1
|
Wu Y, Lam JYL, Pitoulias M, Böken D, Zhang Z, Chintapalli R, Fertan E, Xia Z, Danial JSH, Tsang-Pells G, Fysh E, Julian L, Brindle KM, Mair R, Klenerman D. Detection of p53 aggregates in plasma of glioma patients. COMMUNICATIONS MEDICINE 2025; 5:195. [PMID: 40410530 PMCID: PMC12102397 DOI: 10.1038/s43856-025-00918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 05/13/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND The tumour-suppressor protein p53 can form amyloid aggregates resulting in loss of tumour-suppressing functions and leading to tumour formation. The detection of p53 aggregates in cancer cells has been demonstrated but these aggregates have not been detected in liquid biopsies to date, due to the lack of sufficiently sensitive methods. METHODS We developed an ultrasensitive immunoassay based on the single-molecule array (SiMoA) technology to detect p53 aggregates in plasma, based on antibody capture of the aggregates. We confirmed that the assay detects p53 aggregates using super-resolution imaging. We then investigated the p53 aggregate concentrations in the plasma of 190 pre-surgery glioblastoma (GB) patients and 22 controls using this assay. RESULTS We found that the plasma p53 aggregate levels are significantly elevated in pre-surgery GB patients' plasma compared to controls. Longitudinal study further reveals that p53 aggregate levels may increase before GB recurrence and decrease following treatment. We also observed raised p53 aggregate concentrations in the plasma of cancer patients with brain metastases. CONCLUSIONS This study demonstrates the detection of p53 aggregates in liquid biopsies. Our findings highlight the potential of p53 aggregates as a novel biomarker for glioblastoma.
Collapse
Affiliation(s)
- Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Jeff Y L Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Matthaios Pitoulias
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Dorothea Böken
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Ziwei Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Renuka Chintapalli
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Zengjie Xia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Gemma Tsang-Pells
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Emily Fysh
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Linda Julian
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Richard Mair
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Borkosky SS, Peralta-Martínez R, Armella-Sierra A, Esperante SA, Lizárraga L, García-Pardo J, Ventura S, Sánchez IE, de Prat-Gay G. Experimental kinetic mechanism of P53 condensation-amyloid aggregation. Biophys J 2025; 124:1658-1673. [PMID: 40221836 DOI: 10.1016/j.bpj.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/03/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025] Open
Abstract
The tumor suppressor p53 modulates the transcription of a variety of genes, constituting a protective barrier against anomalous cellular proliferation. High-frequency "hotspot" mutations result in loss of function by the formation of amyloid-like aggregates that correlate with cancerous progression. We show that full-length p53 undergoes spontaneous homotypic condensation at submicromolar concentrations and in the absence of crowders to yield dynamic coacervates that are stoichiometrically dissolved by DNA. These coacervates fuse and evolve into hydrogel-like clusters with strong thioflavin T binding capacity, which further evolve into fibrillar species with a clearcut branching growth pattern. The amyloid-like coacervates can be rescued by the human papillomavirus master regulator E2 protein to yield large regular droplets. Furthermore, we kinetically dissected an overall condensation mechanism, which consists of a nucleation-growth process by the sequential addition of p53 tetramers, leading to discretely sized and monodisperse early condensates followed by coalescence into bead-like coacervates that slowly evolve to the fibrillar species. Our results suggest strong similarities to condensation-to-amyloid transitions observed in neurological aggregopathies. Mechanistic insights uncover novel key early and intermediate stages of condensation that can be targeted for p53 rescuing drug discovery.
