SmMYB53 activates the expression of SmCYP71D375, thereby modulating tanshinone accumulation in Salvia miltiorrhiza. HORTICULTURE RESEARCH 2025; 12:uhaf058. [PMID: 40271454 PMCID: PMC12017799 DOI: 10.1093/hr/uhaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/16/2025] [Indexed: 04/25/2025]
Abstract
Tanshinones are bioactive diterpenoid chemicals of the herb Salvia miltiorrhiza with a characteristic furan D-ring. As a newly identified downstream enzyme, SmCYP71D375, catalyzes hydroxylation by 14,16-ether (hetero)cyclization to form the furan D-ring from the precursor of the phenolic abietane-type diterpenoids that exist widely in Lamiaceae plants. However, its transcriptional regulatory network, with SmCYP71D375 as the direct target gene, remains unclear. In the present study, the promoter of SmCYP71D375 was employed as the bait to mine the upstream regulatory protein using the cDNA yeast library of S. miltiorrhiza. An R2R3-MYB transcription factor gene, SmMYB53, was identified. Overexpressing SmMYB53 in transgenic hairy roots upregulated SmCYP71D375 expression, thereby accelerating tanshinone accumulation, whereas tanshinone accumulation was inhibited in SmMYB53-RNAi transgenic hairy root lines. To dissect the regulatory network of SmMYB53, SmbZIP51 was captured using SmMYB53 as the bait to prey for its potential interacting proteins in the cDNA yeast library. Yeast two-hybrid, glutathione S-transferase pull-down, and bimolecular fluorescence complementation assays were independently used to verify the interaction between the SmMYB53 and SmbZIP51 proteins . We further verified that the upregulation of SmCYP71D375 activated by SmMYB53 would be inhibited by the interaction of SmMYB53 and SmbZIP51. The present findings uncover the molecular regulatory network underlying SmCYP71D375 as the direct target regulating tanshinone biosynthesis and offer a basis for the genetic improvement of medicinal substance biosynthesis in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xinyu Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yifei Shi
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qichao Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinjia Xie
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siqi Gui
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiening Wu
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Limei Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaowei Zou
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei Zhou
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, School of Pharmacy and Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
2
|
Wei Y, Wang Y, Meng X, Yao X, Xia N, Zhang H, Meng N, Duan C, Pan Q. VviWRKY24 promotes β-damascenone biosynthesis by targeting VviNCED1 to increase abscisic acid in grape berries. HORTICULTURE RESEARCH 2025; 12:uhaf017. [PMID: 40196038 PMCID: PMC11975394 DOI: 10.1093/hr/uhaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/07/2025] [Indexed: 04/09/2025]
Abstract
Norisoprenoids, which are produced by the cleavage of various carotenoids, are a class of volatile aroma compounds that widely distributed in plants. In wine, they represent a significant source of floral and fruity aromas. β-Damascenone is the most abundant and important norisoprenoid constituent in grape berries (Vitis vinifera L.) and wines. However, the regulatory mechanism of β-damascenone biosynthesis remains poorly understood. The present study has identified a WRKY transcription factor, VviWRKY24, as a key regulator of β-damascenone accumulation in grape berries. The results of overexpression and gene silencing assays in grape leaves, berries, and calli demonstrated that VviWRKY24 altered the flow of norisoprenoid metabolism and influenced the composition ratio of norisoprenoids, particularly enhancing the levels of β-damascenone. The results of the RNA-seq, yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays provided confirmation that VviWRKY24 promoted abscisic acid (ABA) biosynthesis by directly upregulating the expression of VviNCED1. The increase in ABA content resulted in further induction of the expression of carotenoid cleavage dioxygenase 4B (VviCCD4b) on β-damascenone metabolic pathway. These findings elucidate the upstream regulation of ABA and the promotion of ABA on the accumulation of β-damascenone in grapes. This study contributes to a novel understanding of the regulatory mechanisms of β-damascenone biosynthesis and provides a strategy for improving the aroma quality of grapes and wine.
