1
|
Daoud S, Taha MO. Advances in the design and discovery of next-generation janus kinase-2 (JAK2) inhibitors for the treatment of myeloproliferative neoplasms. Expert Opin Drug Discov 2024; 19:1403-1415. [PMID: 39410824 DOI: 10.1080/17460441.2024.2417368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/13/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Myeloproliferative neoplasms (MPNs) are rare hematopoietic disorders driven by mutations in the JAK-STAT signaling pathway genes. While JAK2 inhibitors have transformed MPN treatment, they do not eliminate the malignant clone or prevent disease progression in most patients. This limitation underscores the need for more effective therapies. AREA COVERED This review examines the evolution of JAK2 inhibitors for treating MPNs. Current JAK2 inhibitors primarily function as type I inhibitors, targeting the active kinase conformation, but their effectiveness is limited by ongoing JAK-STAT signaling. To overcome these limitations, next-generation therapies, such as type II JAK2 inhibitors and pseudokinase domain inhibitors, are being developed to target inactive kinase conformations and alternative signaling pathways. Furthermore, combination therapies with PI3K, mTOR, CDK4/6 inhibitors, and epigenetic modulators are being investigated for their potential synergistic effects, aiming for deeper and more durable responses in MPN patients. EXPERT OPINION Next-generation JAK2 inhibitors are needed to enhance current MPNs treatments by overcoming resistance, improving selectivity, targeting specific patient groups, and exploring combination therapies. Addressing challenges in drug design, preclinical testing, and clinical trials is crucial. Developing dual or multiple inhibitors targeting JAK2 and other MPN-related pathways is urgent to address complex signaling networks and improve efficacy.
Collapse
Affiliation(s)
- Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Sciences Private University, Amman, Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| |
Collapse
|
2
|
Panda SP, Kesharwani A, Datta S, Prasanth DSNBK, Panda SK, Guru A. JAK2/STAT3 as a new potential target to manage neurodegenerative diseases: An interactive review. Eur J Pharmacol 2024; 970:176490. [PMID: 38492876 DOI: 10.1016/j.ejphar.2024.176490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Neurodegenerative diseases (NDDs) are a collection of incapacitating disorders in which neuroinflammation and neuronal apoptosis are major pathological consequences due to oxidative stress. Neuroinflammation manifests in the impacted cerebral areas as a result of pro-inflammatory cytokines stimulating the Janus Kinase2 (JAK2)/Signal Transducers and Activators of Transcription3 (STAT3) pathway via neuronal cells. The pro-inflammatory cytokines bind to their respective receptor in the neuronal cells and allow activation of JAK2. Activated JAK2 phosphorylates tyrosines on the intracellular domains of the receptor which recruit the STAT3 transcription factor. The neuroinflammation issues are exacerbated by the active JAK2/STAT3 signaling pathway in conjunction with additional transcription factors like nuclear factor kappa B (NF-κB), and the mammalian target of rapamycin (mTOR). Neuronal apoptosis is a natural process made worse by persistent neuroinflammation and immunological responses via caspase-3 activation. The dysregulation of micro-RNA (miR) expression has been observed in the consequences of neuroinflammation and neuronal apoptosis. Neuroinflammation and neuronal apoptosis-associated gene amplification may be caused by dysregulated miR-mediated aberrant phosphorylation of JAK2/STAT3 signaling pathway components. Therefore, JAK2/STAT3 is an attractive therapeutic target for NDDs. Numerous synthetic and natural small molecules as JAK2/STAT3 inhibitors have therapeutic advances against a wide range of diseases, and many are now in human clinical studies. This review explored the interactive role of the JAK2/STAT3 signaling system with key pathological factors during the reinforcement of NDDs. Also, the clinical trial data provides reasoning evidence about the possible use of JAK2/STAT3 inhibitors to abate neuroinflammation and neuronal apoptosis in NDDs.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Samaresh Datta
- Department of Pharmaceutical Chemistry, Birbhum Pharmacy School, Sadaipur, Birbhum, West Bengal, India
| | - D S N B K Prasanth
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Hyderabad, 509301, India
| | | | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
3
|
Gorantla SP, Mueller TA, Albers‐Leischner C, Rudelius M, von Bubnoff N, Duyster J. A newly identified 45-kDa JAK2 variant with an altered kinase domain structure represents a novel mode of JAK2 kinase inhibitor resistance. Mol Oncol 2024; 18:415-430. [PMID: 38104968 PMCID: PMC10850816 DOI: 10.1002/1878-0261.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023] Open
Abstract
Tyrosine-protein kinase (janus kinase; JAK)-signal transducer and activator of transcription (STAT) signaling plays a pivotal role in the development of myeloproliferative neoplasms (MPNs). Treatment with the potent JAK1/JAK2-specific inhibitor, ruxolitinib, significantly reduces tumor burden; however, ruxolitinib treatment does not fully eradicate the malignant clone. As the molecular basis for the disease persistence is not well understood, we set out to gain new insights by generating ruxolitinib-resistant cell lines. Surprisingly, these cells harbor a 45 kDa JAK2 variant (FERM-JAK2) consisting of the N-terminal FERM domain directly fused to the C-terminal kinase domain in 80% of sublines resistant to ruxolitinib. At the molecular level, FERM-JAK2 is able to directly bind and activate STAT5 in the absence of cytokine receptors. Furthermore, phosphorylation of activation-loop tyrosines is dispensable for FERM-JAK2-mediated STAT5 activation and cellular transformation, in contrast to JAK2-V617F. As a result, FERM-JAK2 is highly resistant to several ATP-competitive JAK2 inhibitors, whereas it is particularly sensitive to HSP90 inhibition. A murine model of FERM-JAK2 leukemogenesis showed an accelerated MPN phenotype with pronounced splenomegaly. Notably, most current protocols for the monitoring of emerging JAK variants are unable to detect FERM-JAK2, highlighting the urgent need for implementing next-generation sequencing approaches in MPN patients receiving ruxolitinib.
Collapse
Affiliation(s)
- Sivahari Prasad Gorantla
- Department of Hematology and Oncology, Medical CenterUniversity of Schleswig‐HolsteinLübeckGermany
- Department of Internal Medicine IUniversity Medical Center FreiburgGermany
| | - Tony Andreas Mueller
- Department of Internal Medicine IUniversity Medical Center FreiburgGermany
- Department of Internal Medicine I, Center for Molecular Medicine Cologne (CMMC)University of CologneGermany
| | - Corinna Albers‐Leischner
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center HamburgUniversity Medical Center Hamburg‐EppendorfGermany
| | | | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical CenterUniversity of Schleswig‐HolsteinLübeckGermany
- Department of Internal Medicine IUniversity Medical Center FreiburgGermany
| | - Justus Duyster
- Department of Internal Medicine IUniversity Medical Center FreiburgGermany
| |
Collapse
|
4
|
Li F, Lu ZY, Xue YT, Liu Y, Cao J, Sun ZT, Zhang Q, Xu MD, Wang XY, Xu KL, Wu QY. Molecular basis of JAK2 H608Y and H608N mutations in the pathology of acute myeloid leukemia. Int J Biol Macromol 2023; 229:247-259. [PMID: 36529225 DOI: 10.1016/j.ijbiomac.2022.12.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Risk-stratification of acute myeloid leukemia (AML) based on (cyto)genetic aberrations, including hotspot mutations, deletions and point mutations have evolved substantially in recent years. With the development of next-generation sequence technology, more and more novel mutations in the AML were identified. Thus, to unravel roles and mechanism of novel mutations would improve prognostic and predictive abilities. In this study, two novel germline JAK2 His608Tyr (H608Y) and His608Asn (H608N) mutations were identified and the molecular basis of these mutations in the leukemiagenesis of AML was elucidated. Our results indicated that JAK2 H608Y and H608N mutations disrupted the hydrogen bond between Q656 and H608 which reduced the JH2 domain's activity and abolished interactions between JH1 and JH2 domains, forced JAK2 into the active conformation, facilitated the entrance of substrates and thus caused JAK2 hyperactivation. Further studies suggested that JAK2 H608Y and H608N mutations enhanced the cell proliferation and inhibited the differentiation of Ba/F3 and MV4-11 cells via activating the JAK2-STAT5 signaling pathway. Moreover, rescue experiments demonstrated that mutations repaired the hydrogen bond between Q656 and H608 displayed opposite results. Thus, this study revealed the molecular basis of JAK2 H608Y and H608N mutations in the pathology of AML.
