1
|
Truong A, Silberg JJ. Regulating ferredoxin electron transfer using nanobody and antigen interactions. RSC Chem Biol 2025; 6:746-753. [PMID: 40059882 PMCID: PMC11886610 DOI: 10.1039/d4cb00257a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/30/2025] [Indexed: 05/10/2025] Open
Abstract
Fission and fusion can be used to generate new regulatory functions in proteins. This approach has been used to create ferredoxins (Fd) whose cellular electron transfer is dependent upon small molecule binding. To investigate whether Fd fragments can be used to monitor macromolecular binding reactions, we investigated the effects of fusing fragments of Mastigocladus laminosus Fd to single domain antibodies, also known as nanobodies, and their protein antigens. When Fd fragments arising from fission were fused to green fluorescent protein (GFP) and three different anti-GFP nanobodies, split proteins were identified that supported Fd-mediated electron transfer from Fd-NADP reductase (FNR) to sulfite reductase (SIR) in Escherichia coli. However, the order of nanobody and antigen fusion to the Fd fragments affected cellular electron transfer. Insertion of these anti-GFP nanobodies within Fd had differing effects on electron transfer. One domain-insertion variant was unable to support cellular electron transfer unless it was coexpressed with GFP, while others supported electron transfer in the absence of GFP. These findings show how Fds can be engineered so that their electron transfer is regulated by macromolecules, and they reveal the importance of exploring different nanobody homologs and fusion strategies when engineering biomolecular switches.
Collapse
Affiliation(s)
- Albert Truong
- Biochemistry and Cell Biology Graduate Program, Rice University 6100 Main Street, MS-180 Houston Texas 77005 USA
- Department of Biosciences, Rice University 6100 Main Street, MS-140 Houston TX 77005 USA
| | - Jonathan J Silberg
- Department of Biosciences, Rice University 6100 Main Street, MS-140 Houston TX 77005 USA
- Department of Bioengineering, Rice University 6100 Main Street, MS-142 Houston TX 77005 USA
- Department of Chemical and Biomolecular Engineering, Rice University 6100 Main Street, MS-362 Houston TX 77005 USA
| |
Collapse
|
2
|
Hu Y, Huang B, Zang CZ, Xu JJ. Detection of circular permutations by Protein Language Models. Comput Struct Biotechnol J 2024; 27:214-220. [PMID: 39866668 PMCID: PMC11757225 DOI: 10.1016/j.csbj.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Protein circular permutations are crucial for understanding protein evolution and functionality. Traditional detection methods face challenges: sequence-based approaches struggle with detecting distant homologs, while structure-based approaches are limited by the need for structure generation and often treat proteins as rigid bodies. Protein Language Model-based alignment tools have shown advantages in utilizing sequence information to overcome the challenges of detecting distant homologs without requiring structural input. However, many current Protein Language Model-based alignment methods, which rely on sequence alignment algorithms like the Smith-Waterman algorithm, face significant difficulties when dealing with circular permutation (CP) due to their dependency on linear sequence order. This sequence order dependency makes them unsuitable for accurately detecting CP. Our approach, named plmCP, combines classical genetic principles with modern alignment techniques leveraging Protein Language Models to address these limitations. By integrating genetic knowledge, the plmCP method avoids the sequence order dependency, allowing for effective detection of circular permutations and contributing significantly to protein research and engineering by embracing structural flexibility.
Collapse
Affiliation(s)
- Yue Hu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250300, China
- Kyiv College, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250300, China
| | - Bin Huang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Chun Zi Zang
- Kyiv College, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250300, China
| | - Jia Jie Xu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250300, China
| |
Collapse
|
3
|
Das D, Ainavarapu SRK. Protein engineering using circular permutation - structure, function, stability, and applications. FEBS J 2024; 291:3581-3596. [PMID: 38676939 DOI: 10.1111/febs.17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Protein engineering is important for creating novel variants from natural proteins, enabling a wide range of applications. Approaches such as rational design and directed evolution are routinely used to make new protein variants. Computational tools like de novo design can introduce new protein folds. Expanding the amino acid repertoire to include unnatural amino acids with non-canonical side chains in vitro by native chemical ligation and in vivo via codon expansion methods broadens sequence and structural possibilities. Circular permutation (CP) is an invaluable approach to redesigning a protein by rearranging the amino acid sequence, where the connectivity of the secondary structural elements is altered without changing the overall structure of the protein. Artificial CP proteins (CPs) are employed in various applications such as biocatalysis, sensing of small molecules by fluorescence, genome editing, ligand-binding protein switches, and optogenetic engineering. Many studies have shown that CP can lead to either reduced or enhanced stability or catalytic efficiency. The effects of CP on a protein's energy landscape cannot be predicted a priori. Thus, it is important to understand how CP can affect the thermodynamic and kinetic stability of a protein. In this review, we discuss the discovery and advancement of techniques to create protein CP, and existing reviews on CP. We delve into the plethora of biological applications for designed CP proteins. We subsequently discuss the experimental and computational reports on the effects of CP on the thermodynamic and kinetic stabilities of proteins of various topologies. An understanding of the various aspects of CP will allow the reader to design robust CP proteins for their specific purposes.
