1
|
De S, Mukherjee P, Roy AH. GLEAM: A multimodal deep learning framework for chronic lower back pain detection using EEG and sEMG signals. Comput Biol Med 2025; 189:109928. [PMID: 40054171 DOI: 10.1016/j.compbiomed.2025.109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 04/01/2025]
Abstract
Low Back Pain (LBP) is the most prevalent musculoskeletal condition worldwide and a leading cause of disability, significantly affecting mobility, work productivity, and overall quality of life. Due to its high prevalence and substantial economic burden, LBP presents a critical global public health challenge that demands innovative diagnostic and therapeutic solutions. This study introduces a novel deep-learning approach for diagnosing LBP intensity using electroencephalography (EEG) signals and surface electromyography (sEMG) signals from back muscles. A GAN-Convolution-Transformer-based model, named GLEAM (GAN-ConvoLution-sElf Attention-ETLSTM), is designed to classify LBP intensity into four categories: no LBP, mild LBP, moderate LBP, and intolerable LBP. A denoising GAN is central to the model's functionality, playing a pivotal role in enhancing the quality of EEG and sEMG signals by removing noise, resulting in cleaner and more accurate input data. Various features are extracted from the GAN-denoised EEG and sEMG signals, and the combined features from both EEG and sEMG are used for LBP detection. After the feature extraction, the CNN is employed to capture local temporal patterns within the data, allowing the model to focus on smaller, region-specific trends in the signals. Subsequently, the self-attention module identifies global correlations among these locally extracted features, enhancing the model's ability to recognize broader patterns. The proposed ETLSTM network performs the final classification, which achieves an impressive LBP detection accuracy of 98.95%. This research presents several innovative contributions: (i) the development of a novel denoising GAN for cleaning EEG and sEMG signals, (ii) the design and integration of a new ETLSTM architecture as a classifier within the GLEAM model, and (iii) the introduction of the GLEAM hybrid deep learning framework, which enables robust and reliable LBP intensity assessment.
Collapse
Affiliation(s)
- Sagnik De
- Institute of Radio Physics & Electronics, University of Calcutta, Kolkata, 700009, West Bengal, India.
| | - Prithwijit Mukherjee
- Institute of Radio Physics & Electronics, University of Calcutta, Kolkata, 700009, West Bengal, India.
| | - Anisha Halder Roy
- Institute of Radio Physics & Electronics, University of Calcutta, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
2
|
Delsart A, Castel A, Dumas G, Otis C, Lachance M, Barbeau-Grégoire M, Lussier B, Péron F, Hébert M, Lapointe N, Moreau M, Martel-Pelletier J, Pelletier JP, Troncy E. Non-invasive electroencephalography in awake cats: Feasibility and application to sensory processing in chronic pain. J Neurosci Methods 2024; 411:110254. [PMID: 39173717 DOI: 10.1016/j.jneumeth.2024.110254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Feline osteoarthritis (OA) leads to chronic pain and somatosensory sensitisation. In humans, sensory exposure can modulate chronic pain. Recently, electroencephalography (EEG) revealed a specific brain signature to human OA. However, EEG pain characterisation or its modulation does not exist in OA cats, and all EEG were conducted in sedated cats, using intradermal electrodes, which could alter sensory (pain) perception. NEW METHOD Cats (n=11) affected by OA were assessed using ten gold-plated surface electrodes. Sensory stimuli were presented in random orders: response to mechanical temporal summation, grapefruit scent and mono-chromatic wavelengths (500 nm-blue, 525 nm-green and 627 nm-red light). The recorded EEG was processed to identify event-related potentials (ERP) and to perform spectral analysis (z-score). RESULTS The procedure was well-tolerated. The ERPs were reported for both mechanical (F3, C3, Cz, P3, Pz) and olfactory stimuli (Cz, Pz). The main limitation was motion artifacts. Spectral analysis revealed a significant interaction between the power of EEG frequency bands and light wavelengths (p<0.001). All wavelengths considered, alpha band proportion was higher than that of delta and gamma bands (p<0.044), while the latter was lower than the beta band (p<0.016). Compared to green and red, exposure to blue light elicited distinct changes in EEG power over time (p<0.001). COMPARISON WITH EXISTING METHOD This is the first demonstration of EEG feasibility in conscious cats with surface electrodes recording brain activity while exposing them to sensory stimulations. CONCLUSION The identification of ERPs and spectral patterns opens new avenues for investigating feline chronic pain and its potential modulation through sensory interventions.