Collapse
Affiliation(s)
- Feng Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou 221002, China
| | - Zi-Yi Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Tong Xue
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zeng-Tian Sun
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Di Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yun Wang
- College of Life Sciences, Shandong Agricultural University, Shandong 271018, China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
5
|
Sperti M, Malavolta M, Ciniero G, Borrelli S, Cavaglià M, Muscat S, Tuszynski JA, Afeltra A, Margiotta DPE, Navarini L. JAK inhibitors in immune-mediated rheumatic diseases: From a molecular perspective to clinical studies. J Mol Graph Model 2021; 104:107789. [DOI: 10.1016/j.jmgm.2020.107789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
|
6
|
Schmalohr BF, Mustafa AM, Krämer OH, Imhof D. Structural Insights into the Interaction of Heme with Protein Tyrosine Kinase JAK2*. Chembiochem 2021; 22:861-864. [PMID: 33103835 PMCID: PMC7984354 DOI: 10.1002/cbic.202000730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Janus kinase 2 (JAK2) is the most important signal-transducing tyrosine kinase in erythropoietic precursor cells. Its malfunction drives several myeloproliferative disorders. Heme is a small metal-ion-carrying molecule that is incorporated into hemoglobin in erythroid precursor cells to transport oxygen. In addition, heme is a signaling molecule and regulator of various biochemical processes. Here, we show that heme exposure leads to hyperphosphorylation of JAK2 in a myeloid cancer cell line. Two peptides identified in JAK2 are heme-regulatory motifs and show low-micromolar affinities for heme. These peptides map to the kinase domain of JAK2, which is essential for downstream signaling. We suggest these motifs to be the interaction sites of heme with JAK2, which drive the heme-induced hyperphosphorylation. The results presented herein could facilitate the development of heme-related pharmacological tools to combat myeloproliferative disorders.
Collapse
Affiliation(s)
- Benjamin Franz Schmalohr
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Al‐Hassan M. Mustafa
- University Medical Center MainzInstitute of ToxicologyObere Zahlbacher Straße 6755131MainzGermany
| | - Oliver H. Krämer
- University Medical Center MainzInstitute of ToxicologyObere Zahlbacher Straße 6755131MainzGermany
| | - Diana Imhof
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
7
|
Syeed N. JAK2 and Beyond: Mutational Study of JAK2V617 in Myeloproliferative Disorders and Haematological Malignancies in Kashmiri population. Asian Pac J Cancer Prev 2019; 20:3611-3615. [PMID: 31870101 PMCID: PMC7173381 DOI: 10.31557/apjcp.2019.20.12.3611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Janus Tyrosine Kinase-2 (JAK2 V617F), a novel point mutation affecting the MPD'S is a somatic gain-of-function mutation. It alters a highly conserved amino acid valine in the negative regulatory JH2 domain to phenylalanine predicted to dysregulate kinase activity. AIM To evaluate the prevalence and clinical significance of JAK2 V617F mutation in various MPD's as well as in hematological malignancies. SUBJECTS AND METHODS JAK2 mutation was assessed in 90 patients with myeloproliferative disorders and 47 leukemic patients. In addition, peripheral blood samples from 90 healthy donors were also collected as control. We used a highly sensitive Allele-Specific polymerase chain reaction (AS-PCR) for the detection and confirmed the mutation further by direct sequencing. RESULTS Our results showed significant differences between various disorders with respect to either the proportion of positivity or that of mutant alleles. JAK2-V617F was detected in 67/90 MPD patients and 02/17 for AML,01/11 for ALL-L1,02/12 for ALL-L2 and 02/07 for CML and 90 healthy controls. CONCLUSION From the above findings it is evident that the JAK2 V617F mutation is widespread not only in MPD's but also in hematological malignancies, which might as well lead to the new classification of MPD'S. Our data also suggest that different genetic events may lead to JAK-STAT pathway activation in different malignancies.
Collapse
Affiliation(s)
- Nidda Syeed
- College of Applied Medical Sciences, Taibah University, Madinah Saudi Arabia.,Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Kashmir, 190011, India
| |
Collapse
|
8
|
Roles of T875N somatic mutation in the activity, structural stability of JAK2 and the transformation of OCI-AML3 cells. Int J Biol Macromol 2019; 137:1030-1040. [PMID: 31299252 DOI: 10.1016/j.ijbiomac.2019.07.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/31/2023]
Abstract
Activating mutations in JAK2 have been described in patients with various hematologic malignancies including acute myeloid leukemia (AML) and myeloproliferative neoplasms. However, mechanism of these mutations in JAK2's activity, structural stability and pathology of AML remains poorly understood. The JAK2 T875N somatic mutation has been detected in about 5.2% of AML patients. But the structural basis and mechanism of JAK2 T875N mutation in the pathology of AML is still unclear. Our results suggested that JAK2 T875N mutation disrupted the T875 and D873 interaction which destroyed the compact structure of JH1 domain, forced it into the active conformation, facilitated the entrance of substrate and thus led to JAK2 hyperactivation. Mutations (T875N, T875A, D873A and D873G) disrupted the T875 and D873 interaction enhanced JAK2's activity, decreased its structural stability and JH2 domain's activity which further enhanced JAK2's activity, while mutations (T875R, D873E, T875R/D873E) repaired this interaction displayed opposite results. Moreover, JAK2 T875N mutation enhanced the activity of JAK2-STAT5 pathway, promoted the proliferation and transformation of OCI-AML3 cells. This study provides clues in understanding structural basis of T875N mutation caused JAK2 hyperactivation and its roles in the pathology of AML.
Collapse
|
9
|
Wu QY, Ma MM, Zhang S, Cao J, Yan ZL, Chen C, Li ZY, Zeng LY, Wang XY, Li F, Xu KL. Disruption of R867 and Y613 interaction plays key roles in JAK2 R867Q mutation caused acute leukemia. Int J Biol Macromol 2019; 136:209-219. [PMID: 31199972 DOI: 10.1016/j.ijbiomac.2019.06.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations were important for the leukemogenesis of acute leukemia (AL). The JAK2 R867Q somatic mutation is detected in a subset of AL patients. However, roles of JAK2 R867Q mutation in the pathogenesis of AL remain unclear. In this study, homology modeling analysis showed that loss of interaction between R867 and Y613 disrupted the JAK2 JH1/JH2 domain's interactions was responsible for its activation. JAK2 R867Q and mutations (R867A and R867G) abolished this interaction caused JAK2 constitutive activation. While, mutations (R867K, Y613E, R867K/Y613E) repairing this interaction reduced JAK2 R867Q mutation's activity. Furthermore, our studies showed that abolished R867 and Y613 interaction disrupted JH1/JH2 domains' interactions and led to JAK2 constitutive activation. More importantly, mutations (R867Q, R867A and R867G) disrupted this interaction enhanced the activity of JAK2-STAT5 pathway and the proliferation of Ba/F3 and MV4-11 cells. Further study showed that JAK2 R867Q mutation promoted the expression of proliferation marker and inhibited the differentiation marker of Ba/F3 and MV4-11 cells. Thus our studies provide clues in understanding the pathogenesis of JAK2 R867Q mutation in AL.
Collapse
Affiliation(s)
- Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Meng Ma
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sen Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhi-Ling Yan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chong Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Yu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yun Wang
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou 221002, People's Republic of China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
10
|
Understanding the structural features of JAK2 inhibitors: a combined 3D-QSAR, DFT and molecular dynamics study. Mol Divers 2019; 23:845-874. [PMID: 30617940 DOI: 10.1007/s11030-018-09913-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
Abstract
JAK2 plays a critical role in JAK/STAT signaling pathway and in patho-mechanism of myeloproliferative disorders and autoimmune diseases. Thus, effective JAK2 inhibitors provide a promising opportunity for the pharmaceutical intervention of many diseases. In this work, 3D-QSAR study was performed on a series of 1-amino-5H-pyrido-indole-4-carboxamide derivatives as JAK2 inhibitors to obtain reliable comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) models with three different alignment methods. Among the different alignment methods, ligand-based (CoMFA: q2 = 0.676, r2 = 0.979; CoMSIA: q2 = 0.700, r2 = 0.953) and pharmacophore-based alignment (CoMFA: q2 = 0.710, r2 = 0.982; CoMSIA: q2 = 0.686, r2 = 0.960) has produced better statistical results when compared to receptor-based alignment (CoMFA: q2 = 0.507, r2 = 0.979; CoMSIA: q2 = 0.544, r2 = 0.917). Statistical parameters indicated that data are well fitted and have high predictive ability. The presence of electrostatic and hydrophobic field is highly desirable for potent inhibitory activity, and the steric field plays a minor role in modulating the activity. The contour analysis indicates ARG980, ASN981, ASP939 and LEU937 have more possibility of interacting with bulky, hydrophobic groups in pyrido and positive and negative groups in pyrazole ring. Based on our findings, we have designed sixteen molecules and predicted its activity and drug-like properties. Subsequently, molecular docking, molecular dynamics and DFT calculations were performed to evaluate its potency.