Collapse
Affiliation(s)
- Silvia S Borkosky
- Laboratorio de Estructura-Función e Ingeniería de Proteínas, Fundación Instituto Leloir- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIB-BA), Buenos Aires, Argentina
| | - Ramón Peralta-Martínez
- Laboratorio de Estructura-Función e Ingeniería de Proteínas, Fundación Instituto Leloir- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIB-BA), Buenos Aires, Argentina
| | - Alicia Armella-Sierra
- Laboratorio de Estructura-Función e Ingeniería de Proteínas, Fundación Instituto Leloir- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIB-BA), Buenos Aires, Argentina
| | - Sebastián A Esperante
- Centro de Rediseño de Proteínas (CRIP), CONICET, 25 de Mayo y Francia (1650), Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Leonardo Lizárraga
- Centro de Investigaciones en Bionanociencias (CIBION), Buenos Aires, Argentina
| | - Javier García-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio E Sánchez
- Laboratorio de Fisiología de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo de Prat-Gay
- Laboratorio de Estructura-Función e Ingeniería de Proteínas, Fundación Instituto Leloir- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIB-BA), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Wang Z, Liu Y, Zhang Y, Shi J, Xie S, Yi M, Zhang X, Tao D, Yang Y. TSPYL5-driven G3BP1 nuclear membrane translocation facilitates p53 cytoplasm sequestration via accelerating RanBP2-mediated p53 sumoylation and nuclear export in neuroblastoma. Cell Death Dis 2025; 16:358. [PMID: 40319028 PMCID: PMC12049415 DOI: 10.1038/s41419-025-07694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/07/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Cytoplasmic sequestration of wild-type p53, representing a nonmutational event of p53 activity suppression, is a characteristic phenotype of undifferentiated neuroblastoma (NB); however, the underlying mechanism is yet to be defined. In the present study, we observed that TSPYL5 effectively tethers p53 in the cytoplasm and greatly inhibits its function as a transcription factor. Mechanistically, the binding of TSPYL5 with G3BP1 enhances G3BP1 Ser149 phosphorylation to drive G3BP1 nuclear membrane translocation, which recruits more p53 for nucleoporin RanBP2 by the formation of the RanBP2-G3BP1-p53 complex. Thus, the accelerating p53 sumoylation promotes its nuclear export. With this signal pathway, TSPYL5 augments the malignant characteristics of neuroblastoma cells. Our findings unravel a detailed TSPYL5-driven molecular axis that sheds light on the regulating system of the p53 sumoylation-based cytoplasmic sequestration in NB cells, paving the way for the novel therapeutic opportunities for NB cancers by antagonizing TSPYL5 function.
Collapse
Affiliation(s)
- Zhaokun Wang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yunqiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yangwei Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaying Shi
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyu Xie
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Yi
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyue Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dachang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Wang G, Cao Y, Hu T, Cai Z, Chen C, Geng Q, Luo X, Liu Y, Wang W, Jin J, Sheng W. A Mutual Interaction Between GSTP1 and p53 Improves the Drug Resistance and Malignant Biology of Pancreatic Cancer. Cancer Sci 2025; 116:1268-1281. [PMID: 39953720 PMCID: PMC12044643 DOI: 10.1111/cas.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Glutathione S-transferase P1 (GSTP1), a classic tumor biomarker, plays a controversial role in cancer progression. However, its specific role in pancreatic cancer (PC) has rarely been investigated. In the present study, we investigated the function and relationship between GSTP1 and mutant/wild-type p53 (mtp53/wtp53) in PC in vitro and in vivo. Compared with paired adjacent normal pancreas tissue, GSTP1 was downregulated in PC tissue, which was closely correlated with lymph node metastasis, Union for International Cancer Control (UICC) stage, and a better outcome of PC patients, processes dependent on wtp53 rather than mtp53. Moreover, a mutual regulation between GSTP1 and p53 was found in wtp53 PC cells. GSTP1 overexpression inhibited cell proliferation and chemotherapy resistance in vitro via wtp53/p21 and Bax/Bcl2 signaling, which was significantly reversed by wtp53 silencing, and vice versa. Similarly, the coordination of GSTP1 and p53 regulated the invasion and migration of PC cells, which was accompanied by changes in epithelial-mesenchymal transition (EMT) signaling (E-cad, ZO-1 and MMP9). Moreover, GSTP1 overexpression inhibited tumor growth and liver metastasis in vivo, as did high wtp53 and low ki67 expression. Interestingly, GSTP1 did not coimmunoprecipitate with either mtp53 or wtp53 in vitro. However, the wtp53 protein, as a transcription factor, could bind to the GSTP1 DNA promoter to transactivate GSTP1 mRNA expression as demonstrated via a Chip assay. Additionally, GSTP1 promoted the translocation of wtp53 into the nucleus but not mtp53. These results suggest that the positive feedback regulation of GSTP1 and wtp53 plays a significant role in cell proliferation, drug resistance, cell invasion and metastasis in PC.