Collapse
Affiliation(s)
- Debanjana Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | |
Collapse
|
4
|
Anderson NT, Xie JS, Chacko AN, Liu VL, Fan KC, Mukherjee A. Rational Design of a Circularly Permuted Flavin-Based Fluorescent Protein. Chembiochem 2024; 25:e202300814. [PMID: 38356332 PMCID: PMC11065581 DOI: 10.1002/cbic.202300814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Flavin-based fluorescent proteins are oxygen-independent reporters that hold great promise for imaging anaerobic and hypoxic biological systems. In this study, we explored the feasibility of applying circular permutation, a valuable method for the creation of fluorescent sensors, to flavin-based fluorescent proteins. We used rational design and structural data to identify a suitable location for circular permutation in iLOV, a flavin-based reporter derived from A. thaliana. However, relocating the N- and C-termini to this position resulted in a significant reduction in fluorescence. This loss of fluorescence was reversible, however, by fusing dimerizing coiled coils at the new N- and C-termini to compensate for the increase in local chain entropy. Additionally, by inserting protease cleavage sites in circularly permuted iLOV, we developed two protease sensors and demonstrated their application in mammalian cells. In summary, our work establishes the first approach to engineer circularly permuted FbFPs optimized for high fluorescence and further showcases the utility of circularly permuted FbFPs to serve as a scaffold for sensor engineering.
Collapse
Affiliation(s)
| | - Jason S. Xie
- Department of Molecular, Cellular, and Developmental Biology
| | | | - Vannie L. Liu
- Department of Molecular, Cellular, and Developmental Biology
| | | | | |
Collapse
|
5
|
Coleman T, Shin J, Silberg JJ, Shamoo Y, Atkinson JT. The Biochemical Impact of Extracting an Embedded Adenylate Kinase Domain Using Circular Permutation. Biochemistry 2024; 63:599-609. [PMID: 38357768 DOI: 10.1021/acs.biochem.3c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Adenylate kinases (AKs) have evolved AMP-binding and lid domains that are encoded as continuous polypeptides embedded at different locations within the discontinuous polypeptide encoding the core domain. A prior study showed that AK homologues of different stabilities consistently retain cellular activity following circular permutation that splits a region with high energetic frustration within the AMP-binding domain into discontinuous fragments. Herein, we show that mesophilic and thermophilic AKs having this topological restructuring retain activity and substrate-binding characteristics of the parental AK. While permutation decreased the activity of both AK homologues at physiological temperatures, the catalytic activity of the thermophilic AK increased upon permutation when assayed >30 °C below the melting temperature of the native AK. The thermostabilities of the permuted AKs were uniformly lower than those of native AKs, and they exhibited multiphasic unfolding transitions, unlike the native AKs, which presented cooperative thermal unfolding. In addition, proteolytic digestion revealed that permutation destabilized each AK in differing manners, and mass spectrometry suggested that the new termini within the AMP-binding domain were responsible for the increased proteolysis sensitivity. These findings illustrate how changes in contact order can be used to tune enzyme activity and alter folding dynamics in multidomain enzymes.