Collapse
|
11
|
|
12
|
Wu QY, Ma MM, Tong YX, Zhu YY, Liu Y, Cao J, Zhou P, Li ZY, Zeng LY, Wang XY, Li F, Xu KL. Effects of JAK2 V556F mutation on the JAK2's activity, structural stability and the transformation of Ba/F3 cells. Int J Biol Macromol 2018; 117:271-279. [PMID: 29842959 DOI: 10.1016/j.ijbiomac.2018.05.185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/28/2022]
Abstract
Although roles of somatic JAK2 mutations in clonally myeloproliferative neoplasms (MPNs) are well established, roles of germline JAK2 mutations in the pathogenesis of MPNs remain unclear. Recently, a novel activating, germline JAK2 F556V mutation was identified and involved in the pathogenesis of MPNs, but, its pathogenesis mechanism was still unknown. In this study, homology models of JAK2 demonstrated that F556 located between two threonine residues which interacted with ATP phosphate groups by hydrogen bonds, Thr555 with the γ-phosphate and Thr557 with the β-phosphate in the active site of JAK2's JH2 domain. Moreover, the hydrogen bond between Thr557 and Arg715 played vital roles in sustaining the structural conformation of JH2's active site and JH1-JH2 domains' interactions. When F556 was replaced by other amino acids except Trp, the hydrogen bond, JH2 domain's structural conformation and JH1-JH2 domains' interactions disrupted for changing the helix between β2 and β3 strands which finally caused JAK2 activation. Mechanistic and functional studies showed that JAK2 F556V mutation disrupted JAK2 JH2 domain's activity, caused JAK2-STAT5 pathway activation and promoted the proliferation of BaF3 cells. Thus, our results herein may provide clues to understand the pathogenesis mechanism of JAK2 F556V mutation in the MPNs.
Collapse
Affiliation(s)
- Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Meng Ma
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Xue Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan-Yuan Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Zhou
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Yu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yun Wang
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou 221002, China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
13
|
Wu QY, Ma MM, Fu L, Zhu YY, Liu Y, Cao J, Zhou P, Li ZY, Zeng LY, Li F, Wang XY, Xu KL. Roles of germline JAK2 activation mutation JAK2 V625F in the pathology of myeloproliferative neoplasms. Int J Biol Macromol 2018; 116:1064-1073. [PMID: 29782975 DOI: 10.1016/j.ijbiomac.2018.05.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 01/14/2023]
Abstract
Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations play key roles in the pathology of myeloproliferative neoplasms (MPNs). Recently, germline JAK2 mutations are also associated with triple-negative MPNs. A novel germline mutation JAK2 V625F is reported to be involved in a subset of MPNs patients. However, the pathogenesis of this mutation caused MPN is still unclear. In this study, the homology models of JAK2 V625F showed that the newly formed interaction between F625 and Y613 disrupted the JAK2 JH1-JH2 domain interactions was responsible for its activation, when F625 and Y613 interaction was disrupted, its activity significantly decreased. While, when this interaction was repaired whether by forming hydrogen bond or salt bond, it would cause JAK2 activation. Biochemical studies also demonstrated that JAK2 V625F mutation led to JAK2-STAT5 pathway activation and promoted the proliferation of BaF3 cells. Thus, our results herein provide clues to understand the mechanism JAK2 V625F mutation caused MPNs and give information for the development of JAK2 mutation specific inhibitors.
Collapse
Affiliation(s)
- Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Meng Ma
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan-Yuan Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Zhou
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Yu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou 221002, China.
| | - Xiao-Yun Wang
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
14
|
Sucker A, Zhao F, Pieper N, Heeke C, Maltaner R, Stadtler N, Real B, Bielefeld N, Howe S, Weide B, Gutzmer R, Utikal J, Loquai C, Gogas H, Klein-Hitpass L, Zeschnigk M, Westendorf AM, Trilling M, Horn S, Schilling B, Schadendorf D, Griewank KG, Paschen A. Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions. Nat Commun 2017; 8:15440. [PMID: 28561041 PMCID: PMC5460020 DOI: 10.1038/ncomms15440] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/29/2017] [Indexed: 12/18/2022] Open
Abstract
Melanoma treatment has been revolutionized by antibody-based immunotherapies. IFNγ secretion by CD8+ T cells is critical for therapy efficacy having anti-proliferative and pro-apoptotic effects on tumour cells. Our study demonstrates a genetic evolution of IFNγ resistance in different melanoma patient models. Chromosomal alterations and subsequent inactivating mutations in genes of the IFNγ signalling cascade, most often JAK1 or JAK2, protect melanoma cells from anti-tumour IFNγ activity. JAK1/2 mutants further evolve into T-cell-resistant HLA class I-negative lesions with genes involved in antigen presentation silenced and no longer inducible by IFNγ. Allelic JAK1/2 losses predisposing to IFNγ resistance development are frequent in melanoma. Subclones harbouring inactivating mutations emerge under various immunotherapies but are also detectable in pre-treatment biopsies. Our data demonstrate that JAK1/2 deficiency protects melanoma from anti-tumour IFNγ activity and results in T-cell-resistant HLA class I-negative lesions. Screening for mechanisms of IFNγ resistance should be considered in therapeutic decision-making.
Collapse
Affiliation(s)
- Antje Sucker
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Fang Zhao
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Natalia Pieper
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Christina Heeke
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Raffaela Maltaner
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Nadine Stadtler
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Birgit Real
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Nicola Bielefeld
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Sebastian Howe
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Benjamin Weide
- Division of Dermatooncology, Department of Dermatology, University Medical Center Tübingen, 72076 Tübingen, Germany
| | - Ralf Gutzmer
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Hannover Medical School, 30625 Hannover, Germany
| | - Jochen Utikal
- German Cancer Research Center (DKFZ), Skin Cancer Unit, Heidelberg and University Medical Center Mannheim, Department of Dermatology, Venereology and Allergology, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Carmen Loquai
- Skin Cancer Center, Department of Dermatology, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Helen Gogas
- First Department of Medicine,National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Michael Zeschnigk
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, West German Cancer Center and the German Cancer Consortium (DKTK), 45122 Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Mirko Trilling
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Susanne Horn
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Bastian Schilling
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany.,Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Klaus G Griewank
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| |
Collapse
|
15
|
Grinfeld J, Godfrey AL. After 10 years of JAK2V617F: Disease biology and current management strategies in polycythaemia vera. Blood Rev 2017; 31:101-118. [DOI: 10.1016/j.blre.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
|
16
|
Li JJ, Cheng P, Tu J, Zhai HL, Zhang XY. Enhancing specificity in the Janus kinases: a study on the thienopyridine JAK2 selective mechanism combined molecular dynamics simulation. MOLECULAR BIOSYSTEMS 2016; 12:575-87. [DOI: 10.1039/c5mb00747j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The superposition of the binding affinities between 19 and four JAK kinases.
Collapse
Affiliation(s)
- Jiao Jiao Li
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Peng Cheng
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Jing Tu
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Hong Lin Zhai
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Xiao Yun Zhang
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| |
Collapse
|
17
|
Didone A, Nardinelli L, Marchiani M, Ruiz ARL, de Lima Costa AL, Lima IS, Santos NM, Sanabani SS, Bendit I. Comparative study of different methodologies to detect the JAK2 V617F mutation in chronic BCR-ABL1 negative myeloproliferative neoplasms. Pract Lab Med 2015; 4:30-37. [PMID: 28856190 PMCID: PMC5574508 DOI: 10.1016/j.plabm.2015.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 01/21/2023] Open
Abstract
Objectives A mutation in the JAK2 gene, V617F, has been identified in several BCR-ABL1 negative myeloproliferative neoplasms (MPN): polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Defining the presence or absence of this mutation is an essential part of clinical diagnostic algorithms and patient management. Here, we aimed to evaluate the performance of three PCR-based assays: Amplification Refractory Mutation System (ARMS), High-Resolution Melting analysis (HRM), and Sanger direct sequencing, and compare their results with those obtained by a PCR restriction fragment polymorphism assay (PCR-RFLP). Design and methods We used blood samples from 136 patients (PV=20; PMF=20; ET=28, and other MPN suspected cases=68). Results Comparable results were observed among the four assays in patients with PV, PMF, and MPN suspected cases. In patients with a diagnosis of ET, the JAK2 V617F mutation was detected in 67.8% of them by the PCR-ARMS and PCR-HRM assay and in 64% of them by the conventional Sanger sequence approach. The PCR-ARMS and PCR-HRM assays were 100% concordant. With these tests, only one of the 20 patients with ET and one of the three patients with clinically suspected MPN gave different results compared with those obtained by the PCR-RFLP. Conclusions Our results have demonstrated that the PCR-ARMS and PCR-HRM assays could detect the JAK2 V617F mutation effectively in MPN patients, but PCR-HRM assays are rapid and the most cost-effective procedures.