Collapse
Affiliation(s)
- Aliénor Delsart
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada
| | - Aude Castel
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada; Department of clinical sciences, Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada.
| | - Guillaume Dumas
- Department of psychiatry and addictology, Faculté de médecine, Université de Montréal, Québec, Canada; Research center of the Sainte-Justine mother and child university hospital center (CHU Sainte-Justine), Québec, Canada
| | - Colombe Otis
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada
| | - Mathieu Lachance
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada
| | - Maude Barbeau-Grégoire
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada
| | - Bertrand Lussier
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada; Department of clinical sciences, Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada; Osteoarthritis research unit, University of Montreal hospital research center (CRCHUM), Québec, Canada
| | | | - Marc Hébert
- Department of ophthalmology and otorhinolaryngology - Head and neck surgery, Faculté de médecine, Université Laval, Québec, Canada; CERVO Brain Research Center, Québec, Canada
| | | | - Maxim Moreau
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada; Osteoarthritis research unit, University of Montreal hospital research center (CRCHUM), Québec, Canada
| | - Johanne Martel-Pelletier
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada; Osteoarthritis research unit, University of Montreal hospital research center (CRCHUM), Québec, Canada
| | - Jean-Pierre Pelletier
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada; Osteoarthritis research unit, University of Montreal hospital research center (CRCHUM), Québec, Canada
| | - Eric Troncy
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Québec, Canada; Osteoarthritis research unit, University of Montreal hospital research center (CRCHUM), Québec, Canada
| |
Collapse
|
3
|
Zhang LB, Chen YX, Li ZJ, Geng XY, Zhao XY, Zhang FR, Bi YZ, Lu XJ, Hu L. Advances and challenges in neuroimaging-based pain biomarkers. Cell Rep Med 2024; 5:101784. [PMID: 39383872 PMCID: PMC11513815 DOI: 10.1016/j.xcrm.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/24/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
Identifying neural biomarkers of pain has long been a central theme in pain neuroscience. Here, we review the state-of-the-art candidates for neural biomarkers of acute and chronic pain. We classify these potential neural biomarkers into five categories based on the nature of their target variables, including neural biomarkers of (1) within-individual perception, (2) between-individual sensitivity, and (3) discriminability for acute pain, as well as (4) assessment and (5) prospective neural biomarkers for chronic pain. For each category, we provide a synthesized review of candidate biomarkers developed using neuroimaging techniques including functional magnetic resonance imaging (fMRI), structural magnetic resonance imaging (sMRI), and electroencephalography (EEG). We also discuss the conceptual and practical challenges in developing neural biomarkers of pain. Addressing these challenges, optimal biomarkers of pain can be developed to deepen our understanding of how the brain represents pain and ultimately help alleviate patients' suffering and improve their well-being.
Collapse
Affiliation(s)
- Li-Bo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
| | - Yu-Xin Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Jiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Yi Geng
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yue Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Rui Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yan-Zhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Jing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Fu Q, Li H, Zhu Z, Li W, Ruan Z, Chang R, Wei H, Xu X, Xu X, Wu Y. Dock4 contributes to neuropathic pain by regulating spinal synaptic plasticity in mice. Front Mol Neurosci 2024; 17:1417567. [PMID: 39282658 PMCID: PMC11392915 DOI: 10.3389/fnmol.2024.1417567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Neuropathic pain (NP) conditions arising from injuries to the nervous system due to trauma, disease, or neurotoxins are chronic, severe, debilitating, and exceedingly difficult to treat. However, the mechanisms of NP are not yet clear. Here we explored the role of Dock4, an atypical Rac1 GEF, in the development of NP. Methods Mechanical allodynia was assessed as paw withdrawal threshold by a dynamic plantar aesthesiometer. Immunofluorescence staining was conducted to investigate the expression and localization of Dock4, Rac1 and GluN2B. Quantitative analysis of Dock4, Rac1 and GluN2B were determined by qRT-PCR and Western blot assay. Spontaneous excitatory and inhibitory postsynaptic currents in spinal cord slices were examined using whole cell patch clam. Dendritic spine remodeling and synaptogenesis were detected in cultured dorsal spinal neurons. Results and discussion We found that SNL caused markedly mechanical allodynia accompanied by increase of Dock4, GTP-Rac1and GluN2B, which was prevented by knockdown of Dock4. Electrophysiological tests showed that SNL facilitated excitatory synaptic transmission, however, this was also inhibited by Dock RNAi-LV. Moreover, knockdown of Dock4 prevented dendritic growth and synaptogenesis. Conclusion In summary, our data indicated that Dock4 facilitated excitatory synaptic transmission by promoting the expression of GluN2B at the synaptic site and synaptogenesis, leading to the occurrence of NP.
