1
|
Maggio R, Fasciani I, Petragnano F, Coppolino MF, Scarselli M, Rossi M. Unraveling the Functional Significance of Unstructured Regions in G Protein-Coupled Receptors. Biomolecules 2023; 13:1431. [PMID: 37892113 PMCID: PMC10604838 DOI: 10.3390/biom13101431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Unstructured regions in functional proteins have gained attention in recent years due to advancements in informatics tools and biophysical methods. G protein-coupled receptors (GPCRs), a large family of cell surface receptors, contain unstructured regions in the form of the i3 loop and C-terminus. This review provides an overview of the functional significance of these regions in GPCRs. GPCRs transmit signals from the extracellular environment to the cell interior, regulating various physiological processes. The i3 loop, located between the fifth and sixth transmembrane helices, and the C-terminus, connected to the seventh transmembrane helix, are determinant of interactions with G proteins and with other intracellular partners such as arrestins. Recent studies demonstrate that the i3 loop and C-terminus play critical roles in allosterically regulating GPCR activation. They can act as autoregulators, adopting conformations that, by restricting G protein access, modulate receptor coupling specificity. The length and unstructured nature of the i3 loop and C-terminus provide unique advantages in GPCR interactions with intracellular protein partners. They act as "fishing lines", expanding the radius of interaction and enabling GPCRs to tether scaffolding proteins, thus facilitating receptor stability during cell membrane movements. Additionally, the i3 loop may be involved in domain swapping between GPCRs, generating novel receptor dimers with distinct binding and coupling characteristics. Overall, the i3 loop and C-terminus are now widely recognized as crucial elements in GPCR function and regulation. Understanding their functional roles enhances our comprehension of GPCR structure and signaling complexity and holds promise for advancements in receptor pharmacology and drug development.
Collapse
Affiliation(s)
- Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (M.R.)
| | - Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (M.R.)
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (M.R.)
| | - Maria Francesca Coppolino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Mario Rossi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (M.R.)
| |
Collapse
|
2
|
Heng J, Hu Y, Pérez-Hernández G, Inoue A, Zhao J, Ma X, Sun X, Kawakami K, Ikuta T, Ding J, Yang Y, Zhang L, Peng S, Niu X, Li H, Guixà-González R, Jin C, Hildebrand PW, Chen C, Kobilka BK. Function and dynamics of the intrinsically disordered carboxyl terminus of β2 adrenergic receptor. Nat Commun 2023; 14:2005. [PMID: 37037825 PMCID: PMC10085991 DOI: 10.1038/s41467-023-37233-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023] Open
Abstract
Advances in structural biology have provided important mechanistic insights into signaling by the transmembrane core of G-protein coupled receptors (GPCRs); however, much less is known about intrinsically disordered regions such as the carboxyl terminus (CT), which is highly flexible and not visible in GPCR structures. The β2 adrenergic receptor's (β2AR) 71 amino acid CT is a substrate for GPCR kinases and binds β-arrestins to regulate signaling. Here we show that the β2AR CT directly inhibits basal and agonist-stimulated signaling in cell lines lacking β-arrestins. Combining single-molecule fluorescence resonance energy transfer (FRET), NMR spectroscopy, and molecular dynamics simulations, we reveal that the negatively charged β2AR-CT serves as an autoinhibitory factor via interacting with the positively charged cytoplasmic surface of the receptor to limit access to G-proteins. The stability of this interaction is influenced by agonists and allosteric modulators, emphasizing that the CT plays important role in allosterically regulating GPCR activation.