Collapse
Affiliation(s)
- Yi Wei
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Yachen Wang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Xiao Meng
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Xuechen Yao
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Nongyu Xia
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Huimin Zhang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Nan Meng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Qiuhong Pan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| |
Collapse
|
3
|
Naik J, Rajput R, Singh S, Stracke R, Pandey A. Heat-responsive MaHSF11 transcriptional activator positively regulates flavonol biosynthesis and flavonoid B-ring hydroxylation in banana (Musa acuminata). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70084. [PMID: 40052345 DOI: 10.1111/tpj.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 02/19/2025] [Indexed: 05/13/2025]
Abstract
Plant flavonols act primarily as ultraviolet radiation absorbers, reactive oxygen species scavengers, and phytoalexins, and they contribute to biotic and abiotic stress tolerance in plants. Banana (Musa acuminata), an herbaceous monocot and important fruit crop, accumulates flavonol derivatives in different organs, including the edible fruit pulp. Although flavonol content varies greatly in different organs, the molecular mechanisms involving transcriptional regulation of flavonol synthesis in banana are not known. Here, we characterized three SG7-R2R3 MYB transcription factors (MaMYBFA1, MaMYBFA2, and MaMYBFA3) and heat shock transcription factor (MaHSF11), to elucidate the molecular mechanism involved in transcriptional regulation of flavonol biosynthesis in banana. MaMYBFA positively regulates flavonol synthase 2 (MaFLS2) and downregulates MaFLS1. We show these transcription factors to be weak regulators of flavonol synthesis. Overexpression of MaHSF11 enhances flavonol contents, particularly that of myricetin, and promotes flavonol B-ring hydroxylation, which contributes to the diversity of flavonol derivatives. MaHSF11 directly interacts with the MaFLS1 and flavonoid 3',5'-hydroxylase1 (MaF3'5'H1) promoters, both in vitro and in vivo. MaHSF11 activates the expression of MaDREB1 directly, which is known to promote cold and chilling tolerance in banana fruit. Overall, our study elucidates a regulatory mechanism for flavonol synthesis in banana and suggests possible targets for genetic optimization to enhance nutritional value and stress responses in this globally important fruit crop.
Collapse
Affiliation(s)
- Jogindra Naik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ruchika Rajput
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Samar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Bielefeld, 33615, Germany
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
4
|
Fu X, Wang H, Tao X, Liu Y, Chen L, Yang N. Integrated Multiomics Analysis Sheds Light on the Mechanisms of Color and Fragrance Biosynthesis in Wintersweet Flowers. Int J Mol Sci 2025; 26:1684. [PMID: 40004148 PMCID: PMC11855453 DOI: 10.3390/ijms26041684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Wintersweet (Chimonanthus praecox) is known for its flowering in winter and its rich floral aroma; the whole flower is yellow and the inner petals are red. In this study, we chose the wintersweet genotypes HLT040 and HLT015 as the research materials, and studied the co-regulatory mechanism of color and fragrance of wintersweet through metabolomics and transcriptomics. This study found that there were more flavonoids in HLT015, and anthocyanins (cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside) were only present in HLT015, but HLT040 contained more monoterpenes and FVBPs (phenylpropanoid volatile compounds) than HLT015. We constructed putative benzenoids and phenylpropanoid metabolism pathway as well as terpene metabolism pathways. We found some linkages between the different structural genes and metabolites for flower color and fragrance in wintersweet, and screened out 39 TFs that may be related to one or more structural genes in benzenoids and phenylpropanoid or terpene metabolism pathways. In the yeast one-hybrid assay, we found that CpERF7 was able to interact with the promoter of CpANS1, while CpbHLH50 and CpMYB21 interacted with the promoter of CpTPS4. This study provides a theoretical basis for understanding the co-regulatory mechanism of color and fragrance in wintersweet.
Collapse
Affiliation(s)
| | | | | | | | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (X.F.); (H.W.)
| | - Nan Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (X.F.); (H.W.)