Collapse
Affiliation(s)
- Qiaochu Fu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongyi Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuanxu Zhu
- Department of Gynaecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Wencui Li
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Zhihua Ruan
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Ruijie Chang
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Huixia Wei
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xueqin Xu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xunliang Xu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Yanqiong Wu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Zhou X, Lin Z, Liu J, Xiang M, Deng X, Zou Z. The relationship between event-related potential components and suicide risk in major depressive disorder. J Psychiatr Res 2024; 175:89-95. [PMID: 38718444 DOI: 10.1016/j.jpsychires.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Suicide is a serious global issue, with major depressive disorder (MDD) being a significant risk factor for suicidal thoughts and behaviors. There is an urgent need to determine whether event-related potential components (ERPs) could be used as an indicator to assess suicidal risk. METHODS From 2020 to 2023, 258 participants in total were recruited into the study. All participants were divided into four groups: MDD patients at high (n = 66), moderate (n = 66), and low risk (n = 56) of suicide, and healthy controls (HCs)(n = 70). Each participant provided socio-demographic information and underwent evaluations using clinical psychological scales such as 7-item Generalized Anxiety Disorder (GAD-7), Health Questionnaire-9 items (PHQ-9), and Nurses' Global Assessment of Suicide Risk (NGASR). The auditory brainstem response test and ERP examination were performed for all subjects. RESULTS Our study found that the amplitude of P2-P3 and N2-P3 was significantly reduced in MDD patients at moderate and high risk of suicide, and these were negatively correlated with NGASR total score (all P < 0.05). Point B latency was positively correlated with NGASR total score (P < 0.05). Patients with MDD patients at low risk for suicide had a lower A-B amplitude compared to HCs (P < 0.05). No differences were found in MMN or P50 components between the four groups (all P > 0.05). CONCLUSIONS MDD patients at higher risk of suicide exhibited severe impairment of cognitive function. ERP indices, such as the amplitude of P2-P3 and N2-P3, could be associated with the risk of suicide in MDD patients.
