1
|
He M, Ditto JC, Gardner L, Machesky J, Hass-Mitchell TN, Chen C, Khare P, Sahin B, Fortner JD, Plata DL, Drollette BD, Hayden KL, Wentzell JJB, Mittermeier RL, Leithead A, Lee P, Darlington A, Wren SN, Zhang J, Wolde M, Moussa SG, Li SM, Liggio J, Gentner DR. Total organic carbon measurements reveal major gaps in petrochemical emissions reporting. Science 2024; 383:426-432. [PMID: 38271520 DOI: 10.1126/science.adj6233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Anthropogenic organic carbon emissions reporting has been largely limited to subsets of chemically speciated volatile organic compounds. However, new aircraft-based measurements revealed total gas-phase organic carbon emissions that exceed oil sands industry-reported values by 1900% to over 6300%, the bulk of which was due to unaccounted-for intermediate-volatility and semivolatile organic compounds. Measured facility-wide emissions represented approximately 1% of extracted petroleum, resulting in total organic carbon emissions equivalent to that from all other sources across Canada combined. These real-world observations demonstrate total organic carbon measurements as a means of detecting unknown or underreported carbon emissions regardless of chemical features. Because reporting gaps may include hazardous, reactive, or secondary air pollutants, fully constraining the impact of anthropogenic emissions necessitates routine, comprehensive total organic carbon monitoring as an inherent check on mass closure.
Collapse
Affiliation(s)
- Megan He
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Jenna C Ditto
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Lexie Gardner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Jo Machesky
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Tori N Hass-Mitchell
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Christina Chen
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Peeyush Khare
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Bugra Sahin
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - John D Fortner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Desiree L Plata
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Brian D Drollette
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Katherine L Hayden
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Jeremy J B Wentzell
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Richard L Mittermeier
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Amy Leithead
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Patrick Lee
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Andrea Darlington
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Sumi N Wren
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Junhua Zhang
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | | | - Samar G Moussa
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Shao-Meng Li
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - John Liggio
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Drew R Gentner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Liggio J, Li SM. Reply to: Uncertainty and bias in Liggio et al. (2019) on CO 2 emissions from oil sands operations. Nat Commun 2023; 14:5407. [PMID: 37673894 PMCID: PMC10482959 DOI: 10.1038/s41467-023-40819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Affiliation(s)
- John Liggio
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin St, Toronto, Ontario, M3H 5T4, Canada.
| | - Shao-Meng Li
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin St, Toronto, Ontario, M3H 5T4, Canada
- College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China
| |
Collapse
|