Collapse
Affiliation(s)
- Jie Heng
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, 430071, China
| | - Guillermo Pérez-Hernández
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jiawei Zhao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiuyan Ma
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaoou Sun
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Tatsuya Ikuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jienv Ding
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yujie Yang
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lujia Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sijia Peng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232, Villigen, PSI, Switzerland
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peter W Hildebrand
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Medical Physics and Biophysics, University Leipzig, 04107, Leipzig, Germany
- Berlin Institute of Health, 10178, Berlin, Germany
| | - Chunlai Chen
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
AL Mughram MH, Catalano C, Herrington NB, Safo MK, Kellogg GE. 3D interaction homology: The hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins. Front Mol Biosci 2023; 10:1116868. [PMID: 37056722 PMCID: PMC10086146 DOI: 10.3389/fmolb.2023.1116868] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
The aliphatic hydrophobic amino acid residues—alanine, isoleucine, leucine, proline and valine—are among the most common found in proteins. Their structural role in proteins is seemingly obvious: engage in hydrophobic interactions to stabilize secondary, and to a lesser extent, tertiary and quaternary structure. However, favorable hydrophobic interactions involving the sidechains of these residue types are generally less significant than the unfavorable set arising from interactions with polar atoms. Importantly, the constellation of interactions between residue sidechains and their environments can be recorded as three-dimensional maps that, in turn, can be clustered. The clustered average map sets compose a library of interaction profiles encoding interaction strengths, interaction types and the optimal 3D position for the interacting partners. This library is backbone angle-dependent and suggests solvent and lipid accessibility for each unique interaction profile. In this work, in addition to analysis of soluble proteins, a large set of membrane proteins that contained optimized artificial lipids were evaluated by parsing the structures into three distinct components: soluble extramembrane domain, lipid facing transmembrane domain, core transmembrane domain. The aliphatic residues were extracted from each of these sets and passed through our calculation protocol. Notable observations include: the roles of aliphatic residues in soluble proteins and in the membrane protein’s soluble domains are nearly identical, although the latter are slightly more solvent accessible; by comparing maps calculated with sidechain-lipid interactions to maps ignoring those interactions, the potential extent of residue-lipid and residue-interactions can be assessed and likely exploited in structure prediction and modeling; amongst these residue types, the levels of lipid engagement show isoleucine as the most engaged, while the other residues are largely interacting with neighboring helical residues.
Collapse
Affiliation(s)
- Mohammed H. AL Mughram
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Claudio Catalano
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Noah B. Herrington
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Martin K. Safo
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| | - Glen E. Kellogg
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Glen E. Kellogg,
| |
Collapse
|
4
|
Sadler F, Ma N, Ritt M, Sharma Y, Vaidehi N, Sivaramakrishnan S. Autoregulation of GPCR signalling through the third intracellular loop. Nature 2023; 615:734-741. [PMID: 36890236 PMCID: PMC10033409 DOI: 10.1038/s41586-023-05789-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/03/2023] [Indexed: 03/10/2023]
Abstract
The third intracellular loop (ICL3) of the G protein-coupled receptor (GPCR) fold is important for the signal transduction process downstream of receptor activation1-3. Despite this, the lack of a defined structure of ICL3, combined with its high sequence divergence among GPCRs, complicates characterization of its involvement in receptor signalling4. Previous studies focusing on the β2 adrenergic receptor (β2AR) suggest that ICL3 is involved in the structural process of receptor activation and signalling5-7. Here we derive mechanistic insights into the role of ICL3 in β2AR signalling, observing that ICL3 autoregulates receptor activity through a dynamic conformational equilibrium between states that block or expose the receptor's G protein-binding site. We demonstrate the importance of this equilibrium for receptor pharmacology, showing that G protein-mimetic effectors bias the exposed states of ICL3 to allosterically activate the receptor. Our findings additionally reveal that ICL3 tunes signalling specificity by inhibiting receptor coupling to G protein subtypes that weakly couple to the receptor. Despite the sequence diversity of ICL3, we demonstrate that this negative G protein-selection mechanism through ICL3 extends to GPCRs across the superfamily, expanding the range of known mechanisms by which receptors mediate G protein subtype selective signalling. Furthermore, our collective findings suggest ICL3 as an allosteric site for receptor- and signalling pathway-specific ligands.
Collapse
Affiliation(s)
- Fredrik Sadler
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Ning Ma
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Michael Ritt
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Yatharth Sharma
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Nagarajan Vaidehi
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Sivaraj Sivaramakrishnan
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN, USA.
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
6
|
Structural Insights into the Intrinsically Disordered GPCR C-Terminal Region, Major Actor in Arrestin-GPCR Interaction. Biomolecules 2022; 12:biom12050617. [PMID: 35625550 PMCID: PMC9138321 DOI: 10.3390/biom12050617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Arrestin-dependent pathways are a central component of G protein-coupled receptor (GPCRs) signaling. However, the molecular processes regulating arrestin binding are to be further illuminated, in particular with regard to the structural impact of GPCR C-terminal disordered regions. Here, we used an integrated biophysical strategy to describe the basal conformations of the C-terminal domains of three class A GPCRs, the vasopressin V2 receptor (V2R), the growth hormone secretagogue or ghrelin receptor type 1a (GHSR) and the β2-adernergic receptor (β2AR). By doing so, we revealed the presence of transient secondary structures in these regions that are potentially involved in the interaction with arrestin. These secondary structure elements differ from those described in the literature in interaction with arrestin. This suggests a mechanism where the secondary structure conformational preferences in the C-terminal regions of GPCRs could be a central feature for optimizing arrestins recognition.