Collapse
Affiliation(s)
- Xiaobo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China; Department of Psychosomatic Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhonghua Lin
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jingwen Liu
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China; Department of Psychosomatic Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Minjing Xiang
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xia Deng
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China; Department of Psychosomatic Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhili Zou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China; Department of Psychosomatic Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
6
|
Mathew J, Adhia DB, Hall M, De Ridder D, Mani R. EEG-Based Cortical Alterations in Individuals With Chronic Knee Pain Secondary to Osteoarthritis: A Cross-sectional Investigation. THE JOURNAL OF PAIN 2024; 25:104429. [PMID: 37989404 DOI: 10.1016/j.jpain.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Chronic painful knee osteoarthritis (OA) is a disabling physical health condition. Alterations in brain responses to arthritic changes in the knee may explain persistent pain. This study investigated source localized, resting-state electroencephalography activity and functional connectivity in people with knee OA, compared to healthy controls. Adults aged 44 to 85 years with knee OA (n = 37) and healthy control (n = 39) were recruited. Resting-state electroencephalography was collected for 10 minutes and decomposed into infraslow frequency (ISF) to gamma frequency bands. Standard low-resolution electromagnetic brain tomography statistical nonparametric maps were conducted, current densities of regions of interest were compared between groups and correlation analyses were performed between electroencephalography (EEG) measures and clinical pain and functional outcomes in the knee OA group. Standard low-resolution electromagnetic brain tomography nonparametric maps revealed higher (P = .006) gamma band activity over the right insula (RIns) in the knee OA group. A significant (P < .0001) reduction in ISF band activity at the pregenual anterior cingulate cortex, whereas higher theta, alpha, beta, and gamma band activity at the dorsal anterior cingulate cortex, pregenual anterior cingulate cortex, the somatosensory cortex, and RIns in the knee OA group were identified. ISF activity of the dorsal anterior cingulate cortex was positively correlated with pain measures and psychological distress scores. Theta and alpha activity of RIns were negatively correlated with pain interference. In conclusion, aberrations in infraslow and faster frequency EEG oscillations at sensory discriminative, motivational-affective, and descending inhibitory cortical regions were demonstrated in people with chronic painful knee OA. Moreover, EEG oscillations were correlated with pain and functional outcome measures. PERSPECTIVE: This study confirms alterations in the rsEEG oscillations and its relationship with pain experience in people with knee OA. The study provides potential cortical targets and the EEG frequency bands for neuromodulatory interventions for managing chronic pain experience in knee OA.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, New Zealand; Department of Anatomy, School of Biomedical Sciences, University of Otago, New Zealand; Pain@Otago Research Theme, University of Otago, New Zealand
| | - Divya B Adhia
- Pain@Otago Research Theme, University of Otago, New Zealand; Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Matthew Hall
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Dirk De Ridder
- Pain@Otago Research Theme, University of Otago, New Zealand; Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, New Zealand; Pain@Otago Research Theme, University of Otago, New Zealand
| |
Collapse
|
7
|
Salazar-Méndez J, Cuyul-Vásquez I, Viscay-Sanhueza N, Morales-Verdugo J, Mendez-Rebolledo G, Ponce-Fuentes F, Lluch-Girbés E. Structural and functional brain changes in people with knee osteoarthritis: a scoping review. PeerJ 2023; 11:e16003. [PMID: 37701842 PMCID: PMC10493091 DOI: 10.7717/peerj.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
Background Knee osteoarthritis is a highly prevalent disease worldwide that leads to functional disability and chronic pain. It has been shown that not only changes are generated at the joint level in these individuals, but also neuroplastic changes are produced in different brain areas, especially in those areas related to pain perception, therefore, the objective of this research was to identify and compare the structural and functional brain changes in knee OA versus healthy subjects. Methodology Searches in MEDLINE (PubMed), EMBASE, WOS, CINAHL, SCOPUS, Health Source, and Epistemonikos databases were conducted to explore the available evidence on the structural and functional brain changes occurring in people with knee OA. Data were recorded on study characteristics, participant characteristics, and brain assessment techniques. The methodological quality of the studies was analysed with Newcastle Ottawa Scale. Results Sixteen studies met the inclusion criteria. A decrease volume of the gray matter in the insular region, parietal lobe, cingulate cortex, hippocampus, visual cortex, temporal lobe, prefrontal cortex, and basal ganglia was found in people with knee OA. However, the opposite occurred in the frontal lobe, nucleus accumbens, amygdala region and somatosensory cortex, where an increase in the gray matter volume was evidenced. Moreover, a decreased connectivity to the frontal lobe from the insula, cingulate cortex, parietal, and temporal areas, and an increase in connectivity from the insula to the prefrontal cortex, subcallosal area, and temporal lobe was shown. Conclusion All these findings are suggestive of neuroplastic changes affecting the pain matrix in people with knee OA.