Collapse
Affiliation(s)
- Guosen Wang
- Department of General SurgeryThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Yi Cao
- Department of General SurgeryThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Tengcheng Hu
- Department of General SurgeryThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Zhengqing Cai
- Department of General SurgeryThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - ChuanPing Chen
- Department of PharmacyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Qilong Geng
- Department of Clinical MedicineThe First Clinical College, Anhui Medical UniversityHefeiChina
| | - Xinyu Luo
- Department of Clinical MedicineThe First Clinical College, Anhui Medical UniversityHefeiChina
| | - Yang Liu
- Department of Clinical MedicineThe First Clinical College, Anhui Medical UniversityHefeiChina
| | - Weijie Wang
- Department of Clinical MedicineThe First Clinical College, Anhui Medical UniversityHefeiChina
| | - Jiabin Jin
- Department of General SurgeryPancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of General SurgeryRuijin‐Hainan Hospital, Shanghai Jiao Tong University School of MedicineQionghaiChina
| | - Weiwei Sheng
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
5
|
Silva JL, de Andrade GC, Petronilho EC, de Sousa GDS, Mota MF, Quarti J, Guedes-da-Silva FH, Ferretti GDS, Rangel LP, Vieira TCRG, Marques MA, de Oliveira GAP. Phase Separation and Prion-Like Aggregation of p53 Family Tumor Suppressors: From Protein Evolution to Cancer Treatment. J Neurochem 2025; 169:e70055. [PMID: 40178008 DOI: 10.1111/jnc.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
Biomolecular condensates, formed through phase separation (PS), are essential in various physiological processes, but they can also transition into amyloid-like structures, contributing to diseases like cancer and neurodegenerative disorders. This review centers on the tumor suppressor protein p53 and its paralogs, p63 and p73, which play significant roles in cancer biology. Mutations in the TP53 gene, present in over half of all malignant tumors, disrupt the function of p53 and contribute to cancer progression. Mutant p53 not only misfolds but also forms biomolecular condensates and amyloid-like aggregates, like the toxic amyloids seen in neurodegenerative diseases. These amyloid-like structures, characteristic of mutant p53, might be associated with its gain of function (GoF) in cancer. Recent in vitro and in cell studies demonstrate that mutant p53 can exert a prion-like effect on its paralogs, p63 and p73, which typically do not form amyloids under physiological conditions. Heparin inhibits the prion-like effect of mutant p53 on p63 and p73. These findings underscore the critical role of mutant p53 in promoting the aggregation of p63 and p73, and likely of other transcription factors, suggesting new therapeutic targets. The amyloid-like aggregation of mutant p53 is an excellent candidate target for cancer, as evidenced by recent studies. By understanding the phase transitions and amyloid formation of mutant p53, innovative diagnostic and treatment strategies have been explored to reveal and disrupt these processes, offering hope for improved cancer therapies.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Guilherme C de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elaine C Petronilho
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gileno Dos S de Sousa
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia Quarti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisca H Guedes-da-Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana P Rangel
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Sartini S, Omholt L, Moatamed NA, Soragni A. Mutant p53 Misfolding and Aggregation Precedes Transformation into High-Grade Serous Ovarian Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.612958. [PMID: 39345467 PMCID: PMC11430093 DOI: 10.1101/2024.09.17.612958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
High Grade Serous Ovarian Cancer (HG-SOC), the most prevalent and aggressive gynecological malignancy, is marked by ubiquitous loss of functional p53, largely due to point mutations that arise very early in carcinogenesis. These mutations often lead to p53 protein misfolding and subsequent aggregation, yet the alterations in intracellular p53 dynamics throughout ovarian cancer progression remain poorly understood. HG-SOC originates from the fallopian tube epithelium, with a well-documented stepwise progression beginning with early pre-malignant p53 signatures. These signatures represent largely normal cells that express and accumulate mutant p53, which then transform into benign serous tubal intraepithelial lesions (STIL), progress into late pre-malignant serous tubal intraepithelial carcinoma (STIC), and ultimately lead to HGSOC. Here, we show that the transition from folded, soluble to aggregated mutant p53 occurs during the malignant transformation of benign precursor lesions into HGSOC. We analyzed fallopian tube tissue collected from ten salpingo-oophorectomy cases and determined the proportion of cells carrying soluble versus mis-folded/mutant p53 through conformation-sensitive staining and quantification. Misfolded p53 protein, prone to aggregation, is present in STICs and HG-SOCs, but notably absent from preneoplastic lesions and surrounding healthy tissue. Overall, our results indicate that aggregation of mutant p53 is a structural defect that distinguishes preneoplastic early lesions from late premalignant and malignant ones, offering a potential treatment window for targeting p53 aggregation and halting ovarian cancer progression.