| |
Collapse
|
5
|
Chen J, Li W, Zhang WE, Li C, Wang R, Pan X, Peng J. Combined transcriptional and metabolomic analysis of flavonoids in the regulation of female flower bud differentiation in Juglans sigillata Dode. BMC PLANT BIOLOGY 2025; 25:168. [PMID: 39924518 PMCID: PMC11809124 DOI: 10.1186/s12870-025-06121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
Juglans sigillata Dode is rich in flavonoids, but the low ratio of female to male flower buds limits the development of the J. sigillata industry. While the abundance of flavonoids in J. sigillata is known, whether flavonoids influence female flower bud differentiation has not been reported. In this study, we explored the regulatory mechanisms of gene expression and metabolite accumulation during female flower bud differentiation through integrated transcriptomic and metabolomic analyses. Our findings revealed that flavonoid biosynthesis is a key pathway influencing female flower bud differentiation, with metabolites primarily shifting towards the isoflavonoid, flavone, and flavonol branches. Structural genes such as chalcone synthase, dihydroflavonol 4-reductase, flavonol synthase, and flavonoid 3',5'-hydroxylase were identified as playing crucial regulatory roles. The expression of these genes promoted the accumulation of flavonoids, which in turn influenced female flower bud differentiation by modulating key regulatory genes including Suppressor of Overexpression of Constans1, Constans, Flowering Locus T, and APETALA1. Furthermore, transcription factors (TFs) highly expressed during the physiological differentiation of female flower buds, particularly M-type MADS, WRKY, and MYB, were positively correlated with flavonoid biosynthesis genes, indicating their significant role in the regulation of flavonoid production. These results offer valuable insights into the mechanisms of female flower bud differentiation in J. sigillata and highlight the regulatory role of flavonoids in plant bud differentiation.
Collapse
Affiliation(s)
- Jinyan Chen
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Wenwen Li
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Wen' E Zhang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Chunxiang Li
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Ruipu Wang
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Xuejun Pan
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China.
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Jian Peng
- Forestry Bureau, Hezhang County, Guizhou, China.
| |
Collapse
|
6
|
Zhang X, Yang H, Liu N, Sun J, Yao R, Shi F, Li J, Jiang W, Li H, Zhang Q, Zhang J. Chemical and sensory properties of young cabernet sauvignon and marselan wines from subregions on the eastern foothills of helan mountains in ningxia, China: Terroir effect. Food Chem X 2025; 25:102191. [PMID: 39925757 PMCID: PMC11803894 DOI: 10.1016/j.fochx.2025.102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/11/2025] Open
Abstract
This study aimed to analyze the characteristics of Cabernet Sauvignon (CS) and Marselan (M) wines from different subregions on the eastern foothills of Helan Mountain. UHPLC-ESI-Q-ToF and HS-SPME-GC-MS were employed to analyze the metabolic properties of the wines, and QDA was combined for sensory characterization. The results indicated that chromaticity, total phenols, ethyl isobutyrate, n-decanoic acid, (-)-epigallocatechin, and epigallocatechin were key indicators for distinguishing CS wines from different subregions, whereas total acids, total phenols, hexanol, ethyl butyrate, protocatechuic acid, and (+)-catenin were key indicators for distinguishing M wines from different subregions. The richness and coordination of fruit, floral, dried fruit, spice, and green flavors in the wine were key indicators determining the flavor characteristics of wine in winemaking area. The key compounds with aroma of green, fruity, and floral that determine the core aroma, aroma coordination, and elegance of wine in the winemaking area include cis-2-exen-1-ol, ethyl palmate, octanoic acid, and n-decanoic acid.