Collapse
Affiliation(s)
- Joaquín Salazar-Méndez
- Laboratorio de Investigación Somatosensorial y Motora, Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Talca, Chile
| | - Iván Cuyul-Vásquez
- Departamento de Procesos Terapéuticos, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile
- Facultad de las Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Nelson Viscay-Sanhueza
- Unidad de medicina física y rehabilitación, Hospital Dr. Gustavo Fricke, Viña del Mar, Chile
| | - Juan Morales-Verdugo
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Guillermo Mendez-Rebolledo
- Laboratorio de Investigación Somatosensorial y Motora, Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Talca, Chile
| | - Felipe Ponce-Fuentes
- Facultad de Medicina y Ciencias de la Salud, Escuela de Kinesiología, Universidad Mayor, Temuco, Chile
| | - Enrique Lluch-Girbés
- Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
8
|
Jadidi AF, Jensen W, Zarei AA, Lontis ER, Atashzar SF. From pulse width modulated TENS to cortical modulation: based on EEG functional connectivity analysis. Front Neurosci 2023; 17:1239068. [PMID: 37600002 PMCID: PMC10433172 DOI: 10.3389/fnins.2023.1239068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Modulation in the temporal pattern of transcutaneous electrical nerve stimulation (TENS), such as Pulse width modulated (PWM), has been considered a new dimension in pain and neurorehabilitation therapy. Recently, the potentials of PWM TENS have been studied on sensory profiles and corticospinal activity. However, the underlying mechanism of PWM TENS on cortical network which might lead to pain alleviation is not yet investigated. Therefore, we recorded cortical activity using electroencephalography (EEG) from 12 healthy subjects and assessed the alternation of the functional connectivity at the cortex level up to an hour following the PWM TENS and compared that with the effect of conventional TENS. The connectivity between eight brain regions involved in sensory and pain processing was calculated based on phase lag index and spearman correlation. The alteration in segregation and integration of information in the network were investigated using graph theory. The proposed analysis discovered several statistically significant network changes between PWM TENS and conventional TENS, such as increased local strength and efficiency of the network in high gamma-band in primary and secondary somatosensory sources one hour following stimulation. Our findings regarding the long-lasting desired effects of PWM TENS support its potential as a therapeutic intervention in clinical research.
Collapse
Affiliation(s)
- Armita Faghani Jadidi
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Winnie Jensen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Ali Asghar Zarei
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Eugen Romulus Lontis
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - S. Farokh Atashzar
- Department of Electrical and Computer Engineering, New York University, New York, NY, United States
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, United States
- Department of Biomedical Engineering, New York University, New York, NY, United States
- NYU WIRELESS, New York University (NYU), New York, NY, United States
- NYU Center for Urban Science and Progress (CUSP), New York University (NYU), New York, NY, United States
| |
Collapse
|
9
|
Faghani Jadidi A, Jensen W, Zarei AA, Lontis ER. Alteration in Cortical Activity and Perceived Sensation Following Modulated TENS. IEEE Trans Neural Syst Rehabil Eng 2023; 31:875-883. [PMID: 37018675 DOI: 10.1109/tnsre.2023.3236038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Over the last decades, conventional transcutaneous electrical nerve stimulation (TENS) has been utilized as an efficient rehabilitation intervention for alleviation of chronic pain, including phantom limb pain (PLP). However, recently the literature has increasingly focused on alternative temporal stimulation patterns such as pulse width modulation (PWM). While the effect of non-modulated high frequency (NMHF) TENS on somatosensory (SI) cortex activity and sensory perception has been studied, the possible alteration following PWM TENS at the SI has not yet been explored. Therefore, we investigated the cortical modulation by PWM TENS for the first time and conducted a comparative analysis with the conventional TENS pattern. We recorded sensory evoked potentials (SEP) from 14 healthy subjects before, immediately, and 60 min after TENS interventions (PWM and NMHF). The results revealed suppression of SEP components, theta, and alpha band power simultaneously associated with the perceived intensity reduction when the single sensory pulses applied ipsilaterally to the TENS side. The reduction of N1 amplitude, theta, and alpha band activity occurred immediately after both patterns remained at least 60 min. However, the P2 wave was suppressed right after PWM TENS, while NMHF could not induce significant reduction immediately after the intervention phase. As such, since PLP relief has been shown to be correlated with inhibition at somatosensory cortex, we, therefore, believe that the result of this study provides further evidence that PWM TENS may also be potential therapeutic intervention for PLP reduction. Future studies on PLP patients with PWM TENS sessions is needed to validate our result.