Collapse
|
7
|
Nishitsuji K, Mito R, Ikezaki M, Yano H, Fujiwara Y, Matsubara E, Nishikawa T, Ihara Y, Uchimura K, Iwahashi N, Sakagami T, Suzuki M, Komohara Y. Impacts of cytoplasmic p53 aggregates on the prognosis and the transcriptome in lung squamous cell carcinoma. Cancer Sci 2024; 115:2947-2960. [PMID: 39031627 PMCID: PMC11462941 DOI: 10.1111/cas.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/22/2024] Open
Abstract
The tumor suppressor TP53 gene, the most frequently mutated gene in human cancers, produces the product tumor protein p53, which plays an essential role in DNA damage. p53 protein mutations may contribute to tumorigenesis by loss of tumor suppressive functions and malignancy of cancer cells via gain-of-oncogenic functions. We previously reported that mutant p53 proteins form aggregates and that cytoplasmic p53 aggregates were associated with poor prognosis in human ovarian cancer. However, the prognostic impact of p53 aggregation in other tumors including lung squamous cell carcinoma (SCC) is poorly understood. Here, we demonstrated that lung SCC cases with cytoplasmic p53 aggregates had a significantly poor clinical prognosis. Analysis via patient-derived tumor organoids (PDOs) established from lung SCC patients and possessing cytoplasmic p53 aggregates showed that eliminating cytoplasmic p53 aggregates suppressed cell proliferation. RNA sequencing and transcriptome analysis of p53 aggregate-harboring PDOs indicated multiple candidate pathways involved in p53 aggregate oncogenic functions. With lung SCC-derived cell lines, we found that cytoplasmic p53 aggregates contributed to cisplatin resistance. This study thus shows that p53 aggregates are a predictor of poor prognosis in lung SCC and suggests that detecting p53 aggregates via p53 conventional immunohistochemical analysis may aid patient selection for platinum-based therapy.
Collapse
Affiliation(s)
- Kazuchika Nishitsuji
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
- Unité de Glycobiologie Structurale et FonctionnelleUMR 8576 CNRS, Université de LilleVilleneuve d'AscqFrance
| | - Remi Mito
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Respiratory Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Midori Ikezaki
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Eri Matsubara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Thoracic and Breast Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Taro Nishikawa
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yoshito Ihara
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et FonctionnelleUMR 8576 CNRS, Université de LilleVilleneuve d'AscqFrance
| | - Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Makoto Suzuki
- Department of Thoracic and Breast Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy AgingKumamoto UniversityKumamotoJapan
| |
Collapse
|
8
|
Sahyon HA, Alharbi NS, Asad Z, El Shishtawy MA, Derbala SA. Assessment of the Circulating PD-1 and PD-L1 Levels and P53 Expression as a Predictor of Relapse in Pediatric Patients with Wilms Tumor and Hypernephroma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1035. [PMID: 39334568 PMCID: PMC11430274 DOI: 10.3390/children11091035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
Background/Objectives: Wilms tumor (WT) is the most common form of pediatric renal tumor, accounting for over 90% of cases followed by hypernephroma. Some pediatric patients with WT (10%) experience relapse or metastasis and have poor survival rates. PD-L1 assists cancer cells in escaping damage from the immune system. P53 mutations are found in relapsed WT tumor samples. We hypothesized that testing circulating PD-1 and PD-L1 and P53 expression levels could offer a simple method to predict patient relapse and explore novel treatments for pediatric WTs and hypernephroma. Methods: Flow cytometric detection of cPD-1, cPD-L1, and P53 expression in relapsed and in-remission WT and hypernephroma before and after one year of chemotherapy was performed. Results: Our data shows increased levels of cPD-L1 in relapsed pediatric patients with WT or hypernephroma before and after chemotherapy. There were also slight and significant increases in cPD-1 levels in relapsed groups before chemotherapy. Additionally, we observed significant decreases in P53 expression after one year of chemotherapy in relapsed pediatric patients. Conclusions: Our study found that circulating PD-L1 can be used as a predictor marker for WT and hypernephroma relapse. In conclusion, these circulating markers can assist in monitoring relapse in WT and hypernephroma patients without the need for several biopsies.
Collapse
Affiliation(s)
- Heba A. Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Nadaa S. Alharbi
- Department of Medicine & Surgery, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (N.S.A.); (Z.A.)