Collapse
Affiliation(s)
- Xue Zhang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
- School of Wine & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Hui Yang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
- School of Wine & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Institute of Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Na Liu
- Ningxia Changyu Longyu Estate Co. Ltd., Yinchuan, Ningxia 750000, China
| | - Jian Sun
- Ningxia Changyu Longyu Estate Co. Ltd., Yinchuan, Ningxia 750000, China
| | - Ruijia Yao
- School of Advance Interdisciplinary, Ningxia University, Zhongwei, Ningxia 750021, China
| | - Fangzhou Shi
- School of Wine & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiming Li
- Ningxia Changyu Longyu Estate Co. Ltd., Yinchuan, Ningxia 750000, China
| | - Wenguang Jiang
- Ningxia Changyu Longyu Estate Co. Ltd., Yinchuan, Ningxia 750000, China
| | - Hongying Li
- Ningxia Institute of Meteorological Sciences, Yinchuan, Ningxia 750002, China
| | - Qingchen Zhang
- College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - JunXiang Zhang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
- School of Wine & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
| |
Collapse
|
7
|
Zeng H, Li S, Wang K, Dai Y, Sun L, Gao Y, Yi S, Li J, Xu S, Xie G, Zhu Y, Zhao Y, Qin M. BvCGT1-mediated differential distribution of flavonoid C-glycosides contributes to plant's response to UV-B stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:354-369. [PMID: 39158506 DOI: 10.1111/tpj.16991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
C-glycosides are a predominant class of flavonoids that demonstrate diverse medical properties and plant physiological functions. The chemical stability, structural diversity, and differential aboveground distribution of these compounds in plants make them ideal protectants. However, little is known about the transcriptional regulatory mechanisms that play these diverse roles in plant physiology. In this study, chard was selected from 69 families for its significantly different flavonoid C-glycosides distributions between the aboveground and underground parts to investigate the role and regulatory mechanism of flavonoid C-glycosides in plants. Our results indicate that flavonoid C-glycosides are affected by various stressors, especially UV-B. Through cloning and validation of key biosynthetic genes of flavonoid C-glycosides in chard (BvCGT1), we observed significant effects induced by UV-B radiation. This finding was further confirmed by resistance testing in BvCGT1 silenced chard lines and in Arabidopsis plants with BvCGT1 overexpression. Yeast one-hybrid and dual-luciferase assays were employed to determine the underlying regulatory mechanisms of BvCGT1 in withstanding UV-B stress. These results indicate a potential regulatory role of BvDof8 and BvDof13 in modulating flavonoid C-glycosides content, through their influence on BvCGT1. In conclusion, we have effectively demonstrated the regulation of BvCGT1 by BvDof8 and BvDof13, highlighting their crucial role in plant adaptation to UV-B radiation. Additionally, we have outlined a comprehensive transcriptional regulatory network involving BvDof8 and BvDof13 in response to UV-B radiation.
Collapse
Affiliation(s)
- Huihui Zeng
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuai Li
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kaixuan Wang
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yiqun Dai
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lanlan Sun
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yue Gao
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shanyong Yi
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Junde Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan Zhu
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 211198, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 211198, China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
8
|
Vodiasova E, Sinchenko A, Khvatkov P, Dolgov S. Genome-Wide Identification, Characterisation, and Evolution of the Transcription Factor WRKY in Grapevine ( Vitis vinifera): New View and Update. Int J Mol Sci 2024; 25:6241. [PMID: 38892428 PMCID: PMC11172563 DOI: 10.3390/ijms25116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
WRKYs are a multigenic family of transcription factors that are plant-specific and involved in the regulation of plant development and various stress response processes. However, the evolution of WRKY genes is not fully understood. This family has also been incompletely studied in grapevine, and WRKY genes have been named with different numbers in different studies, leading to great confusion. In this work, 62 Vitis vinifera WRKY genes were identified based on six genomes of different cultivars. All WRKY genes were numbered according to their chromosomal location, and a complete revision of the numbering was performed. Amino acid variability between different cultivars was assessed for the first time and was greater than 5% for some WRKYs. According to the gene structure, all WRKYs could be divided into two groups: more exons/long length and fewer exons/short length. For the first time, some chimeric WRKY genes were found in grapevine, which may play a specific role in the regulation of different processes: VvWRKY17 (an N-terminal signal peptide region followed by a non-cytoplasmic domain) and VvWRKY61 (Frigida-like domain). Five phylogenetic clades A-E were revealed and correlated with the WRKY groups (I, II, III). The evolution of WRKY was studied, and we proposed a WRKY evolution model where there were two dynamic phases of complexity and simplification in the evolution of WRKY.