Collapse
|
10
|
Han Y, Valentini E, Halder S. Classification of Tonic Pain Experience based on Phase Connectivity in the Alpha Frequency Band of the Electroencephalogram using Convolutional Neural Networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3542-3545. [PMID: 36086245 DOI: 10.1109/embc48229.2022.9871353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The complexity of brain activity involved in the generation of the experience of pain makes it hard to identify neural markers able to predict pain states. The within and between subjects variability of pain hinders the predictive potential of machine learning models trained across participants. This challenge can be tackled by implementing deep learning classifiers based on convolutional neural networks (CNNs). We targeted phase-based connectivity in the alpha band recorded with electroencephalography (EEG) during resting states and sensory conditions (eyes open [O] and closed [C] as resting states, and warm [W] and hot [H] water as sensory conditions). Connectivity features were extracted and re-organized as square matrices, because CNNs are effective in detecting the patterns from 2D data. To assess the classifier performance we implemented two complementary approaches: we 1) trained and tested the classifier with data from all participants, and 2) using a leave-one-out approach, that is excluding one participant at a time during training while using their data as a test set. The accuracy of binary classification between pain condition (H) and eyes open resting state (O) was 94.16% with the first approach, and 61.01 % with the leave-one-out approach. Clinical relevance-Further validation of the CNN classifier may help caregivers track the rehabilitation of chronic pain patients and dynamically modify the therapy. Further refinement of the model may allow its application in critical care setting with unresponsive patients to identify pain-like states otherwise incommunicable to medical personnel.
Collapse
|
11
|
Mussigmann T, Bardel B, Lefaucheur JP. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. Neuroimage 2022; 258:119351. [PMID: 35659993 DOI: 10.1016/j.neuroimage.2022.119351] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022] Open
Abstract
Diagnosis and management of chronic neuropathic pain are challenging, leading to current efforts to characterize 'objective' biomarkers of pain using imaging or neurophysiological techniques, such as electroencephalography (EEG). A systematic literature review was conducted in PubMed-Medline and Web-of-Science until October 2021 to identify EEG biomarkers of chronic neuropathic pain in humans. The risk of bias was assessed by the Newcastle-Ottawa-Scale. Experimental, provoked, or chronic non-neuropathic pain studies were excluded. We identified 14 studies, in which resting-state EEG spectral analysis was compared between patients with pain related to a neurological disease and patients with the same disease but without pain or healthy controls. From these heterogeneous exploratory studies, some conclusions can be drawn, even if they must be weighted by the fact that confounding factors, such as medication and association with anxio-depressive disorders, are generally not taken into account. Overall, EEG signal power was increased in the θ band (4-7Hz) and possibly in the high-β band (20-30Hz), but decreased in the high-α-low-β band (10-20Hz) in the presence of ongoing neuropathic pain, while increased γ band oscillations were not evidenced, unlike in experimental pain. Consequently, the dominant peak frequency was decreased in the θ-α band and increased in the whole-β band in neuropathic pain patients. Disappointingly, pain intensity correlated with various EEG changes across studies, with no consistent trend. This review also discusses the location of regional pain-related EEG changes in the pain connectome, as the perspectives offered by advanced techniques of EEG signal analysis (source location, connectivity, or classification methods based on artificial intelligence). The biomarkers provided by resting-state EEG are of particular interest for optimizing the treatment of chronic neuropathic pain by neuromodulation techniques, such as transcranial alternating current stimulation or neurofeedback procedures.
Collapse
Affiliation(s)
- Thibaut Mussigmann
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Benjamin Bardel
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France.