- Ministry of Health, Riyadh 12233, Saudi Arabia
| | - Zummar Asad
- Department of Medicine & Surgery, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (N.S.A.); (Z.A.)
| | - Mohamed A. El Shishtawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Safaa A. Derbala
- Urology, and Nephrology Center, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
9
|
Montemorano L, Shultz ZB, Farooque A, Hyun M, Chappell RJ, Hartenbach EM, Lang JD. TP53 mutations and the association with platinum resistance in high grade serous ovarian carcinoma. Gynecol Oncol 2024; 186:26-34. [PMID: 38555766 PMCID: PMC11216889 DOI: 10.1016/j.ygyno.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVES Alterations in the tumor suppressor TP53 gene are the most common mutations in high grade serous ovarian carcinoma. The impact of TP53 mutations on clinical outcomes and platinum resistance is controversial. We sought to evaluate the genomic profile of high grade serous ovarian carcinoma and explore the association of TP53 mutations with platinum resistance. METHODS Next generation sequencing data was obtained from our institutional database for patients with high grade serous ovarian carcinoma undergoing primary treatment. Sequencing data, demographic, and clinical information was reviewed. The primary outcome analyzed was time to recurrence or refractory diagnosis. Associations between the primary outcome and different classification schemes for TP53 mutations (structural, functional, hot spot, pathogenicity scores, immunohistochemical staining patterns) were performed. RESULTS 209 patients met inclusion criteria. TP53 mutations were the most common mutation. There were no differences in platinum response with TP53 hotspot mutations or high pathogenicity scores. Presence of TP53 gain-of-function mutations or measure of TP53 gain-of function activity were not associated with platinum resistance. Immunohistochemical staining patterns correlated with expected TP53 protein function and were not associated with platinum resistance. CONCLUSIONS TP53 hotspot mutations or high pathogenicity scores were not associated with platinum resistance or refractory disease. Contrary to prior studies, TP53 gain-of-function mutations were not associated with platinum resistance. Estimation of TP53 gain-of-function effect using missense mutation phenotype scores was not associated with platinum resistance. The polymorphic nature of TP53 mutations may be too complex to demonstrate effect using simple models, or response to platinum therapy may be independent of initiating TP53 mutation.
Collapse
Affiliation(s)
- Lauren Montemorano
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA.
| | - Zoey B Shultz
- Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis, MN, USA
| | - Alma Farooque
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | - Meredith Hyun
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Richard J Chappell
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Ellen M Hartenbach
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | - Jessica D Lang
- Center for Human Genomics & Precision Medicine, Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
10
|
Shen Y, Wang Y, Wang SY, Li C, Han FJ. Research progress on the application of organoids in gynecological tumors. Front Pharmacol 2024; 15:1417576. [PMID: 38989138 PMCID: PMC11234177 DOI: 10.3389/fphar.2024.1417576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Organoids are in vitro 3D models that maintain their own tissue structure and function. They largely overcome the limitations of traditional tumor models and have become a powerful research tool in the field of oncology in recent years. Gynecological malignancies are major diseases that seriously threaten the life and health of women and urgently require the establishment of models with a high degree of similarity to human tumors for clinical studies to formulate individualized treatments. Currently, organoids are widely studied in exploring the mechanisms of gynecological tumor development as a means of drug screening and individualized medicine. Ovarian, endometrial, and cervical cancers as common gynecological malignancies have high morbidity and mortality rates among other gynecological tumors. Therefore, this study reviews the application of modelling, drug efficacy assessment, and drug response prediction for ovarian, endometrial, and cervical cancers, thereby clarifying the mechanisms of tumorigenesis and development, and providing precise treatment options for gynecological oncology patients.
Collapse
Affiliation(s)
- Ying Shen
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Wang
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Si-Yu Wang
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chan Li
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng-Juan Han
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
11
|
Chauhan S, Jaiswal S, Jakhmola V, Singh B, Bhattacharya S, Garg M, Sengupta S. Potential role of p53 deregulation in modulating immune responses in human malignancies: A paradigm to develop immunotherapy. Cancer Lett 2024; 588:216766. [PMID: 38408603 PMCID: PMC7615729 DOI: 10.1016/j.canlet.2024.216766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
The crucial role played by the oncogenic expression of TP53, stemming from mutation or amyloid formation, in various human malignancies has been extensively studied over the past two decades. Interestingly, the potential role of TP53 as a crucial player in modulating immune responses has provided new insight into the field of cancer biology. The loss of p53's transcriptional functions and/or the acquisition of tumorigenic properties can efficiently modulate the recruitment and functions of myeloid and lymphoid cells, ultimately leading to the evasion of immune responses in human tumors. Consequently, the oncogenic nature of the tumor suppressor p53 can dynamically alter the function of immune cells, providing support for tumor progression and metastasis. This review comprehensively explores the dual role of p53 as both the guardian of the genome and an oncogenic driver, especially in the context of regulation of autophagy, apoptosis, the tumor microenvironment, immune cells, innate immunity, and adaptive immune responses. Additionally, the focus of this review centers on how p53 status in the immune response can be harnessed for the development of tailored therapeutic strategies and their potential application in immunotherapy against human malignancies.