Collapse
Affiliation(s)
- Alline Didone
- Laboratorio de Biologia Tumoral Disciplina de Hematologia do Hoispital de Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Luciana Nardinelli
- Laboratorio de Biologia Tumoral Disciplina de Hematologia do Hoispital de Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Mariana Marchiani
- Laboratorio de Biologia Tumoral Disciplina de Hematologia do Hoispital de Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Antonio Roberto Lancha Ruiz
- Laboratorio de Biologia Tumoral Disciplina de Hematologia do Hoispital de Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Ariel Lais de Lima Costa
- Laboratorio de Biologia Tumoral Disciplina de Hematologia do Hoispital de Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Ismael Severino Lima
- Laboratorio de Biologia Tumoral Disciplina de Hematologia do Hoispital de Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Nathalia Moreira Santos
- Laboratorio de Biologia Tumoral Disciplina de Hematologia do Hoispital de Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - Sabri Saeed Sanabani
- Clinical Laboratory, Department of Pathology, LIM 03, Hospital das Clínicas (HC), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Israel Bendit
- Laboratorio de Biologia Tumoral Disciplina de Hematologia do Hoispital de Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| |
Collapse
|
18
|
Pilati C, Zucman-Rossi J. Mutations leading to constitutive active gp130/JAK1/STAT3 pathway. Cytokine Growth Factor Rev 2015; 26:499-506. [DOI: 10.1016/j.cytogfr.2015.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022]
|
19
|
Effects of the I682F mutation on JAK2's activity, structure and stability. Int J Biol Macromol 2015; 79:118-25. [DOI: 10.1016/j.ijbiomac.2015.04.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/14/2022]
|
20
|
Them NC, Bagienski K, Berg T, Gisslinger B, Schalling M, Chen D, Buxhofer‐Ausch V, Thaler J, Schloegl E, Gastl GA, Wolf D, Strecker K, Egle A, Melchardt T, Burgstaller S, Willenbacher E, Zagrijtschuk O, Klade C, Greil R, Gisslinger H, Kralovics R. Molecular responses and chromosomal aberrations in patients with polycythemia vera treated with peg-proline-interferon alpha-2b. Am J Hematol 2015; 90:288-94. [PMID: 25545244 PMCID: PMC4657499 DOI: 10.1002/ajh.23928] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 01/22/2023]
Abstract
Fifty-one polycythemia vera (PV) patients were enrolled in the phase I/II clinical study PEGINVERA to receive a new formulation of pegylated interferon alpha (peg-proline-IFNα-2b, AOP2014/P1101). Peg-proline-IFNα-2b treatment led to high response rates on both hematologic and molecular levels. Hematologic and molecular responses were achieved for 46 and 18 patients (90 and 35% of the whole cohort), respectively. Although interferon alpha (IFNα) is known to be an effective antineoplastic therapy for a long time, it is currently not well understood which genetic alterations influence therapeutic outcomes. Apart from somatic changes in specific genes, large chromosomal aberrations could impact responses to IFNα. Therefore, we evaluated the interplay of cytogenetic changes and IFNα responses in the PEGINVERA cohort. We performed high-resolution SNP microarrays to analyze chromosomal aberrations prior and during peg-proline-IFNα-2b therapy. Similar numbers and types of chromosomal aberrations in responding and non-responding patients were observed, suggesting that peg-proline-IFNα-2b responses are achieved independently of chromosomal aberrations. Furthermore, complete cytogenetic remissions were accomplished in three patients, of which two showed more than one chromosomal aberration. These results imply that peg-proline-IFNα-2b therapy is an effective drug for PV patients, possibly including patients with complex cytogenetic changes. Am. J. Hematol. 90:288–294, 2015. © 2014 The Authors. American Journal of Hematology published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicole C.C. Them
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesVienna Austria
| | - Klaudia Bagienski
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesVienna Austria
| | - Tiina Berg
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesVienna Austria
| | - Bettina Gisslinger
- Department of Internal Medicine IDivision of Hematology and Blood CoagulationMedical University of ViennaVienna Austria
| | - Martin Schalling
- Department of Internal Medicine IDivision of Hematology and Blood CoagulationMedical University of ViennaVienna Austria
| | - Doris Chen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesVienna Austria
| | - Veronika Buxhofer‐Ausch
- 2nd Medical DepartmentSozialmedizinisches Zentrum Ost—DonauspitalVienna Austria
- Interne 1 Hemato‐OncologyKrankenhaus Der Elisabethinen LinzLinz Austria
| | - Josef Thaler
- Department of Internal Medicine IVWels‐Grieskirchen HospitalWels Austria
| | | | - Guenther A. Gastl
- Department of Internal Medicine V Haematology & OncologyInnsbruck Medical UniversityInnsbruck Austria
| | - Dominik Wolf
- Department of Internal Medicine V Haematology & OncologyInnsbruck Medical UniversityInnsbruck Austria
- Medical Clinic IIIOncologyHematology and RheumatologyUniversity Clinic of Bonn (UKB)Bonn Germany
| | - Karin Strecker
- 2nd Medical DepartmentSozialmedizinisches Zentrum Ost—DonauspitalVienna Austria
| | - Alexander Egle
- Laboratory for Immunological and Molecular Cancer ResearchDepartment of Internal Medicine III with HematologyMedical OncologyHemostaseologyInfectious DiseasesRheumatologyOncologic Center, Paracelsus Medical UniversitySalzburg Austria
| | - Thomas Melchardt
- Laboratory for Immunological and Molecular Cancer ResearchDepartment of Internal Medicine III with HematologyMedical OncologyHemostaseologyInfectious DiseasesRheumatologyOncologic Center, Paracelsus Medical UniversitySalzburg Austria
| | - Sonja Burgstaller
- Department of Internal Medicine IVWels‐Grieskirchen HospitalWels Austria
| | - Ella Willenbacher
- Department of Internal Medicine V Haematology & OncologyInnsbruck Medical UniversityInnsbruck Austria
| | | | | | - Richard Greil
- Laboratory for Immunological and Molecular Cancer ResearchDepartment of Internal Medicine III with HematologyMedical OncologyHemostaseologyInfectious DiseasesRheumatologyOncologic Center, Paracelsus Medical UniversitySalzburg Austria
| | - Heinz Gisslinger
- Department of Internal Medicine IDivision of Hematology and Blood CoagulationMedical University of ViennaVienna Austria
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesVienna Austria
- Department of Internal Medicine IDivision of Hematology and Blood CoagulationMedical University of ViennaVienna Austria
| |
Collapse
|
21
|
Waters M, Brooks A. JAK2 activation by growth hormone and other cytokines. Biochem J 2015; 466:1-11. [PMID: 25656053 PMCID: PMC4325515 DOI: 10.1042/bj20141293] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 12/30/2022]
Abstract
Growth hormone (GH) and structurally related cytokines regulate a great number of physiological and pathological processes. They do this by coupling their single transmembrane domain (TMD) receptors to cytoplasmic tyrosine kinases, either as homodimers or heterodimers. Recent studies have revealed that many of these receptors exist as constitutive dimers rather than being dimerized as a consequence of ligand binding, which has necessitated a new paradigm for describing their activation process. In the present study, we describe a model for activation of the tyrosine kinase Janus kinase 2 (JAK2) by the GH receptor homodimer based on biochemical data and molecular dynamics simulations. Binding of the bivalent ligand reorientates and rotates the receptor subunits, resulting in a transition from a form with parallel TMDs to one where the TMDs separate at the point of entry into the cytoplasm. This movement slides the pseudokinase inhibitory domain of one JAK kinase away from the kinase domain of the other JAK within the receptor dimer-JAK complex, allowing the two kinase domains to interact and trans-activate. This results in phosphorylation and activation of STATs and other signalling pathways linked to this receptor which then regulate postnatal growth, metabolism and stem cell activation. We believe that this model will apply to most if not all members of the class I cytokine receptor family, and will be useful in the design of small antagonists and agonists of therapeutic value.
Collapse
Key Words
- class i cytokine receptors
- cytokine receptor signalling
- growth hormone
- growth hormone receptor
- janus kinase 2 (jak2)
- srk family kinases
- cntf, ciliary neurotropic factor
- crh, cytokine receptor homology
- ct-1, cardiotropin-1
- ecd, extracellular domain
- epo, erythropoietin
- fniii, fibronectin iii-like
- gh, growth hormone
- gm-csf, granulocyte-macrophage colony-stimulating factor
- jak, janus kinase
- jm, juxtamembrane
- mab, monoclonal antibody
- osm, oncostatin-m
- pk, pseudokinase
- tmd, transmembrane domain
- tpo, thrombopoietin
Collapse
Affiliation(s)
- Michael J. Waters
- *Institute for Molecular Bioscience, The University of Queensland Institute, QLD 4072, Australia
| | - Andrew J. Brooks
- *Institute for Molecular Bioscience, The University of Queensland Institute, QLD 4072, Australia
- †The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, QLD 4072, Australia
| |
Collapse
|
22
|
Tao W, Leng X, Chakraborty SN, Ma H, Arlinghaus RB. c-Abl activates janus kinase 2 in normal hematopoietic cells. J Biol Chem 2014; 289:21463-72. [PMID: 24923444 DOI: 10.1074/jbc.m114.554501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Jak2 is involved in cytokine growth factor-stimulated signal transduction, but the mechanism of its activation is largely unknown. Here, we investigated Jak2 activation in a normal hematopoietic cell line, 32D mouse myeloid cells. The bimolecular fluorescence complementation studies showed that c-Abl formed a stable complex with Jak2 in live cells. Co-immunoprecipitation results showed that c-Abl bound to the βc chain of IL-3/IL-5/GM-CSF receptors. The kinase activities of both c-Abl and Jak2 were stimulated by IL-3 in 32D cells. Decreasing c-Abl protein expression in 32D cells by inducible shRNA decreased Jak2 activity and resulted in the failure of Jak2 activation in response to IL-3. Treatment of IL-3 and serum-starved 32D cells with 1 μM imatinib mysylate inhibited IL-3 stimulated kinase activities of both c-Abl and Jak2. In addition, the kinase-deficient Bcr-Abl mutant (p210K1172R) was defective for activation of Jak2 in 32D cells and impaired IL-3 independent growth, which was rescued by overexpression of c-Abl (+Abl). IL-3 efficiently inhibited apoptosis of 32Dp210K/R+Abl cells induced by imatinib mysylate but not Jak2 kinase inhibitor TG101209. In summary, our findings provide evidence that the kinase function of c-Abl and its C-terminal CT4 region is crucial for its interaction with Jak2 and its activation. c-Abl kinase activity induced by IL-3 is required for IL-3-stimulated Jak2 and Jak1 activation. Our findings reveal a novel regulatory role of c-Abl in Jak2 activation induced by IL-3 cytokine growth factor in 32D hematopoietic cells.