Collapse
|
7
|
Picarazzi F, Manetti F, Marigo V, Mori M. Conformational insights into the C-terminal mutations of human rhodopsin in retinitispigmentosa. J Mol Graph Model 2021; 110:108076. [PMID: 34798368 DOI: 10.1016/j.jmgm.2021.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Rhodopsin is a light-sensitive transmembrane receptor involved in the visual transduction cascade. Among the several rhodopsin mutations related to retinitis pigmentosa (RP), those affecting the C-terminal VAPA-COOH motif that is implicated in rhodopsin trafficking from the Golgi to the rod outer segment are notably associated with more aggressive RP forms. However, molecular reasons for defective rhodopsin signaling due to VAPA-COOH mutations, which might include steric hindrance, physicochemical features and structural determinants, are yet unknown, thus limiting further drug design approaches. In this work, clinically relevant rhodopsin mutations at the P347 site within the VAPA-COOH motif were investigated by molecular dynamics (MD) simulations and compared to the wild-type (WT) system. In agreement with experimental evidence, conformational fluctuations of the intrinsically disordered C-terminal tail of WT and mutant rhodopsin were found not to affect the overall structure of the transmembrane domain, including binding to the retinal cofactor. The WT VAPA-COOH motif adopts a unique conformation that is not found in pathological mutants, suggesting that structural features could better explain the pathogenicity of P347 rhodopsin mutants than physicochemical or steric determinants. These results were confirmed by MD simulations in both membrane-embedded full-length opsin and membrane-free C-terminal deca-peptides, these latter becoming very useful and small-size model systems for further investigations of rhodopsin C-terminal mutations. Structural details elucidated in this work might facilitate the understanding of the pathological mechanisms of this class of rhodopsin mutants, which will be instrumental to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, "Department of Excellence 2018-2022", University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, "Department of Excellence 2018-2022", University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi, 287, 41125 Modena, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, "Department of Excellence 2018-2022", University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
8
|
Nguyen KDQ, Vigers M, Sefah E, Seppälä S, Hoover JP, Schonenbach NS, Mertz B, O'Malley MA, Han S. Homo-oligomerization of the human adenosine A 2A receptor is driven by the intrinsically disordered C-terminus. eLife 2021; 10:e66662. [PMID: 34269678 PMCID: PMC8328514 DOI: 10.7554/elife.66662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/15/2021] [Indexed: 11/27/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have long been shown to exist as oligomers with functional properties distinct from those of the monomeric counterparts, but the driving factors of oligomerization remain relatively unexplored. Herein, we focus on the human adenosine A2A receptor (A2AR), a model GPCR that forms oligomers both in vitro and in vivo. Combining experimental and computational approaches, we discover that the intrinsically disordered C-terminus of A2AR drives receptor homo-oligomerization. The formation of A2AR oligomers declines progressively with the shortening of the C-terminus. Multiple interaction types are responsible for A2AR oligomerization, including disulfide linkages, hydrogen bonds, electrostatic interactions, and hydrophobic interactions. These interactions are enhanced by depletion interactions, giving rise to a tunable network of bonds that allow A2AR oligomers to adopt multiple interfaces. This study uncovers the disordered C-terminus as a prominent driving factor for the oligomerization of a GPCR, offering important insight into the effect of C-terminus modification on receptor oligomerization of A2AR and other GPCRs reconstituted in vitro for biophysical studies.
