1
|
Amakpe F, Kenali HI, Sinsin B. A Melissopalynologic dynamics appraisal revealed the strategic foraging adaptation of the honeybees ( Apis mellifera Linnaeus 1758) to the anthropogenic impacts in the Republic of Benin. Heliyon 2024; 10:e33753. [PMID: 39040295 PMCID: PMC11261869 DOI: 10.1016/j.heliyon.2024.e33753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
The honeybees (Apis mellifera L.) rely on nectars and pollens they collect the yearlong in the tropical areas and pollination is one of the most important ecological services the honeybees perform. Shifting cultivation, deforestation, husbandry, bushfires, and pesticides are challenging factors to the melliferous flora to which the honeybees adapt for their survival. In order to assess the anthropogenic impacts on the honeybee foraging behaviour, honeys of 23 established apiaries from feral bee swarms were collected in 2012 and 2022 and submitted to palynologic analyses. The decennial analyses were performed on honeys of May 2012 and May 2022 while the seasonal analyses were performed on May, July, and November 2022 honeys. The average number of pollens per 10 g of honey dropped from 1211.26 ± 1400.54 in 2012 to 697,5 ± 668.62 in 2022. Anthropogenic plants (36.11 % of the plant diversity) represented 40.79 % of relative frequency (F%) and 11.36 % of the pollen relative density (P %) in 2012. Ten years later, the dominant pollen species shifted to anthropogenic trees, dominated by Khaya senegalensis (P % = 37.5; F % = 5.1) Vitellaria paradoxa (P % = 7.6; F % = 2.5); Cassia siamea (P % = 6.7; F % = 5.9) and Parkia biglobosa (P % = 5.0; F % = 5.9). Though the pollen species varied a lot upon the season in 2022, the number of pollen grain per 10 g of honey didn't significantly change between the seasons. The frequency of the pollen species was positively correlated to the number of collected pollen at the beginning of the dry season which may be considered as the honey flow season in the northern part of Benin. Reforestation of multipurpose autochthone plants and a better agricultural pesticides use will help secure the diversified and abundant melliferous flora required for a sustainable hive products and pollination services in the Republic of Benin.
Collapse
Affiliation(s)
- Felicien Amakpe
- Direction Générale des Eaux, Forêts et Chasse, Centre Béninois de la Recherche Scientifique et de l’Innovation (Benin), BP 388, Abomey, Benin
| | | | - Brice Sinsin
- Laboratory of Applied Ecology, University of Abomey-Calavi, Cotonou, Benin
| |
Collapse
|
2
|
England SJ, Robert D. Prey can detect predators via electroreception in air. Proc Natl Acad Sci U S A 2024; 121:e2322674121. [PMID: 38768327 PMCID: PMC11161757 DOI: 10.1073/pnas.2322674121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Predators and prey benefit from detecting sensory cues of each other's presence. As they move through their environment, terrestrial animals accumulate electrostatic charge. Because electric charges exert forces at a distance, a prey animal could conceivably sense electrical forces to detect an approaching predator. Here, we report such a case of a terrestrial animal detecting its predators by electroreception. We show that predatory wasps are charged, thus emit electric fields, and that caterpillars respond to such fields with defensive behaviors. Furthermore, the mechanosensory setae of caterpillars are deflected by these electrostatic forces and are tuned to the wingbeat frequency of their insect predators. This ability unveils a dimension of the sensory interactions between prey and predators and is likely widespread among terrestrial animals.
Collapse
Affiliation(s)
- Sam J. England
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, BristolBS8 1TQ, United Kingdom
- Department of Evolutionary Morphology, Museum für Naturkunde–Leibniz Institute for Evolution and Biodiversity Science, Berlin10115, Germany
| | - Daniel Robert
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, BristolBS8 1TQ, United Kingdom
| |
Collapse
|
3
|
Rands SA, Whitney HM, Hempel de Ibarra N. Multimodal floral recognition by bumblebees. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101086. [PMID: 37468044 DOI: 10.1016/j.cois.2023.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Flowers present information to their insect visitors in multiple simultaneous sensory modalities. Research has commonly focussed on information presented in visual and olfactory modalities. Recently, focus has shifted towards additional 'invisible' information, and whether information presented in multiple modalities enhances the interaction between flowers and their visitors. In this review, we highlight work that addresses how multimodality influences behaviour, focussing on work conducted on bumblebees (Bombus spp.), which are often used due to both their learning abilities and their ability to use multiple sensory modes to identify and differentiate between flowers. We review the evidence for bumblebees being able to use humidity, electrical potential, surface texture and temperature as additional modalities, and consider how multimodality enhances their performance. We consider mechanisms, including the cross-modal transfer of learning that occurs when bees are able to transfer patterns learnt in one modality to an additional modality without additional learning.
Collapse
Affiliation(s)
- Sean A Rands
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom.