Collapse
Affiliation(s)
- Shivi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Shivani Jaiswal
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Vibhuti Jakhmola
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Bhavana Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| |
Collapse
|
12
|
Yamada H, Yamada R, Komohara Y, Mito R, Nishitsuji K, Yano H, Fujiwara Y, Ikeda K, Suzuki M. A Case of Aggressive Lung Squamous Cell Carcinoma With Aberrant Cytoplasmic p53 Aggregation. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:204-208. [PMID: 38434916 PMCID: PMC10905281 DOI: 10.21873/cdp.10309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
Background Immunohistochemistry for p53 was a well-established method for cancer diagnosis in pathology. Aberrant cytoplasmic p53 positivity reflects the accumulation of p53 aggregates, which has been shown to be associated with chemoresistance and to be a predictive marker of a worse clinical course in ovarian cancer. Case Report A 65-year-old Japanese man was diagnosed with lung cancer, and surgical resection was performed. Multiple metastasis were found 21 months post-surgery. The lesions were resistant to chemotherapy, and he succumbed to the disease 29 months post-surgery. The resected primary lesion was pathologically diagnosed as squamous cell carcinoma, with notable cytoplasmic p53 positivity indicated by immunohistochemistry. Conclusion Notable aberrant cytoplasmic accumulation of p53 aggregate was observed in the cancer cells of this case. Chemotherapy was ineffective for the recurrent lesions, suggesting a role of p53 aggregates in chemoresistance. Pathological analysis of p53 via immunohistochemistry may be useful in predicting chemoresistance of lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Thoracic and Breast Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Rin Yamada
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Remi Mito
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koei Ikeda
- Department of Thoracic and Breast Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Suzuki
- Department of Thoracic and Breast Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
13
|
Dunsche L, Ivanisenko N, Riemann S, Schindler S, Beissert S, Angeli C, Kreis S, Tavassoli M, Lavrik I, Kulms D. A cytosolic mutp53(E285K) variant confers chemoresistance of malignant melanoma. Cell Death Dis 2023; 14:831. [PMID: 38097548 PMCID: PMC10721616 DOI: 10.1038/s41419-023-06360-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Malignant melanoma (MM) is known to be intrinsically chemoresistant, even though only ~20% of MM carry mutations of the tumor suppressor p53. Despite improvement of systemic therapy the mortality rate of patients suffering from metastatic MM is still ~70%, highlighting the need for alternative treatment options or for the re-establishment of conventional therapeutic approaches, including chemotherapy. Screening the p53 mutation status in a cohort of 19 patient-derived melanoma samples, we identified one rarely described missense mutation of p53 leading to E285K amino acid exchange (mutp53(E285K)). Employing structural and computational analysis we revealed a major role of E285 residue in maintaining stable conformation of wild-type p53 (wtp53). E285K mutation was predicted to cause interruption of a salt-bridge network affecting the conformation of the C-terminal helix of the DNA-binding domain (DBD) thereby preventing DNA interaction. In this context, a cluster of frequently mutated amino acid residues in cancer was identified to putatively lead to similar structural effects as E285K substitution (E285 cluster). Functional analysis, including knockdown of endogenous p53 and reconstitution with diverse p53 missense mutants confirmed mutp53(E285K) to have lost transcriptional activity, to be localized in the cytosol of cancer cells, by both means conferring chemoresistance. Re-sensitization to cisplatin-induced cell death was achieved using clinically approved compounds aiming to restore p53 wild-type function (PRIMA1-Met), or inhibition of AKT-driven MAPK survival pathways (afuresertib), in both cases being partially due to ferroptosis induction. Consequently, active ferroptosis induction using the GPX4 inhibitor RSL3 proved superior in tumorselectively fighting MM cells. Due to high prevalence of the E285-cluster mutations in MM as well as in a variety of other tumor types, we conclude this cluster to serve an important function in tumor development and therapy and suggest new implications for ferroptosis induction in therapeutic applications fighting MM in particular and cancer in general.