Collapse
Affiliation(s)
- Khanh Dinh Quoc Nguyen
- Department of Chemistry and Biochemistry, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Michael Vigers
- Department of Chemical Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Eric Sefah
- C. Eugene Bennett Department of Chemistry, West Virginia UniversityMorgantownUnited States
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Jennifer Paige Hoover
- Department of Chemistry and Biochemistry, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Nicole Star Schonenbach
- Department of Chemical Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia UniversityMorgantownUnited States
| | - Michelle Ann O'Malley
- Department of Chemical Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa BarbaraSanta BarbaraUnited States
- Department of Chemical Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
9
|
Matthees ESF, Haider RS, Hoffmann C, Drube J. Differential Regulation of GPCRs-Are GRK Expression Levels the Key? Front Cell Dev Biol 2021; 9:687489. [PMID: 34109182 PMCID: PMC8182058 DOI: 10.3389/fcell.2021.687489] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors and their signal transduction is tightly regulated by GPCR kinases (GRKs) and β-arrestins. In this review, we discuss novel aspects of the regulatory GRK/β-arrestin system. Therefore, we briefly revise the origin of the "barcode" hypothesis for GPCR/β-arrestin interactions, which states that β-arrestins recognize different receptor phosphorylation states to induce specific functions. We emphasize two important parameters which may influence resulting GPCR phosphorylation patterns: (A) direct GPCR-GRK interactions and (B) tissue-specific expression and availability of GRKs and β-arrestins. In most studies that focus on the molecular mechanisms of GPCR regulation, these expression profiles are underappreciated. Hence we analyzed expression data for GRKs and β-arrestins in 61 tissues annotated in the Human Protein Atlas. We present our analysis in the context of pathophysiological dysregulation of the GPCR/GRK/β-arrestin system. This tissue-specific point of view might be the key to unraveling the individual impact of different GRK isoforms on GPCR regulation.
Collapse
Affiliation(s)
| | | | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB – Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | | |
Collapse
|
10
|
Elgeti M, Hubbell WL. DEER Analysis of GPCR Conformational Heterogeneity. Biomolecules 2021; 11:778. [PMID: 34067265 PMCID: PMC8224605 DOI: 10.3390/biom11060778] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large class of transmembrane helical proteins which are involved in numerous physiological signaling pathways and therefore represent crucial pharmacological targets. GPCR function and the action of therapeutic molecules are defined by only a few parameters, including receptor basal activity, ligand affinity, intrinsic efficacy and signal bias. These parameters are encoded in characteristic receptor conformations existing in equilibrium and their populations, which are thus of paramount interest for the understanding of receptor (mal-)functions and rational design of improved therapeutics. To this end, the combination of site-directed spin labeling and EPR spectroscopy, in particular double electron-electron resonance (DEER), is exceedingly valuable as it has access to sub-Angstrom spatial resolution and provides a detailed picture of the number and populations of conformations in equilibrium. This review gives an overview of existing DEER studies on GPCRs with a focus on the delineation of structure/function frameworks, highlighting recent developments in data analysis and visualization. We introduce "conformational efficacy" as a parameter to describe ligand-specific shifts in the conformational equilibrium, taking into account the loose coupling between receptor segments observed for different GPCRs using DEER.
Collapse
Affiliation(s)
- Matthias Elgeti
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Ocampo Daza D, Bergqvist CA, Larhammar D. The Evolution of Oxytocin and Vasotocin Receptor Genes in Jawed Vertebrates: A Clear Case for Gene Duplications Through Ancestral Whole-Genome Duplications. Front Endocrinol (Lausanne) 2021; 12:792644. [PMID: 35185783 PMCID: PMC8851675 DOI: 10.3389/fendo.2021.792644] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
The neuronal and neuroendocrine peptides oxytocin (OT) and vasotocin (VT), including vasopressins, have six cognate receptors encoded by six receptor subtype genes in jawed vertebrates. The peptides elicit a broad range of responses that are specifically mediated by the receptor subtypes including neuronal functions regulating behavior and hormonal actions on reproduction and water/electrolyte balance. Previously, we have demonstrated that these six receptor subtype genes, which we designated VTR1A, VTR1B, OTR, VTR2A, VTR2B and VTR2C, arose from a syntenic ancestral gene pair, one VTR1/OTR ancestor and one VTR2 ancestor, through the early vertebrate whole-genome duplications (WGD) called 1R and 2R. This was supported by both phylogenetic and chromosomal conserved synteny data. More recently, other studies have focused on confounding factors, such as the OTR/VTR orthologs in cyclostomes, to question this scenario for the origin of the OTR/VTR gene family; proposing instead less parsimonious interpretations involving only one WGD followed by complex series of chromosomal or segmental duplications. Here, we have updated the phylogeny of the OTR/VTR gene family, including a larger number of vertebrate species, and revisited seven representative neighboring gene families from our previous conserved synteny analyses, adding chromosomal information from newer high-coverage genome assemblies from species that occupy key phylogenetic positions: the polypteriform fish reedfish (Erpetoichthys calabaricus), the cartilaginous fish thorny skate (Amblyraja radiata) and a more recent high-quality assembly of the Western clawed frog (Xenopus tropicalis) genome. Our analyses once again add strong support for four-fold symmetry, i.e., chromosome quadruplication in the same time window as the WGD events early in vertebrate evolution, prior to the jawed vertebrate radiation. Thus, the evolution of the OTR/VTR gene family can be most parsimoniously explained by two WGD events giving rise to the six ancestral genes, followed by differential gene losses of VTR2 genes in different lineages. We also argue for more coherence and clarity in the nomenclature of OT/VT receptors, based on the most parsimonious scenario.
