1
|
Li Y, Deng L, Walker EJL, Karas BJ, Mock T. Genetic engineering in diatoms: advances and prospects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70102. [PMID: 40089910 PMCID: PMC11910954 DOI: 10.1111/tpj.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Diatoms are among the most diverse and ecologically significant groups of photosynthetic microalgae, contributing over 20% of global primary productivity. Their ecological significance, unique biology, and genetic tractability make them ideal targets for genetic and genomic engineering and metabolic reprogramming. Over the past few decades, numerous genetic methods have been developed and applied to these organisms to better understand the function of individual genes and how they underpin diatom metabolism. Additionally, the ability of diatoms to synthesize diverse high-value metabolites and elaborate mineral structures offers significant potential for applications in biotechnology, including the synthesis of novel pharmaceuticals, nutraceuticals, and biomaterials. This review discusses the latest developments in diatom genetic engineering and provides prospects not only to promote the use of diatoms in diverse fields of biotechnology but also to deepen our understanding of their role in natural ecosystems.
Collapse
Affiliation(s)
- Yixuan Li
- School of Environmental SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Longji Deng
- School of Environmental SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Emma Jane Lougheed Walker
- Department of Biochemistry, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioN6A 5C1Canada
| | - Bogumil J. Karas
- Department of Biochemistry, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioN6A 5C1Canada
| | - Thomas Mock
- School of Environmental SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| |
Collapse
|
2
|
Nam O, Musiał S, Demulder M, McKenzie C, Dowle A, Dowson M, Barrett J, Blaza JN, Engel BD, Mackinder LCM. A protein blueprint of the diatom CO 2-fixing organelle. Cell 2024; 187:5935-5950.e18. [PMID: 39368476 DOI: 10.1016/j.cell.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/18/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
Diatoms are central to the global carbon cycle. At the heart of diatom carbon fixation is an overlooked organelle called the pyrenoid, where concentrated CO2 is delivered to densely packed Rubisco. Diatom pyrenoids fix approximately one-fifth of global CO2, but the protein composition of this organelle is largely unknown. Using fluorescence protein tagging and affinity purification-mass spectrometry, we generate a high-confidence spatially defined protein-protein interaction network for the diatom pyrenoid. Within our pyrenoid interaction network are 10 proteins with previously unknown functions. We show that six of these form a shell that encapsulates the Rubisco matrix and is critical for pyrenoid structural integrity, shape, and function. Although not conserved at a sequence or structural level, the diatom pyrenoid shares some architectural similarities to prokaryotic carboxysomes. Collectively, our results support the convergent evolution of pyrenoids across the two main plastid lineages and uncover a major structural and functional component of global CO2 fixation.
Collapse
Affiliation(s)
- Onyou Nam
- Department of Biology, University of York, York YO10 5DD, UK; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Sabina Musiał
- Department of Biology, University of York, York YO10 5DD, UK; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Manon Demulder
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Caroline McKenzie
- Department of Biology, University of York, York YO10 5DD, UK; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Adam Dowle
- Department of Biology, University of York, York YO10 5DD, UK
| | - Matthew Dowson
- Department of Biology, University of York, York YO10 5DD, UK; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - James Barrett
- Department of Biology, University of York, York YO10 5DD, UK; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - James N Blaza
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Benjamin D Engel
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| | - Luke C M Mackinder
- Department of Biology, University of York, York YO10 5DD, UK; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
3
|
Chen J. Transportation for fuel: Thylakoid membrane bestrophin channels facilitate HCO3- transport to the pyrenoid in diatoms. PLANT PHYSIOLOGY 2024; 195:1108-1110. [PMID: 38445821 PMCID: PMC11142346 DOI: 10.1093/plphys/kiae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Affiliation(s)
- Jiawen Chen
- Plant Physiology, American Society of Plant Biologists
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
4
|
Long BM, Matsuda Y, Moroney JV. Algal chloroplast pyrenoids: Evidence for convergent evolution. Proc Natl Acad Sci U S A 2024; 121:e2402546121. [PMID: 38513078 PMCID: PMC10998615 DOI: 10.1073/pnas.2402546121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Affiliation(s)
- Benedict Michael Long
- Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yusuke Matsuda
- Department of Bioscience, School of Biological and Environmental Sciences, Kansei Gakuin University, Sanda, Hyogo669-1330, Japan
| | - James V. Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA70803
| |
Collapse
|