Collapse
Affiliation(s)
- Wenjing Tao
- From the Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Xiaohong Leng
- From the Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Sandip N Chakraborty
- From the Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Helen Ma
- From the Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Ralph B Arlinghaus
- From the Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
23
|
Shan Y, Gnanasambandan K, Ungureanu D, Kim ET, Hammarén H, Yamashita K, Silvennoinen O, Shaw DE, Hubbard SR. Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase. Nat Struct Mol Biol 2014; 21:579-84. [PMID: 24918548 DOI: 10.1038/nsmb.2849] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 06/04/2014] [Indexed: 12/31/2022]
Abstract
Janus kinase-2 (JAK2) mediates signaling by various cytokines, including erythropoietin and growth hormone. JAK2 possesses tandem pseudokinase and tyrosine-kinase domains. Mutations in the pseudokinase domain are causally linked to myeloproliferative neoplasms (MPNs) in humans. The structure of the JAK2 tandem kinase domains is unknown, and therefore the molecular bases for pseudokinase-mediated autoinhibition and pathogenic activation remain obscure. Using molecular dynamics simulations of protein-protein docking, we produced a structural model for the autoinhibitory interaction between the JAK2 pseudokinase and kinase domains. A striking feature of our model, which is supported by mutagenesis experiments, is that nearly all of the disease mutations map to the domain interface. The simulations indicate that the kinase domain is stabilized in an inactive state by the pseudokinase domain, and they offer a molecular rationale for the hyperactivity of V617F, the predominant JAK2 MPN mutation.
Collapse
Affiliation(s)
- Yibing Shan
- 1] D. E. Shaw Research, New York, New York, USA. [2]
| | - Kavitha Gnanasambandan
- 1] Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA. [2]
| | - Daniela Ungureanu
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Eric T Kim
- D. E. Shaw Research, New York, New York, USA
| | - Henrik Hammarén
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Kazuo Yamashita
- Systems Immunology Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Olli Silvennoinen
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - David E Shaw
- 1] D. E. Shaw Research, New York, New York, USA. [2] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| | - Stevan R Hubbard
- Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
24
|
Nakaya Y, Shide K, Naito H, Niwa T, Horio T, Miyake J, Shimoda K. Effect of NS-018, a selective JAK2V617F inhibitor, in a murine model of myelofibrosis. Blood Cancer J 2014; 4:e174. [PMID: 24413068 PMCID: PMC3913942 DOI: 10.1038/bcj.2013.73] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/14/2013] [Accepted: 12/05/2013] [Indexed: 12/21/2022] Open
Abstract
A single somatic mutation, V617F, in Janus kinase 2 (JAK2) is one of the causes of myeloproliferative neoplasms (MPNs), including primary myelofibrosis, and the JAK2V617F mutant kinase is a therapeutic target in MPN. However, inhibition of wild-type (WT) JAK2 can decrease the erythrocyte or platelet (PLT) count. Our selective JAK2 inhibitor, NS-018, suppressed the growth of Ba/F3 cells harboring JAK2V617F more strongly than that of cells harboring WT JAK2. The 4.3-fold JAK2V617F selectivity of NS-018 is higher than the 1.0- to 2.9-fold selectivity of seven existing JAK2 inhibitors. NS-018 also inhibited erythroid colony formation in JAK2V617F transgenic mice at significantly lower concentrations than in WT mice. In keeping with the above results, in a JAK2V617F bone marrow transplantation mouse model with a myelofibrosis-like disease, NS-018 reduced leukocytosis and splenomegaly, improved bone marrow fibrosis and prolonged survival without decreasing the erythrocyte or PLT count in the peripheral blood. By exploring the X-ray co-crystal structure of NS-018 bound to JAK2, we identified unique hydrogen-bonding interactions between NS-018 and Gly993 as a plausible explanation for its JAK2V617F selectivity. These results suggest that NS-018 will have therapeutic benefit for MPN patients through both its efficacy and its reduced hematologic adverse effects.
Collapse
Affiliation(s)
- Y Nakaya
- 1] Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan [2] Discovery Research Laboratories, Nippon Shinyaku Co. Ltd, Kyoto, Japan
| | - K Shide
- Department of Gastroenterology and Hematology, Faculty of Medicine, Miyazaki University, Miyazaki, Japan
| | - H Naito
- Discovery Research Laboratories, Nippon Shinyaku Co. Ltd, Kyoto, Japan
| | - T Niwa
- Discovery Research Laboratories, Nippon Shinyaku Co. Ltd, Kyoto, Japan
| | - T Horio
- Discovery Research Laboratories, Nippon Shinyaku Co. Ltd, Kyoto, Japan
| | - J Miyake
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - K Shimoda
- Department of Gastroenterology and Hematology, Faculty of Medicine, Miyazaki University, Miyazaki, Japan
| |
Collapse
|
25
|
|
26
|
Activating Janus kinase pseudokinase domain mutations in myeloproliferative and other blood cancers. Biochem Soc Trans 2013; 41:1048-54. [DOI: 10.1042/bst20130084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The discovery of the highly prevalent activating JAK (Janus kinase) 2 V617F mutation in myeloproliferative neoplasms, and of other pseudokinase domain-activating mutations in JAK2, JAK1 and JAK3 in blood cancers, prompted great interest in understanding how pseudokinase domains regulate kinase domains in JAKs. Recent functional and mutagenesis studies identified residues required for the V617F mutation to induce activation. Several X-ray crystal structures of either kinase or pseudokinase domains including the V617F mutant of JAK2 pseudokinase domains are now available, and a picture has emerged whereby the V617F mutation induces a defined conformational change around helix C of JH (JAK homology) 2. Effects of mutations on JAK2 can be extrapolated to JAK1 and TYK2 (tyrosine kinase 2), whereas JAK3 appears to be different. More structural information of the full-length JAK coupled to cytokine receptors might be required in order to define the structural basis of JH1 activation by JH2 mutants and eventually obtain mutant-specific inhibitors.
Collapse
|
27
|
Gäbler K, Behrmann I, Haan C. JAK2 mutants (e.g., JAK2V617F) and their importance as drug targets in myeloproliferative neoplasms. JAKSTAT 2013; 2:e25025. [PMID: 24069563 PMCID: PMC3772115 DOI: 10.4161/jkst.25025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 12/25/2022] Open
Abstract
The Janus kinase 2 (JAK2) mutant V617F and other JAK mutants are found in patients with myeloproliferative neoplasms and leukemias. Due to their involvement in neoplasia and inflammatory disorders, Janus kinases are promising targets for kinase inhibitor therapy. Several small-molecule compounds are evaluated in clinical trials for myelofibrosis, and ruxolitinib (INCB018424, Jakafi®) was the first Janus kinase inhibitor to receive clinical approval. In this review we provide an overview of JAK2V617F signaling and its inhibition by small-molecule kinase inhibitors. In addition, myeloproliferative neoplasms are discussed regarding the role of JAK2V617F and other mutant proteins of possible relevance. We further give an overview about treatment options with special emphasis on possible combination therapies.
Collapse
Affiliation(s)
- Karoline Gäbler
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| | - Iris Behrmann
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| | - Claude Haan
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| |
Collapse
|
28
|
The effects of R683S (G) genetic mutations on the JAK2 activity, structure and stability. Int J Biol Macromol 2013; 60:186-95. [PMID: 23748007 DOI: 10.1016/j.ijbiomac.2013.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 12/12/2022]
Abstract
Janus kinase 2 (JAK2) is an important mediator of cytokine receptor signaling and plays key roles in the hematopoietic and immune response. The acquired JAK2 R683S (G) mutations are presumed to be a biomarker for B-cell acute lymphoblastic leukemia (B-ALL). However, how these mutations leading to the B-ALL is still unclear. The crystal structure of JAK2 JH2 domain suggests that the residue R683 locating in the linker between the N and C lobes of JH2 domain is important for keeping the compact structure, activity and structural stability of this domain. Mutations R683S, R683G and R683E significantly increase JAK2 activity and decrease its structural stability. While the R683K and R683H mutations almost have no effects on the JAK2 activity and structural stability. Furthermore, the spectroscopic experiments imply that mutations R683S, R683G and R683E impair the structure of JAK2 JH2 domain, and lead JAK2 to partially unfolded state. It may be this partially unfolded state that caused JAK2 R683S (G) constitutive activation. This study provides clues in understanding the mechanism of JAK2 R683S (G) mutations caused B-ALL.