Collapse
Affiliation(s)
- Tom Coleman
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
| | - John Shin
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
| | - Jonathan J Silberg
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, MS-362, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| | - Yousif Shamoo
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
| | - Joshua T Atkinson
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90007, United States
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Truong A, Myerscough D, Campbell I, Atkinson J, Silberg JJ. A cellular selection identifies elongated flavodoxins that support electron transfer to sulfite reductase. Protein Sci 2023; 32:e4746. [PMID: 37551563 PMCID: PMC10503412 DOI: 10.1002/pro.4746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Flavodoxins (Flds) mediate the flux of electrons between oxidoreductases in diverse metabolic pathways. To investigate whether Flds can support electron transfer to a sulfite reductase (SIR) that evolved to couple with a ferredoxin, we evaluated the ability of Flds to transfer electrons from a ferredoxin-NADP reductase (FNR) to a ferredoxin-dependent SIR using growth complementation of an Escherichia coli strain with a sulfur metabolism defect. We show that Flds from cyanobacteria complement this growth defect when coexpressed with an FNR and an SIR that evolved to couple with a plant ferredoxin. When we evaluated the effect of peptide insertion on Fld-mediated electron transfer, we observed a sensitivity to insertions within regions predicted to be proximal to the cofactor and partner binding sites, while a high insertion tolerance was detected within loops distal from the cofactor and within regions of helices and sheets that are proximal to those loops. Bioinformatic analysis showed that natural Fld sequence variability predicts a large fraction of the motifs that tolerate insertion of the octapeptide SGRPGSLS. These results represent the first evidence that Flds can support electron transfer to assimilatory SIRs, and they suggest that the pattern of insertion tolerance is influenced by interactions with oxidoreductase partners.
Collapse
Affiliation(s)
- Albert Truong
- Biochemistry and Cell Biology Graduate ProgramRice UniversityHoustonTexasUSA
- Department of BiosciencesRice UniversityHoustonTexasUSA
| | | | - Ian Campbell
- Department of BiosciencesRice UniversityHoustonTexasUSA
| | | | - Jonathan J. Silberg
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Department of BioengineeringRice UniversityHoustonTexasUSA
- Department of Chemical and Biomolecular EngineeringRice UniversityHoustonTexasUSA
| |
Collapse
|
7
|
Campbell IJ, Atkinson JT, Carpenter MD, Myerscough D, Su L, Ajo-Franklin CM, Silberg JJ. Determinants of Multiheme Cytochrome Extracellular Electron Transfer Uncovered by Systematic Peptide Insertion. Biochemistry 2022; 61:1337-1350. [PMID: 35687533 DOI: 10.1021/acs.biochem.2c00148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multiheme cytochrome MtrA enables microbial respiration by transferring electrons across the outer membrane to extracellular electron acceptors. While structural studies have identified residues that mediate the binding of MtrA to hemes and to other cytochromes that facilitate extracellular electron transfer (EET), the relative importance of these interactions for EET is not known. To better understand EET, we evaluated how insertion of an octapeptide across all MtrA backbone locations affects Shewanella oneidensis MR-1 respiration on Fe(III). The EET efficiency was found to be inversely correlated with the proximity of the insertion to the heme prosthetic groups. Mutants with decreased EET efficiencies also arose from insertions in a subset of the regions that make residue-residue contacts with the porin MtrB, while all sites contacting the extracellular cytochrome MtrC presented high peptide insertion tolerance. MtrA variants having peptide insertions within the CXXCH motifs that coordinate heme cofactors retained some ability to support respiration on Fe(III), although these variants presented significantly decreased EET efficiencies. Furthermore, the fitness of cells expressing different MtrA variants under Fe(III) respiration conditions correlated with anode reduction. The peptide insertion profile, which represents the first comprehensive sequence-structure-function map for a multiheme cytochrome, implicates MtrA as a strategic protein engineering target for the regulation of EET.
Collapse
Affiliation(s)
- Ian J Campbell
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Matthew D Carpenter
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Dru Myerscough
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Lin Su
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Caroline M Ajo-Franklin
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States.,Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, Texas 77005, United States
| | - Jonathan J Silberg
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States.,Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States.,Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, Texas 77005, United States
| |
Collapse
|
8
|
Coyote-Maestas W, Nedrud D, Suma A, He Y, Matreyek KA, Fowler DM, Carnevale V, Myers CL, Schmidt D. Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling. Nat Commun 2021; 12:7114. [PMID: 34880224 PMCID: PMC8654947 DOI: 10.1038/s41467-021-27342-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Protein domains are the basic units of protein structure and function. Comparative analysis of genomes and proteomes showed that domain recombination is a main driver of multidomain protein functional diversification and some of the constraining genomic mechanisms are known. Much less is known about biophysical mechanisms that determine whether protein domains can be combined into viable protein folds. Here, we use massively parallel insertional mutagenesis to determine compatibility of over 300,000 domain recombination variants of the Inward Rectifier K+ channel Kir2.1 with channel surface expression. Our data suggest that genomic and biophysical mechanisms acted in concert to favor gain of large, structured domain at protein termini during ion channel evolution. We use machine learning to build a quantitative biophysical model of domain compatibility in Kir2.1 that allows us to derive rudimentary rules for designing domain insertion variants that fold and traffic to the cell surface. Positional Kir2.1 responses to motif insertion clusters into distinct groups that correspond to contiguous structural regions of the channel with distinct biophysical properties tuned towards providing either folding stability or gating transitions. This suggests that insertional profiling is a high-throughput method to annotate function of ion channel structural regions.