Collapse
Affiliation(s)
- Luise Dunsche
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany
| | - Nikita Ivanisenko
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, 39106, Magdeburg, Germany
| | - Shamala Riemann
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany
| | - Sebastian Schindler
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany
| | - Stefan Beissert
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
| | - Cristian Angeli
- Department of Life Science and Medicine, University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Stephanie Kreis
- Department of Life Science and Medicine, University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Mahvash Tavassoli
- Molecular Oncology, Guy's Hospital, Kings College London, London, SE1 1UL, UK
| | - Inna Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, 39106, Magdeburg, Germany
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany.
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany.
| |
Collapse
|
14
|
Sengupta S, Singh N, Paul A, Datta D, Chatterjee D, Mukherjee S, Gadhe L, Devi J, Mahesh Y, Jolly MK, Maji SK. p53 amyloid pathology is correlated with higher cancer grade irrespective of the mutant or wild-type form. J Cell Sci 2023; 136:jcs261017. [PMID: 37622400 PMCID: PMC7615089 DOI: 10.1242/jcs.261017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
p53 (also known as TP53) mutation and amyloid formation are long associated with cancer pathogenesis; however, the direct demonstration of the link between p53 amyloid load and cancer progression is lacking. Using multi-disciplinary techniques and 59 tissues (53 oral and stomach cancer tumor tissue samples from Indian individuals with cancer and six non-cancer oral and stomach tissue samples), we showed that p53 amyloid load and cancer grades are highly correlated. Furthermore, next-generation sequencing (NGS) data suggest that not only mutant p53 (e.g. single-nucleotide variants, deletions, and insertions) but wild-type p53 also formed amyloids either in the nucleus (50%) and/or in the cytoplasm in most cancer tissues. Interestingly, in all these cancer tissues, p53 displays a loss of DNA-binding and transcriptional activities, suggesting that the level of amyloid load correlates with the degree of loss and an increase in cancer grades. The p53 amyloids also sequester higher amounts of the related p63 and p73 (also known as TP63 and TP73, respectively) protein in higher-grade tumor tissues. The data suggest p53 misfolding and/or aggregation, and subsequent amyloid formation, lead to loss of the tumor-suppressive function and the gain of oncogenic function, aggravation of which might determine the cancer grade.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Noida, Uttar Pradesh, 201303, India
| | - Namrata Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ajoy Paul
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Debalina Datta
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Debdeep Chatterjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Semanti Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Laxmikant Gadhe
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jyoti Devi
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Yeshwanth Mahesh
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bengaluru, Bengaluru, Karnataka 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bengaluru, Bengaluru, Karnataka 560012, India
| | - Samir K. Maji
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
15
|
Heinzl N, Maritschnegg E, Koziel K, Schilhart-Wallisch C, Heinze G, Yang WL, Bast RC, Sehouli J, Braicu EI, Vergote I, Van Gorp T, Mahner S, Paspalj V, Grimm C, Obermayr E, Schuster E, Holzer B, Rousseau F, Schymkowitz J, Concin N, Zeillinger R. Amyloid-like p53 as prognostic biomarker in serous ovarian cancer-a study of the OVCAD consortium. Oncogene 2023; 42:2473-2484. [PMID: 37402882 DOI: 10.1038/s41388-023-02758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
TP53 is the most commonly mutated gene in cancer and has been shown to form amyloid-like aggregates, similar to key proteins in neurodegenerative diseases. Nonetheless, the clinical implications of p53 aggregation remain unclear. Here, we investigated the presence and clinical relevance of p53 aggregates in serous ovarian cancer (OC). Using the p53-Seprion-ELISA, p53 aggregates were detected in 46 out of 81 patients, with a detection rate of 84.3% in patients with missense mutations. High p53 aggregation was associated with prolonged progression-free survival. We found associations of overall survival with p53 aggregates, but they did not reach statistical significance. Interestingly, p53 aggregation was significantly associated with elevated levels of p53 autoantibodies and increased apoptosis, suggesting that high levels of p53 aggregates may trigger an immune response and/or exert a cytotoxic effect. To conclude, for the first time, we demonstrated that p53 aggregates are an independent prognostic marker in serous OC. P53-targeted therapies based on the amount of these aggregates may improve the patient's prognosis.