Collapse
|
29
|
Abstract
UNLABELLED Janus kinase 2 (JAK2) is a protein tyrosine kinase central to a multitude of cellular processes. Here, a novel model of JAK2 regulation and activation is proposed. In the JAK2 dimer, instead of being auto-inhibited by its own JH2 domain, inhibition comes from the JH2 domain of the partnering JAK2 monomer. Upon ligand binding, the receptor undergoes a conformational rotation that is passed to its dimeric partner. The activation is achieved by the rotation of two JAK2 molecules, which relieves the JH1/JH2 inhibitory interface and brings two JH1 domains in proximity for the subsequent trans-phosphorylation event. This hypothetical model is consistent with most of the currently available experimental evidence and warrants further tests. Based on the proposed model, it is possible to rationalize the differential responses of JAK2 signaling involving various receptors and ligands. IMPLICATIONS The proposed model of JAK2 regulation and activation is poised to suggest potential alternative drug-discovery strategies that could impact a number of relevant diseases.
Collapse
Affiliation(s)
- Tai-Sung Lee
- Center for Integrative Proteomics Research, The State University of New Jersey, 174 Frelinghuysen Rd., Piscataway, NJ 08854, USA.
| |
Collapse
|
30
|
Wu QY, Guo HY, Li F, Li ZY, Zeng LY, Xu KL. Disruption of E627 and R683 interaction is responsible for B-cell acute lymphoblastic leukemia caused by JAK2 R683G(S) mutations. Leuk Lymphoma 2013; 54:2693-700. [PMID: 23452118 DOI: 10.3109/10428194.2013.781171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Janus kinase 2 (JAK2) is an important mediator of cytokine receptor signaling and plays key roles in hematopoietic and immune responses. The acquired JAK2 R683G(S) somatic mutations are detected in 15% of patients with B-cell acute lymphoblastic leukemia (B-ALL) and are presumed to be a biomarker for B-ALL. However, how JAK2 R683G(S) mutations lead to B-ALL is still unclear. Our results indicated that the E627 and R683 interaction played a vital role in JAK2 autoinhibition. Mutations (R683S, R683G and E627A) disrupting this interaction led to JAK2 constitutive activation, while mutations (R683K, E627D) restoring this interaction decreased its activity. Furthermore, spectroscopy experiments implied that disruption of the E627 and R683 interaction abolished JH1/JH2 domain interactions and forced the JH1 domain into the open, active conformation. Mutations abolishing this interaction promoted the proliferation of Ba/F3 cells. The results herein may provide clues to understanding the mechanism of JAK2 R683G(S) mutation-associated B-ALL.
Collapse
Affiliation(s)
- Qing-Yun Wu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College , Xuzhou , China
| | | | | | | | | | | |
Collapse
|
31
|
Wan X, Ma Y, McClendon CL, Huang LJS, Huang N. Ab initio modeling and experimental assessment of Janus Kinase 2 (JAK2) kinase-pseudokinase complex structure. PLoS Comput Biol 2013; 9:e1003022. [PMID: 23592968 PMCID: PMC3616975 DOI: 10.1371/journal.pcbi.1003022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 02/20/2013] [Indexed: 01/07/2023] Open
Abstract
The Janus Kinase 2 (JAK2) plays essential roles in transmitting signals from multiple cytokine receptors, and constitutive activation of JAK2 results in hematopoietic disorders and oncogenesis. JAK2 kinase activity is negatively regulated by its pseudokinase domain (JH2), where the gain-of-function mutation V617F that causes myeloproliferative neoplasms resides. In the absence of a crystal structure of full-length JAK2, how JH2 inhibits the kinase domain (JH1), and how V617F hyperactivates JAK2 remain elusive. We modeled the JAK2 JH1-JH2 complex structure using a novel informatics-guided protein-protein docking strategy. A detailed JAK2 JH2-mediated auto-inhibition mechanism is proposed, where JH2 traps the activation loop of JH1 in an inactive conformation and blocks the movement of kinase αC helix through critical hydrophobic contacts and extensive electrostatic interactions. These stabilizing interactions are less favorable in JAK2-V617F. Notably, several predicted binding interfacial residues in JH2 were confirmed to hyperactivate JAK2 kinase activity in site-directed mutagenesis and BaF3/EpoR cell transformation studies. Although there may exist other JH2-mediated mechanisms to control JH1, our JH1-JH2 structural model represents a verifiable working hypothesis for further experimental studies to elucidate the role of JH2 in regulating JAK2 in both normal and pathological settings.
Collapse
Affiliation(s)
- Xiaobo Wan
- Graduate School in Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- National Institute of Biological Sciences, Beijing, Zhongguancun Life Science Park, Changping District, Beijing, China
| | - Yue Ma
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Christopher L. McClendon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, United States of America
| | - Lily Jun-shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Niu Huang
- Graduate School in Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- National Institute of Biological Sciences, Beijing, Zhongguancun Life Science Park, Changping District, Beijing, China
| |
Collapse
|
32
|
Abstract
Fewer than 40 cases of primary myelofibrosis have been reported in children; hematopoietic stem cell transplantation is the only available curative therapy for this disease. Here, we describe the case of a female infant diagnosed with primary myelofibrosis at the age of 6 months; she underwent successful matched unrelated bone marrow transplantation with complete resolution of disease. We discuss some unique characteristics of primary myelofibrosis in children and review outcome data for children with this disease.
Collapse
|
33
|
Thrombocytosis and Essential Thrombocythemia. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Wu QY, Li F, Guo HY, Cao J, Chen C, Chen W, Zhao K, Zeng LY, Han ZX, Li ZY, Wang XY, Xu KL. Amino acid residue E543 in JAK2 C618R is a potential therapeutic target for myeloproliferative disorders caused by JAK2 C618R mutation. Arch Biochem Biophys 2012; 528:57-66. [DOI: 10.1016/j.abb.2012.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 01/05/2023]
|
35
|
Funakoshi-Tago M. [Analysis of oncogenic signaling pathway induced by a myeloproliferative neoplasm-associated Janus kinase 2 (JAK2) V617F mutant]. YAKUGAKU ZASSHI 2012; 132:1267-72. [PMID: 23123718 DOI: 10.1248/yakushi.12-00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Janus kinase 2 (JAK2) is an essential non-receptor type tyrosine kinase for various cytokine signals. In 2005, a somatic JAK2 mutation (V617F) was found in the majority of myeloproliferative neoplasm (MPN) patients. It has been shown that the V617F mutation caused the constitutive activation of JAK2, exhibiting the cytokine-independent survival and proliferation of Ba/F3 cells. In addition, tumorigenesis was induced after a transplantation of Ba/F3 cells expressing JAK2 V617F mutant in nude mice, suggesting that JAK2 V617F mutant behaves as a potent oncogene product. We found that JAK2 V617F mutant causes aberrant activation of a transcription factor c-Myc, which is critical for the JAK2 V617F mutant-caused oncogenic activities. In the screening of genes which expression was induced by JAK2 V617F mutant, we detected the significant induction of target genes of c-Myc such as Aurora kinase A (Aurka) and ornithine decarboxylase (ODC). Interestingly, JAK2 V617F mutant enhanced resistance to cisplatin (CDDP)-induced DNA damage and ectopic expression of Aurka in Ba/F3 cells exhibited similar resistance to CDDP. Conversely, knockdown and inhibition of Aurka in cells expressing JAK2 V617F mutant abolished the resistance to CDDP, suggesting that Aurka is most likely critical for resistance to DNA damage in cells transformed by JAK2 V617F mutant. In addition, we found that ODC inhibitor, DL-α-difluoromethylornithine (DFMO) prevented the proliferation of the JAK2 V617F mutant-induced transformed cells. Taking these observations together, c-Myc plays an essential role in JAK2 V617F mutant-induced hematopoietic disorder and would be a good target for the treatment of MPN.
Collapse
|
36
|
Wan S, Coveney PV. Regulation of JAK2 activation by Janus homology 2: evidence from molecular dynamics simulations. J Chem Inf Model 2012; 52:2992-3000. [PMID: 23033920 DOI: 10.1021/ci300308g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Janus kinase 2 (JAK2) is a protein tyrosine kinase implicated in signaling by specific members of the cytokine receptor family. Although it has been established that the JAK2 tyrosine kinase is negatively regulated by the JAK homology 2 (JH2) pseudokinase domain, the underlying mechanism of JH2 mediated regulation remains elusive. To elucidate the regulation of JAK2 kinase, we have built a structural model for the kinase and pseudokinase domains of JAK2. An asymmetric dimer is proposed, in which the kinase domain JH1 occupies a position where it could not be activated. We investigate the dynamic and energetic properties of the dimer by molecular dynamics simulation. JAK2 activation requires the two domains to be dissociated and rearranged in a form such that the JH1 kinase domain can adopt an active conformation. The significance of the above mechanism is emphasized by the finding that the activating V617F mutation destabilizes JH1-JH2 association in the proposed asymmetric dimer. Thus abrogation of the domain-domain interaction seems to be a possible first step for the structural rearrangement of the two domains, resulting in constitutive activation of JAK2 by the V617F mutation.