Collapse
Affiliation(s)
- Willow Coyote-Maestas
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - David Nedrud
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - Antonio Suma
- grid.264727.20000 0001 2248 3398Department of Chemistry, Temple University, Philadelphia, PA 19122 USA
| | - Yungui He
- grid.17635.360000000419368657Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kenneth A. Matreyek
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Douglas M. Fowler
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA 98115 USA ,grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA 98115 USA
| | - Vincenzo Carnevale
- grid.264727.20000 0001 2248 3398Department of Chemistry, Temple University, Philadelphia, PA 19122 USA
| | - Chad L. Myers
- grid.17635.360000000419368657Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Estrada Pabón JD, Haddox HK, Van Aken G, Pendleton IM, Eramian H, Singer JM, Schrier J. The Role of Configurational Entropy in Miniprotein Stability. J Phys Chem B 2021; 125:3057-3065. [PMID: 33739115 DOI: 10.1021/acs.jpcb.0c09888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Predicting protein stability is a challenge due to the many competing thermodynamic effects. Through de novo protein design, one begins with a target structure and searches for a sequence that will fold into it. Previous work by Rocklin et al. introduced a data set of more than 16,000 miniproteins spanning four structural topologies with information on stability. These structures were characterized with a set of 46 structural descriptors, with no explicit inclusion of configurational entropy (Scnf). Our work focused on creating a set of 17 descriptors intended to capture variations in Scnf and its comparison to an extended set of 113 structural and energy model features that extend the Rocklin et al. feature set (R). The Scnf descriptors statistically discriminate between stable and unstable distributions within topologies and best describe EEHEE topology stability (where E = β sheet and H = α helix). Between 50 and 80% of the variation in each Scnf descriptor is described by linear combinations of R features. Despite containing useful information about minipeptide stability, providing Scnf features as inputs to machine learning models does not improve overall performance when predicting protein stability, as the R features sufficiently capture the implicit variations.
Collapse
Affiliation(s)
- Jan D Estrada Pabón
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States
| | - Hugh K Haddox
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Greg Van Aken
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States
| | - Ian M Pendleton
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States
| | - Hamed Eramian
- Netrias LLC, 3100 Clarendon Boulevard, Suite 200, Arlington, Virginia 22201, United States
| | - Jedediah M Singer
- Two Six Technologies, 901 North Stuart Street, Suite 1000, Arlington, Virginia 22203, United States
| | - Joshua Schrier
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041, United States.,Department of Chemistry, Fordham University, 441 East Fordham Road, The Bronx, New York 10458, United States
| |
Collapse
|
10
|
Wang CK, Craik DJ. Linking molecular evolution to molecular grafting. J Biol Chem 2021; 296:100425. [PMID: 33600801 PMCID: PMC8005815 DOI: 10.1016/j.jbc.2021.100425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/01/2022] Open
Abstract
Molecular grafting is a strategy for the engineering of molecular scaffolds into new functional agents, such as next-generation therapeutics. Despite its wide use, studies so far have focused almost exclusively on demonstrating its utility rather than understanding the factors that lead to either poor or successful grafting outcomes. Here, we examine protein evolution and identify parallels between the natural process of protein functional diversification and the artificial process of molecular grafting. We discuss features of natural proteins that are correlated to innovability-the capacity to acquire new functions-and describe their implications to molecular grafting scaffolds. Disulfide-rich peptides are used as exemplars because they are particularly promising scaffolds onto which new functions can be grafted. This article provides a perspective on why some scaffolds are more suitable for grafting than others, identifying opportunities on how molecular grafting might be improved.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| | - David J Craik
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|