Collapse
Affiliation(s)
- Nicole Heinzl
- Department of Obstetrics and Gynaecology, Molecular Oncology Group, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Maritschnegg
- Department of Obstetrics and Gynaecology, Molecular Oncology Group, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - Katarzyna Koziel
- Department of Gynaecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | | | - Georg Heinze
- Section for Clinical Biometrics, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Wei-Lei Yang
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Robert C Bast
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jalid Sehouli
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, Berlin, Germany
| | - Elena I Braicu
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, Berlin, Germany
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Ignace Vergote
- Division of Gynaecologic Oncology, University Hospital Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Toon Van Gorp
- Division of Gynaecologic Oncology, University Hospital Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sven Mahner
- Department of Gynaecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Obstetrics and Gynaecology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Valentina Paspalj
- Department of Obstetrics and Gynaecology, Division of General Gynaecology and Gynaecologic Oncology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Christoph Grimm
- Department of Obstetrics and Gynaecology, Division of General Gynaecology and Gynaecologic Oncology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Eva Obermayr
- Department of Obstetrics and Gynaecology, Molecular Oncology Group, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Eva Schuster
- Department of Obstetrics and Gynaecology, Molecular Oncology Group, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Barbara Holzer
- Department of Obstetrics and Gynaecology, Molecular Oncology Group, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - Nicole Concin
- Department of Gynaecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Robert Zeillinger
- Department of Obstetrics and Gynaecology, Molecular Oncology Group, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
17
|
Cai BH, Sung YT, Chen CC, Shaw JF, Hsin IL. The Competition of Yin and Yang: Exploring the Role of Wild-Type and Mutant p53 in Tumor Progression. Biomedicines 2023; 11:biomedicines11041192. [PMID: 37189810 DOI: 10.3390/biomedicines11041192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The protein p53 is a well-known tumor suppressor that plays a crucial role in preventing cancer development [...].
Collapse
Affiliation(s)
- Bi-He Cai
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Yu-Te Sung
- Department of Plastic Surgery, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Chia-Chi Chen
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
- Department of Physical Therapy, I-Shou University, Kaohsiung City 82445, Taiwan
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung City 82445, Taiwan
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Jei-Fu Shaw
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City 82445, Taiwan
| | - I-Lun Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan
| |
Collapse
|
18
|
Naus E, Derweduwe M, Lampi Y, Claeys A, Pauwels J, Langenberg T, Claes F, Xu J, Haemels V, Atak ZK, van der Kant R, Van Durme J, De Baets G, Ligon KL, Fiers M, Gevaert K, Aerts S, Rousseau F, Schymkowitz J, De Smet F. Reduced Levels of Misfolded and Aggregated Mutant p53 by Proteostatic Activation. Cells 2023; 12:cells12060960. [PMID: 36980299 PMCID: PMC10047295 DOI: 10.3390/cells12060960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
In malignant cancer, excessive amounts of mutant p53 often lead to its aggregation, a feature that was recently identified as druggable. Here, we describe that induction of a heat shock-related stress response mediated by Foldlin, a small-molecule tool compound, reduces the protein levels of misfolded/aggregated mutant p53, while contact mutants or wild-type p53 remain largely unaffected. Foldlin also prevented the formation of stress-induced p53 nuclear inclusion bodies. Despite our inability to identify a specific molecular target, Foldlin also reduced protein levels of aggregating SOD1 variants. Finally, by screening a library of 778 FDA-approved compounds for their ability to reduce misfolded mutant p53, we identified the proteasome inhibitor Bortezomib with similar cellular effects as Foldlin. Overall, the induction of a cellular heat shock response seems to be an effective strategy to deal with pathological protein aggregation. It remains to be seen however, how this strategy can be translated to a clinical setting.
Collapse
Affiliation(s)
- Evelyne Naus
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Marleen Derweduwe
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium (V.H.); (K.G.)
| | - Youlia Lampi
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Annelies Claeys
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium (V.H.); (K.G.)
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Tobias Langenberg
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Filip Claes
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jie Xu
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Veerle Haemels
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium (V.H.); (K.G.)
| | - Zeynep Kalender Atak
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Laboratory of Computational Biology, Center for Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Rob van der Kant
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Joost Van Durme
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Greet De Baets
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Keith L. Ligon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- The Broad Institute, Cambridge, MA 02142, USA
- Department of Pathology, Division of Neuropathology, Brigham and Women’s Hospital and Children’s Hospital Boston, Boston, MA 02215, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02215, USA
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - Kris Gevaert
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium (V.H.); (K.G.)
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium;
| | - Stein Aerts
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Laboratory of Computational Biology, Center for Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Frederik De Smet
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium (V.H.); (K.G.)
- Correspondence:
| |
Collapse
|