Collapse
Affiliation(s)
- Shunzhou Wan
- Centre for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | | |
Collapse
|
37
|
Barcelos MM, Santos-Silva MC. Molecular approach to diagnose BCR/ABL negative chronic myeloproliferative neoplasms. Rev Bras Hematol Hemoter 2012; 33:290-6. [PMID: 23049320 PMCID: PMC3415756 DOI: 10.5581/1516-8484.20110079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 04/01/2011] [Indexed: 01/01/2023] Open
Abstract
Chronic myeloproliferative neoplasms arise from clonal proliferation of hematopoietic stem cells. According to the World Health Organization myeloproliferative neoplasms are classified as: chronic myelogenous leukemia, polycythemia vera, essential thrombocythemia, primary myelofibrosis, chronic neutrophilic leukemia, chronic eosinophilic leukemia, hypereosinophilic syndrome, mast cell disease, and unclassifiable myeloproliferative neoplasms. In the revised 2008 WHO diagnostic criteria for myeloproliferative neoplasms, mutation screening for JAK2V617F is considered a major criterion for polycythemia vera diagnosis and also for essential thrombocythemia and primary myelofibrosis, the presence of this mutation represents a clonal marker. There are currently two hypotheses explaining the role of the JAK2V617F mutation in chronic myeloproliferative neoplasms. According to these theories, the mutation plays either a primary or secondary role in disease development. The discovery of the JAK2V617F mutation has been essential in understanding the genetic basis of chronic myeloproliferative neoplasms, providing some idea on how a single mutation can result in three different chronic myeloproliferative neoplasm phenotypes. But there are still some issues to be clarified. Thus, studies are still needed to determine specific molecular markers for each subtype of chronic myeloproliferative neoplasm.
Collapse
|
38
|
Chen PH, Chien FC, Lee SP, Chan WE, Lin IH, Liu CS, Lee FJ, Lai JS, Chen P, Yang-Yen HF, Yen JJY. Identification of a novel function of the clathrin-coated structure at the plasma membrane in facilitating GM-CSF receptor-mediated activation of JAK2. Cell Cycle 2012; 11:3611-26. [PMID: 22935703 DOI: 10.4161/cc.21920] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is well known that ligand binding to the high-affinity GM-CSF receptor (GMR) activates JAK2. However, how and where this event occurs in a cellular environment remains unclear. Here, we demonstrate that clathrin- but not lipid raft-mediated endocytosis is crucial for GMR signaling. Knockdown expression of clathrin heavy chain or intersectin 2 (ITSN2) attenuated GMR-mediated activation of JAK2, whereas inhibiting clathrin-coated pits or plagues to bud off the membrane by the dominant-negative mutant of dynamin enhanced such event. Moreover, unlike the wild-type receptor, an ITSN2-non-binding mutant of GMR defective in targeting to clathrin-coated pits or plagues [collectively referred to as clathrin-coated structures (CCSs) here] failed to activate JAK2 at such locations. Additional experiments demonstrate that ligand treatment not only enhanced JAK2/GMR association at CCSs, but also induced a conformational change of JAK2 which is required for JAK2 to be activated by CCS-localized CK2. Interestingly, ligand-independent activation of the oncogenic mutant of JAK2 (JAK2V617F) also requires the targeting of this mutant to CCSs. But JAK2V617F seems to be constitutively in an open conformation for CK2 activation. Together, this study reveals a novel functional role of CCSs in GMR signaling and the oncogenesis of JAK2V617F.
Collapse
Affiliation(s)
- Ping-Hung Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol 2012; 19:754-9. [PMID: 22820988 PMCID: PMC3414675 DOI: 10.1038/nsmb.2348] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/26/2012] [Indexed: 11/09/2022]
Abstract
The protein tyrosine kinase JAK2 mediates signaling through numerous cytokine receptors. JAK2 possesses a pseudokinase domain (JH2) and a tyrosine kinase domain (JH1). Through unknown mechanisms, JH2 regulates the catalytic activity of JH1, and hyperactivating mutations in the JH2 region of human JAK2 cause myeloproliferative neoplasms (MPNs). We showed previously that JAK2 JH2 is, in fact, catalytically active. Here we present crystal structures of human JAK2 JH2, including both wild type and the most prevalent MPN mutant, V617F. The structures reveal that JH2 adopts the fold of a prototypical protein kinase but binds Mg-ATP noncanonically. The structural and biochemical data indicate that the V617F mutation rigidifies α-helix C in the N lobe of JH2, facilitating trans-phosphorylation of JH1. The crystal structures of JH2 afford new opportunities for the design of novel JAK2 therapeutics targeting MPNs.
Collapse
Affiliation(s)
- Rajintha M Bandaranayake
- Structural Biology Program, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
40
|
Gnanasambandan K, Magis AT, Sayeski PP. A shift in the salt bridge interaction of residues D620 and E621 mediates the constitutive activation of Jak2-H538Q/K539L. Mol Cell Biochem 2012; 367:125-40. [DOI: 10.1007/s11010-012-1326-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
|
41
|
Sulai NH, Tefferi A. Why Does My Patient Have Thrombocytosis? Hematol Oncol Clin North Am 2012; 26:285-301, viii. [DOI: 10.1016/j.hoc.2012.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Gnanasambandan K, Sayeski PP. A structure-function perspective of Jak2 mutations and implications for alternate drug design strategies: the road not taken. Curr Med Chem 2012; 18:4659-73. [PMID: 21864276 DOI: 10.2174/092986711797379267] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 01/13/2023]
Abstract
Jak2 is a non-receptor tyrosine kinase that is involved in the control of cellular growth and proliferation. Due to its significant role in hematopoiesis, Jak2 is a frequent target for mutations in cancer, especially myeloid leukemia, lymphoid leukemia and the myeloproliferative neoplasms (MPN). These mutations are common amongst different populations all over the world and there is a great deal of effort to develop therapeutic drugs for the affected patients. Jak2 mutations, whether they are point, deletion, or gene fusion, most commonly result in constitutive kinase activation. Here, we explore the structure-function relation of various Jak2 mutations identified in cancer and understand how they disrupt Jak2 regulation. Current Jak2 inhibitors target the highly conserved active site in the kinase domain and therefore, these inhibitors may lack specificity. Based on our knowledge regarding structure-function correlations as they pertain to regulation of Jak2 kinase activity, an alternative approach for specific Jak2 targeting could be via allosteric inhibitor design. Successful reports of allosteric inhibitors developed against other kinases provide precedent for the development of Jak2 allosteric inhibitors. Here, we suggest plausible target sites in the Jak2 structure for allosteric inhibition. Such targets include the type II inhibitor pocket and substrate binding site in the kinase domain, the kinase-pseudokinase domain interface, SH2-JH2 linker region and the FERM domain. Thus, future Jak2 inhibitors that target these sites via allosteric mechanisms may provide alternative therapeutic strategies to existing ATP competitive inhibitors.
Collapse
Affiliation(s)
- K Gnanasambandan
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, USA
| | | |
Collapse
|
43
|
Reddy MM, Deshpande A, Sattler M. Targeting JAK2 in the therapy of myeloproliferative neoplasms. Expert Opin Ther Targets 2012; 16:313-24. [PMID: 22339244 DOI: 10.1517/14728222.2012.662956] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Myeloproliferative neoplasms (MPNs) are a group of stem cell diseases, including polycythemia vera, essential thrombocythemia and primary myelofibrosis. Currently, there is no curative therapy for these diseases other than bone marrow transplant; therefore there is an apparent need for palliative treatment. MPNs are frequently associated with activating mutations in JAK2; small-molecule drugs targeting this molecule have entered clinical trials. AREAS COVERED In this review novel JAK2 inhibitors are discussed and alternative approaches to inhibiting their transforming potential are highlighted. Current clinical approaches do not only aim at blocking JAK2 activity, but also at reducing its stability and expression are highlighted, including inhibition of heat shock protein 90 (HSP90) and deacetylases (DAC) have the potential to significantly enhance the efficacy of JAK2 inhibitors. EXPERT OPINION Preliminary results from clinical trials indicate the feasibility and efficacy of JAK2-targeted approaches. However, JAK2 inhibitor treatment is limited by dose-dependent toxicity and combination treatment might be required. The discovery of JAK2 mutations that cause secondary resistance in vitro would further highlight the need for the development of next-generation JAK2 inhibitors and novel synergistic approaches.