| | - Heather M Whitney
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, United Kingdom
| |
Collapse
|
4
|
Palmer RA, O’Reilly LJ, Carpenter J, Chenchiah IV, Robert D. An analysis of time-varying dynamics in electrically sensitive arthropod hairs to understand real-world electrical sensing. J R Soc Interface 2023; 20:20230177. [PMID: 37553992 PMCID: PMC10410214 DOI: 10.1098/rsif.2023.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
With increasing evidence of electroreception in terrestrial arthropods, an understanding of receptor level processes is vital to appreciating the capabilities and limits of this sense. Here, we examine the spatio-temporal sensitivity of mechanoreceptive filiform hairs in detecting electrical fields. We first present empirical data, highlighting the time-varying characteristics of biological electrical signals. After which, we explore how electrically sensitive hairs may respond to such stimuli. The main findings are: (i) oscillatory signals (elicited by wingbeats) influence the spatial sensitivity of hairs, unveiling an inextricable spatio-temporal link; (ii) wingbeat direction modulates spatial sensitivity; (iii) electrical wingbeats can be approximated by sinusoidally modulated DC signals; and (iv) for a moving point charge, maximum sensitivity occurs at a faster timescale than a hair's frequency-based tuning. Our results show that electro-mechanical sensory hairs may capture different spatio-temporal information, depending on an object's movement and wingbeat and in comparison with aero-acoustic stimuli. Crucially, we suggest that electrostatic and aero-acoustic signals may provide distinguishable channels of information for arthropods. Given the pervasiveness of electric fields in nature, our results suggest further study to understand electrostatics in the ecology of arthropods and to reveal unknown ecological relationships and novel interactions between species.
Collapse
Affiliation(s)
- Ryan A. Palmer
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, UK
| | - Liam J. O’Reilly
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jacob Carpenter
- School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, UK
| | - Isaac V. Chenchiah
- School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, UK
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
5
|
England SJ, Lihou K, Robert D. Static electricity passively attracts ticks onto hosts. Curr Biol 2023; 33:3041-3047.e4. [PMID: 37392744 PMCID: PMC7616434 DOI: 10.1016/j.cub.2023.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Most terrestrial animals naturally accumulate electrostatic charges, meaning that they will generate electric forces that interact with other charges in their environment, including those on or within other organisms. However, how this naturally occurring static electricity influences the ecology and life history of organisms remains largely unknown.1 Mammals, birds, and reptiles are known to carry appreciable net electrostatic charges, equivalent to surface potentials on the order of hundreds to tens of thousands of volts.1,2,3,4,5,6,7 Therefore, we hypothesize that their parasites, such as ticks, are passively attracted onto their surfaces by electrostatic forces acting across air gaps. This biophysical mechanism is proposed by us to assist these ectoparasites in making contact with their hosts, increasing their effective "reach" because they are otherwise incapable of jumping. Herein, experimental and theoretical evidence show that the tick Ixodes ricinus (Figure 1A) can close the gap to their hosts using ecologically relevant electric fields. We also find that this electrostatic interaction is not significantly influenced by the polarity of the electric field, revealing that the mechanism of attraction relies upon induction of an electrical polarization within the tick, as opposed to a static charge on its surface. These findings open a new dimension to our understanding of how ticks, and possibly many other terrestrial organisms, find and attach to their hosts or vectors. Furthermore, this discovery may inspire novel solutions for mitigating the notable and often devastating economic, social, and public health impacts of ticks on humans and livestock.8,9,10,11,12,13,14,15.
Collapse
Affiliation(s)
- Sam J England
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, 24 Tyndall Avenue, BS8 1TQ Bristol, UK; Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany.
| | - Katie Lihou
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, 24 Tyndall Avenue, BS8 1TQ Bristol, UK
| | - Daniel Robert
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, 24 Tyndall Avenue, BS8 1TQ Bristol, UK
| |
Collapse
|
6
|
Russo L, Ruedenauer F, Gronert A, Van de Vreken I, Vanderplanck M, Michez D, Klein A, Leonhardt S, Stout JC. Fertilizer and herbicide alter nectar and pollen quality with consequences for pollinator floral choices. PeerJ 2023; 11:e15452. [PMID: 37334137 PMCID: PMC10269573 DOI: 10.7717/peerj.15452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/03/2023] [Indexed: 06/20/2023] Open
Abstract
Background Pollinating insects provide economically and ecologically valuable services, but are threatened by a variety of anthropogenic changes. The availability and quality of floral resources may be affected by anthropogenic land use. For example, flower-visiting insects in agroecosystems rely on weeds on field edges for foraging resources, but these weeds are often exposed to agrochemicals that may compromise the quality of their floral resources. Methods We conducted complementary field and greenhouse experiments to evaluate the: (1) effect of low concentrations of agrochemical exposure on nectar and pollen quality and (2) relationship between floral resource quality and insect visitation. We applied the same agrochemcial treatments (low concentrations of fertilizer, low concentrations of herbicide, a combination of both, and a control of just water) to seven plant species in the field and greenhouse. We collected data on floral visitation by insects in the field experiment for two field seasons and collected pollen and nectar from focal plants in the greenhouse to avoid interfering with insect visitation in the field. Results We found pollen amino acid concentrations were lower in plants exposed to low concentrations of herbicide, and pollen fatty acid concentrations were lower in plants exposed to low concentrations of fertilizer, while nectar amino acids were higher in plants exposed to low concentrations of either fertilizer or herbicide. Exposure to low fertilizer concentrations also increased the quantity of pollen and nectar produced per flower. The responses of plants exposed to the experimental treatments in the greenhouse helped explain insect visitation in the field study. The insect visitation rate correlated with nectar amino acids, pollen amino acids, and pollen fatty acids. An interaction between pollen protein and floral display suggested pollen amino acid concentrations drove insect preference among plant species when floral display sizes were large. We show that floral resource quality is sensitive to agrochemical exposure and that flower-visiting insects are sensitive to variation in floral resource quality.
Collapse
Affiliation(s)
- Laura Russo
- University of Tennessee, Knoxville, United States of America
- Trinity College Dublin, Dublin, Ireland
| | | | - Angela Gronert
- Chair of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | | | | - Alexandra Klein
- Chair of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
7
|
Jung J. Fertilizers disrupt the electric feel of flowers. J Exp Biol 2023. [DOI: 10.1242/jeb.244985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|