| |
Collapse
|
12
|
Castelo-Branco L, Cardenas-Rojas A, Pacheco-Barrios K, Teixeira PEP, Gonzalez-Mego P, Vasquez-Avila K, Cortez PC, Marduy A, Rebello-Sanchez I, Parente J, Marzouk S, Fregni F. Can neural markers be used for fibromyalgia clinical management? PRINCIPLES AND PRACTICE OF CLINICAL RESEARCH (2015) 2022; 8:28-33. [PMID: 35677778 PMCID: PMC9172964 DOI: 10.21801/ppcrj.2022.81.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Luis Castelo-Branco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 79/96 13th Street, Charlestown – MA 02129
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 79/96 13th Street, Charlestown – MA 02129
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 79/96 13th Street, Charlestown – MA 02129
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud. Lima, Peru. La Fontana 550, La Molina – Peru 15024
| | - Paulo E. P. Teixeira
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 79/96 13th Street, Charlestown – MA 02129
- MGH Institute of Health Professions, 36 1st Ave, Boston, MA 02129, USA
| | - Paola Gonzalez-Mego
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 79/96 13th Street, Charlestown – MA 02129
| | - Karen Vasquez-Avila
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 79/96 13th Street, Charlestown – MA 02129
| | - Pablo Costa Cortez
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 79/96 13th Street, Charlestown – MA 02129
- Instituto de Ciencias Biologicas, Departamento de Imunologia Basica e Aplicada. Av. General Rodrigo Octavio Jordão Ramos, 1200 - Coroado I, Manaus - AM, Brazil- 69067-005
| | - Anna Marduy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 79/96 13th Street, Charlestown – MA 02129
| | - Ingrid Rebello-Sanchez
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 79/96 13th Street, Charlestown – MA 02129
| | - Joao Parente
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 79/96 13th Street, Charlestown – MA 02129
| | | | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. 79/96 13th Street, Charlestown – MA 02129
| |
Collapse
|
13
|
Low Back Pain Assessment Based on Alpha Oscillation Changes in Spontaneous Electroencephalogram (EEG). Neural Plast 2021; 2021:8537437. [PMID: 34306064 PMCID: PMC8266462 DOI: 10.1155/2021/8537437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Objectively and accurately assessing pain in clinical settings is challenging. Previous studies showed that alpha oscillations of electroencephalogram data are correlated with subjective perceived pain. Based on this finding, this study is aimed at assessing chronic low back pain based on alpha oscillations. Multichannel electroencephalogram data were recorded from 27 subjects with chronic low back pain under the simple conditions of closing eyes or opening eyes. Spectral analyses were conducted to extract the alpha band responses, and the alpha powers were calculated for the two conditions, respectively. Normalized alpha power was calculated by subtracting the alpha power in the eyes-open condition from that in the eyes-closed condition. The correlation between the alpha power and the subjective pain intensity was evaluated in frontal, central, and posterior regions. The normalized alpha power in the central region was negatively correlated with the subjective pain intensity (R = -0.50, P = 0.01), with the strongest correlation occurring at the Cz electrode (R = -0.59, P = 0.04). The correlation analysis results demonstrated the possibility of using the differences of alpha spectral power between eyes-closed and eyes-open conditions as a measure for assessing chronic low back pain. The findings suggest that the normalized alpha power in the central region may be used as a measurable and quantitative indicator of chronic pain for clinical applications.
Collapse
|
14
|
Neethirajan S, Reimert I, Kemp B. Measuring Farm Animal Emotions-Sensor-Based Approaches. SENSORS (BASEL, SWITZERLAND) 2021; 21:E553. [PMID: 33466737 PMCID: PMC7830443 DOI: 10.3390/s21020553] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Understanding animal emotions is a key to unlocking methods for improving animal welfare. Currently there are no 'benchmarks' or any scientific assessments available for measuring and quantifying the emotional responses of farm animals. Using sensors to collect biometric data as a means of measuring animal emotions is a topic of growing interest in agricultural technology. Here we reviewed several aspects of the use of sensor-based approaches in monitoring animal emotions, beginning with an introduction on animal emotions. Then we reviewed some of the available technological systems for analyzing animal emotions. These systems include a variety of sensors, the algorithms used to process biometric data taken from these sensors, facial expression, and sound analysis. We conclude that a single emotional expression measurement based on either the facial feature of animals or the physiological functions cannot show accurately the farm animal's emotional changes, and hence compound expression recognition measurement is required. We propose some novel ways to combine sensor technologies through sensor fusion into efficient systems for monitoring and measuring the animals' compound expression of emotions. Finally, we explore future perspectives in the field, including challenges and opportunities.
Collapse
Affiliation(s)
- Suresh Neethirajan
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (I.R.); (B.K.)
| | | | | |
Collapse
|