Collapse
Affiliation(s)
- Mamatha M Reddy
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA 02215, USA
| | | | | |
Collapse
|
44
|
Jatiani SS, Baker SJ, Silverman LR, Reddy EP. Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. Genes Cancer 2011; 1:979-93. [PMID: 21442038 DOI: 10.1177/1947601910397187] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hematopoiesis is the cumulative result of intricately regulated signaling pathways that are mediated by cytokines and their receptors. Studies conducted over the past 10 to 15 years have revealed that hematopoietic cytokine receptor signaling is largely mediated by a family of tyrosine kinases termed Janus kinases (JAKs) and their downstream transcription factors, termed STATs (signal transducers and activators of transcription). Aberrations in these pathways, such as those caused by the recently identified JAK2(V617F) mutation and translocations of the JAK2 gene, are underlying causes of leukemias and other myeloproliferative disorders. This review discusses the role of JAK/STAT signaling in normal hematopoiesis as well as genetic abnormalities associated with myeloproliferative and myelodisplastic syndromes. This review also summarizes the status of several small molecule JAK2 inhibitors that are currently at various stages of clinical development. Several of these compounds appear to improve the quality of life of patients with myeloproliferative disorders by palliation of disease-related symptoms. However, to date, these agents do not seem to significantly affect bone marrow fibrosis, alter marrow histopathology, reverse cytopenias, reduce red cell transfusion requirements, or significantly reduce allele burden. These results suggest the possibility that additional mutational events might be associated with the development of these neoplasms, and indicate the need for combination therapies as the nature and significance of these additional molecular events is better understood.
Collapse
Affiliation(s)
- Shashidhar S Jatiani
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Abstract
Myeloproliferative neoplasms (MPNs) are clonal disorders characterized by excessive production of mature blood cells. In the majority of classic MPN—polycythemia vera, essential thrombocythemia, and primitive myelofibrosis—driver oncogenic mutations affecting Janus kinase 2 (JAK2) or MPL lead to constitutive activation of cytokine-regulated intracellular signaling pathways. LNK, c-CBL, or SOCSs (all negative regulators of signaling pathways), although infrequently targeted, may either drive the disease or synergize with JAK2 and MPL mutations. IZF1 deletions or TP53 mutations are mainly found at transformation phases and are present at greater frequency than in de novo acute myeloid leukemias. Loss-of-function mutations in 3 genes involved in epigenetic regulation, TET2, ASXL1, and EZH2, may be early events preceding JAK2V617F but may also occur late during disease progression. They are more frequently observed in PMF than PV and ET and are also present in other types of malignant myeloid diseases. A likely hypothesis is that they facilitate clonal selection, allowing the dominance of the JAK2V617F subclone during the chronic phase and, together with cooperating mutations, promote blast crisis. Their precise roles in hematopoiesis and in the pathogenesis of MPN, as well as their prognostic impact and potential as a therapeutic target, are currently under investigation.
Collapse
|
46
|
Funakoshi-Tago M. [Analysis of the mechanism of polycythemia vera by studying JAK2 mutant-induced signaling pathway]. YAKUGAKU ZASSHI 2011; 131:1183-7. [PMID: 21804321 DOI: 10.1248/yakushi.131.1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been well established that disruption of JAK2 signaling regulation is involved in various hematopoietic disorders; however, the detailed mechanism by which abnormal activation of JAK2 exhibits transforming activity remains to be elucidated. The somatic JAK2 mutation (V617F) was identified in most patients with polycythemia vera (PV). Here, we show that JAK2 V617F mutant was constitutively active and exhibited tumorigenesis activity as a potent oncogene when erythropoietin receptor (EpoR) was co-expressed. To clarify the signaling pathway of JAK2 V617F mutant, we investigated the functional role of downstream transcription factor STAT5 in its induced cellular transformation and tumorigenesis in nude mice. Interestingly, JAK2 V617F mutant failed to exhibit transforming activity when STAT5 activation was inhibited utilizing EpoR mutant (HM). Furthermore, the expression of constitutively active STAT5 mutant (1*6) exhibited transforming activity. Taking these observations together, it is concluded STAT5 plays an essential role in EpoR-JAK2 V617F mutant-induced hematopoietic disorder and would be a good target for the treatment of PV.
Collapse
|
47
|
JAK2-V617F mutation in Moroccan patients with myeloproliferative disorders: Contribution, diagnosis and therapeutic prospects. ACTA ACUST UNITED AC 2011; 59:e89-92. [DOI: 10.1016/j.patbio.2009.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 06/26/2009] [Indexed: 11/15/2022]
|
48
|
Scott LM. The JAK2 exon 12 mutations: a comprehensive review. Am J Hematol 2011; 86:668-76. [PMID: 21674578 DOI: 10.1002/ajh.22063] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 12/12/2022]
Abstract
A variety of acquired mutations targeting JAK2 exon 12 are present in those patients with the myeloproliferative neoplasm, polycythemia vera, that lack the more common JAK2V617F mutation. Both mutation types perturb erythropoiesis, with individuals presenting with a raised hematocrit, reduced serum erythropoietin levels, and erythropoietin-independent erythroid progenitor cells. However, there are also phenotypic differences that, until recently, precluded a significant proportion of patients with a JAK2 exon 12 mutation from receiving an appropriate diagnosis. Here, we review the literature published on the JAK2 exon 12 mutations and compare the biology associated with these mutations with that of JAK2V617F.
Collapse
Affiliation(s)
- Linda M Scott
- Greehey Children's Cancer Research Institute, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas 78229, USA.
| |
Collapse
|
49
|
Efficacy of NS-018, a potent and selective JAK2/Src inhibitor, in primary cells and mouse models of myeloproliferative neoplasms. Blood Cancer J 2011; 1:e29. [PMID: 22829185 PMCID: PMC3255248 DOI: 10.1038/bcj.2011.29] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/15/2011] [Indexed: 12/15/2022] Open
Abstract
Aberrant activation of Janus kinase 2 (JAK2) caused by somatic mutation of JAK2 (JAK2V617F) or the thrombopoietin receptor (MPLW515L) plays an essential role in the pathogenesis of myeloproliferative neoplasms (MPNs), suggesting that inhibition of aberrant JAK2 activation would have a therapeutic benefit. Our novel JAK2 inhibitor, NS-018, was highly active against JAK2 with a 50% inhibition (IC50) of <1 n, and had 30–50-fold greater selectivity for JAK2 over other JAK-family kinases, such as JAK1, JAK3 and tyrosine kinase 2. In addition to JAK2, NS-018 inhibited Src-family kinases. NS-018 showed potent antiproliferative activity against cell lines expressing a constitutively activated JAK2 (the JAK2V617F or MPLW515L mutations or the TEL–JAK2 fusion gene; IC50=11–120 n), but showed only minimal cytotoxicity against most other hematopoietic cell lines without a constitutively activated JAK2. Furthermore, NS-018 preferentially suppressed in vitro erythropoietin-independent endogenous colony formation from polycythemia vera patients. NS-018 also markedly reduced splenomegaly and prolonged the survival of mice inoculated with Ba/F3 cells harboring JAK2V617F. In addition, NS-018 significantly reduced leukocytosis, hepatosplenomegaly and extramedullary hematopoiesis, improved nutritional status, and prolonged survival in JAK2V617F transgenic mice. These results suggest that NS-018 will be a promising candidate for the treatment of MPNs.
Collapse
|
50
|
Sayyah J, Gnanasambandan K, Kamarajugadda S, Tsuda S, Caldwell-Busby J, Sayeski PP. Phosphorylation of Y372 is critical for Jak2 tyrosine kinase activation. Cell Signal 2011; 23:1806-15. [PMID: 21726629 DOI: 10.1016/j.cellsig.2011.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/20/2011] [Indexed: 01/09/2023]
Abstract
Jak2 tyrosine kinase plays an important role in cytokine mediated signal transduction. There are 49 tyrosine residues in Jak2 and phosphorylation of some of these are known to play important roles in the regulation of Jak2 kinase activity. Here, using mass spectrometry, we identified tyrosine residues Y372 and Y373 as novel sites of Jak2 phosphorylation. Mutation of Y372 to F (Y372F) significantly inhibited Jak2 phosphorylation, including that of Y1007, whereas the Jak2-Y373F mutant displayed only modest reduction in phosphorylation. Relative to Jak2-WT, the ability of Jak2-Y372F to bind to and phosphorylate STAT1 was decreased, resulting in reduced Jak2-mediated downstream gene transcription. While the Y372F mutation had no effect on receptor-independent, hydrogen peroxide-mediated Jak2 activation, it impaired interferon-gamma (IFNγ) and epidermal growth factor (EGF)-dependent Jak2 activation. Interestingly however, the Y372F mutant exhibited normal receptor binding properties. Finally, co-expression of SH2-Bβ only partially restored the activation of the Jak2-Y372F mutant suggesting that the mechanism whereby phosphorylation of Y372 is important for Jak2 activation is via dimerization. As such, our results indicate that Y372 plays a critical yet differential role in Jak2 activation and function via a mechanism involving Jak2 dimerization and stabilization of the active conformation.
Collapse
Affiliation(s)
- Jacqueline Sayyah
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|