Collapse
Affiliation(s)
- Ekaterina Vodiasova
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 299011 Sevastopol, Russia
| | - Anastasiya Sinchenko
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
| | - Pavel Khvatkov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
| | - Sergey Dolgov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 142290 Puschino, Russia
| |
Collapse
|
9
|
Song W, Zhang S, Li Q, Xiang G, Zhao Y, Wei F, Zhang G, Yang S, Hao B. Genome-wide profiling of WRKY genes involved in flavonoid biosynthesis in Erigeron breviscapus. FRONTIERS IN PLANT SCIENCE 2024; 15:1412574. [PMID: 38895611 PMCID: PMC11184973 DOI: 10.3389/fpls.2024.1412574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
The transcription factors of WRKY genes play essential roles in plant growth, stress responses, and metabolite biosynthesis. Erigeron breviscapus, a traditional Chinese herb, is abundant in flavonoids and has been used for centuries to treat cardiovascular and cerebrovascular diseases. However, the WRKY transcription factors that regulate flavonoid biosynthesis in E. breviscapus remain unknown. In this study, a total of 75 EbWRKY transcription factors were predicted through comprehensive genome-wide characterization of E. breviscapus and the chromosomal localization of each EbWRKY gene was investigated. RNA sequencing revealed transient responses of 74 predicted EbWRKY genes to exogenous abscisic acid (ABA), salicylic acid (SA), and gibberellin 3 (GA3) after 4 h of treatment. In contrast, the expression of key structural genes involved in flavonoid biosynthesis increased after 4 h in GA3 treatment. However, the content of flavonoid metabolites in leaves significantly increased at 12 h. The qRT-PCR results showed that the expression patterns of EbWRKY11, EbWRKY30, EbWRKY31, EbWRKY36, and EbWRKY44 transcription factors exhibited a high degree of similarity to the 11 structural genes involved in flavonoid biosynthesis. Protein-DNA interactions were performed between the key genes involved in scutellarin biosynthesis and candidate WRKYs. The result showed that F7GAT interacts with EbWRKY11, EbWRKY36, and EbWRKY44, while EbF6H has a self-activation function. This study provides comprehensive information on the regulatory control network of flavonoid accumulation mechanisms, offering valuable insights for breeding E. breviscapus varieties with enhanced scutellarin content.
Collapse
Affiliation(s)
- Wanling Song
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Shuangyan Zhang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Qi Li
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Guisheng Xiang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Yan Zhao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Fan Wei
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Guanghui Zhang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Shengchao Yang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Bing Hao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| |
Collapse
|
10
|
Yao X, Wu Y, Lan Y, Cui Y, Shi T, Duan C, Pan Q. Effect of Cluster-Zone Leaf Removal at Different Stages on Cabernet Sauvignon and Marselan ( Vitis vinifera L.) Grape Phenolic and Volatile Profiles. PLANTS (BASEL, SWITZERLAND) 2024; 13:1543. [PMID: 38891351 PMCID: PMC11174890 DOI: 10.3390/plants13111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
This study investigated the effect of leaf removal at three stages of grape development on the phenolic and volatile profiles of Cabernet Sauvignon and Marselan grapevines for two consecutive years in the Jieshi Mountain region, an area of eastern China with high summer rainfall. The results indicated that cluster-zone leaf removal generally reduced the titratable acidity of both varieties, but did not affect the total soluble solids of grape berries. Leaf-removal treatments increased the anthocyanin and flavonol content of berries in both varieties. However, in Cabernet Sauvignon, leaf removal negatively affected the norisoprenoid compounds, with a more pronounced impact observed when the leaf removal was conducted at an early stage. This negative effect may be related to a decrease in the levels of violaxanthin and neoxanthin, potential precursors of vitisprine and β-damascenone. In contrast, the removal of leaves had no effect on the norisoprenoid aroma of Marselan grapes.
Collapse
Affiliation(s)
- Xuechen Yao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.Y.); (Y.W.); (Y.L.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Yangpeng Wu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.Y.); (Y.W.); (Y.L.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.Y.); (Y.W.); (Y.L.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Yanzhi Cui
- Bodega Langes Co., Ltd., Qinghuangdao 066600, China; (Y.C.); (T.S.)
| | - Tonghua Shi
- Bodega Langes Co., Ltd., Qinghuangdao 066600, China; (Y.C.); (T.S.)
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.Y.); (Y.W.); (Y.L.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Qiuhong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.Y.); (Y.W.); (Y.L.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| |
Collapse
|
11
|
Liu N, Li C, Wu F, Yang Y, Yu A, Wang Z, Zhao L, Zhang X, Qu F, Gao L, Xia T, Wang P. Genome-wide identification and expression pattern analysis of WRKY transcription factors in response to biotic and abiotic stresses in tea plants (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108670. [PMID: 38703501 DOI: 10.1016/j.plaphy.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Plants would encounter various biotic and abiotic stresses during the growth and development. WRKY transcription factors (TFs) as plant-specific TFs, play an important role in responding to various adverse circumstances. Despite some advances were achieved in functional studies of WRKY TFs in tea plants, systematic analysis of the involvement of CsWRKY TFs when facing cold, salt, drought stresses and pathogen and insect attack was lacked. In present study, a total of 78 CsWRKY TFs were identified following the genomic and transcript databases. The expression patterns of CsWRKYs in various organs of tea plants and the expression profiles in response to biotic and abiotic stresses were investigated by examining representative RNA-seq data. Moreover, the effects of hormone treatments (SA and MeJA) on the transcription levels of WRKY TFs were also investigated. The phylogenetic tree of CsWRKY TFs from different species indicated the functional diversity of WRKY TFs was not closely related to their protein classification. Concurrently, CsWRKY70-2 TF was identified as a positive regulator in response to drought stress. This study provided solid and valuable information, helping us better understand the functional diversity of CsWRKY TFs, and laid the foundation for further research on the function of key WRKY genes in tea plants.
Collapse
Affiliation(s)
- Nana Liu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Caiyun Li
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Feixue Wu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yi Yang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Antai Yu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Ziteng Wang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Lei Zhao
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xinfu Zhang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Fengfeng Qu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Peiqiang Wang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
12
|
Zhang P, Wang Y, Zhu G, Zhu H. Developing carotenoids-enhanced tomato fruit with multi-transgene stacking strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108575. [PMID: 38554536 DOI: 10.1016/j.plaphy.2024.108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
As natural dominant pigments, carotenoids and their derivatives not only contribute to fruit color and flavor quality but are regarded as phytochemicals beneficial to human health because of various bioactivities. Tomato is one of the most important vegetables as well as a main dietary source of carotenoids. So, it's of great importance to generate carotenoid-biofortified tomatoes. The carotenoid biosynthesis pathway is a network co-regulated by multiple enzymes and regulatory genes. Here, we assembled four binary constructs containing different combinations of four endogenous carotenoids metabolic-related genes, including SlORHis, SlDXS, SlPSY, and SlBHY by using a high efficiency multi-transgene stacking system and a series of fruit-specific promotors. Transgenic lines overexpression SlORHis alone, three genes (SlORHis/SlDXS/SlPSY), two genes (SlORHis/SlBHY), and all these four genes (SlORHis/SlDXS/SlPSY/SlBHY) were enriched with carotenoids to varying degrees. Notably, overexpressing SlORHis alone showed comparable effects with simultaneous overexpression of the key regulatory enzyme coding genes SlDXS, SlPSY, and SlORHis in promoting carotenoid accumulation. Downstream carotenoid derivatives zeaxanthin and violaxanthin were detected only in lines containing SlBHY. In addition, the sugar content and total antioxidant capacity of these carotenoids-enhanced tomatoes was also increased. These data provided useful information for the future developing of biofortified tomatoes with different carotenoid profiles, and confirmed a promising system for generation of nutrients biofortified tomatoes by multiple engineering genes stacking strategy.
Collapse
Affiliation(s)
- Peiyu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Yifan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Guoning Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; Sichuan Advanced Agricultural & Industrial Institute, China Agriculture University, Chengdu, 611430, Sichuan, PR China.
| |
Collapse
|
13
|
Wang YC, Wei Y, Li XY, Zhang HM, Meng X, Duan CQ, Pan QH. Ethylene-responsive VviERF003 modulates glycosylated monoterpenoid synthesis by upregulating VviGT14 in grapes. HORTICULTURE RESEARCH 2024; 11:uhae065. [PMID: 38689696 PMCID: PMC11059816 DOI: 10.1093/hr/uhae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/18/2024] [Indexed: 05/02/2024]
Abstract
Terpenoids are important contributors to the aroma of grapes and wines. Grapes contain terpenoids in both volatile free form and non-volatile glycosidic form, with the latter being more abundant. Glycosylated terpenoids are deemed as latent aromatic potentials for their essential role in adding to the flowery and fruity bouquet of wines. However, the transcriptional regulatory mechanism underlying glycosylated terpenoid biosynthesis remains poorly understood. Our prior study identified an AP2/ERF transcription factor, VviERF003, through DNA pull-down screening using the promoter of terpenoid glycosyltransferase VviGT14 gene. This study demonstrated that both genes were co-expressed and synchronized with the accumulation of glycosylated monoterpenoids during grape maturation. VviERF003 can bind to the VviGT14 promoter and promote its activity according to yeast one-hybrid and dual-luciferase assays. VviERF003 upregulated VviGT14 expression in vivo, leading to increased production of glycosylated monoterpenoids based on the evidence from overexpression or RNA interference in leaves, berry skins, and calli of grapes, as well as tomato fruits. Additionally, VviERF003 and VviGT14 expressions and glycosylated monoterpenoid levels were induced by ethylene in grapes. The findings suggest that VviERF003 is ethylene-responsive and stimulates glycosylated monoterpenoid biosynthesis through upregulating VviGT14 expression.
Collapse
Affiliation(s)
- Ya-Chen Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yi Wei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiang-Yi Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Min Zhang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiao Meng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
14
|
Cao Y, Mei Y, Zhang R, Zhong Z, Yang X, Xu C, Chen K, Li X. Transcriptional regulation of flavonol biosynthesis in plants. HORTICULTURE RESEARCH 2024; 11:uhae043. [PMID: 38623072 PMCID: PMC11017525 DOI: 10.1093/hr/uhae043] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/02/2024] [Indexed: 04/17/2024]
Abstract
Flavonols are a class of flavonoids that play a crucial role in regulating plant growth and promoting stress resistance. They are also important dietary components in horticultural crops due to their benefits for human health. In past decades, research on the transcriptional regulation of flavonol biosynthesis in plants has increased rapidly. This review summarizes recent progress in flavonol-specific transcriptional regulation in plants, encompassing characterization of different categories of transcription factors (TFs) and microRNAs as well as elucidation of different transcriptional mechanisms, including direct and cascade transcriptional regulation. Direct transcriptional regulation involves TFs, such as MYB, AP2/ERF, and WRKY, which can directly target the key flavonol synthase gene or other early genes in flavonoid biosynthesis. In addition, different regulation modules in cascade transcriptional regulation involve microRNAs targeting TFs, regulation between activators, interaction between activators and repressors, and degradation of activators or repressors induced by UV-B light or plant hormones. Such sophisticated regulation of the flavonol biosynthetic pathway in response to UV-B radiation or hormones may allow plants to fine-tune flavonol homeostasis, thereby balancing plant growth and stress responses in a timely manner. Based on orchestrated regulation, molecular design strategies will be applied to breed horticultural crops with excellent health-promoting effects and high resistance.
Collapse
Affiliation(s)
- Yunlin Cao
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Yuyang Mei
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Ruining Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Zelong Zhong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
15
|
Zhao K, Lan Y, Shi Y, Duan C, Yu K. Metabolite and transcriptome analyses reveal the effects of salinity stress on the biosynthesis of proanthocyanidins and anthocyanins in grape suspension cells. FRONTIERS IN PLANT SCIENCE 2024; 15:1351008. [PMID: 38576780 PMCID: PMC10993317 DOI: 10.3389/fpls.2024.1351008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Proanthocyanidins (PAs) and anthocyanins are flavonoids that contribute to the quality and health benefits of grapes and wine. Salinity affects their biosynthesis, but the underlying mechanism is still unclear. We studied the effects of NaCl stress on PA and anthocyanin biosynthesis in grape suspension cells derived from berry skins of Vitis vinifera L. Cabernet Sauvignon using metabolite profiling and transcriptome analysis. We treated the cells with low (75 mM NaCl) and high (150 mM NaCl) salinity for 4 and 7 days. High salinity inhibited cell growth and enhanced PA and anthocyanin accumulation more than low salinity. The salinity-induced PAs and anthocyanins lacked C5'-hydroxylation modification, suggesting the biological significance of delphinidin- and epigallocatechin-derivatives in coping with stress. The genes up-regulated by salinity stress indicated that the anthocyanin pathway was more sensitive to salt concentration than the PA pathway, and WGCNA analysis revealed the coordination between flavonoid biosynthesis and cell wall metabolism under salinity stress. We identified transcription factors potentially involved in regulating NaCl dose- and time-dependent PA and anthocyanin accumulation, showing the dynamic remodeling of flavonoid regulation network under different salinity levels and durations. Our study provides new insights into regulator candidates for tailoring flavonoid composition and molecular indicators of salt stress in grape cells.
Collapse
Affiliation(s)
- Kainan Zhao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|