Collapse
Affiliation(s)
- Daniel Ocampo Daza
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
| | - Christina A. Bergqvist
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- *Correspondence: Dan Larhammar,
| |
Collapse
|
12
|
Ravotto L, Duffet L, Zhou X, Weber B, Patriarchi T. A Bright and Colorful Future for G-Protein Coupled Receptor Sensors. Front Cell Neurosci 2020; 14:67. [PMID: 32265667 PMCID: PMC7098945 DOI: 10.3389/fncel.2020.00067] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 01/07/2023] Open
Abstract
Neurochemicals have a large impact on brain states and animal behavior but are notoriously hard to detect accurately in the living brain. Recently developed genetically encoded sensors obtained from engineering a circularly permuted green fluorescent protein into G-protein coupled receptors (GPCR) provided a vital boost to neuroscience, by innovating the way we monitor neural communication. These new probes are becoming widely successful due to their flexible combination with state of the art optogenetic tools and in vivo imaging techniques, mainly fiber photometry and 2-photon microscopy, to dissect dynamic changes in brain chemicals with unprecedented spatial and temporal resolution. Here, we highlight current approaches and challenges as well as novel insights in the process of GPCR sensor development, and discuss possible future directions of the field.
Collapse
Affiliation(s)
- Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Loïc Duffet
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Xuehan Zhou
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Guillien M, le Maire A, Mouhand A, Bernadó P, Bourguet W, Banères JL, Sibille N. IDPs and their complexes in GPCR and nuclear receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:105-155. [DOI: 10.1016/bs.pmbts.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Liu M, Min T, Zhang H, Liu Y, Wang Z. Pharmacological Characteristics of Porcine Orexin 2 Receptor and Mutants. Front Endocrinol (Lausanne) 2020; 11:132. [PMID: 32296386 PMCID: PMC7136461 DOI: 10.3389/fendo.2020.00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
Orexin receptors (OXRs) play a critical regulatory role in central control of food intake, maintenance of sleeping states, energy metabolism, and neuroendocrine homeostasis. However, most previous studies have focused on the sleep-promoting functions of OXRs in human beings, while their potential value in enhancing food intake for livestock breeding has not been fully exploited. In this study, we successfully cloned porcine orexin 2 receptor (pOX2R) complementary DNA and constructed four pOX2R mutants (P10S, P11T, V308I, and T401I) by site-directed mutagenesis, and their functional expressions were further confirmed through Western blotting analysis. Pharmacological characteristics of pOX2R and their mutants were further investigated. These results showed that the P10S, P11T, and T401I mutants had decreased cAMP signaling with orexin A, whereas only the P11T mutant decreased under the stimulation of orexin B. Besides, only P10S displayed a decreased calcium release in response to both orexin ligands. Importantly, these mutants exhibited decreased phosphorylation levels of ERK1/2, p38, and CREB to some degree compared with wild-type pOX2R. Collectively, these findings highlight the critical role of these mutations in pOX2R signaling and expand our understanding of molecular and pharmacological characterization of pOX2R.
Collapse
Affiliation(s)
- Min Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianqi Min
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Haijie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- *Correspondence: Yuan Liu
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Zhiqiang Wang
| |
Collapse
|
15
|
Ligand-Induced Conformational Dynamics of A Tyramine Receptor from Sitophilus oryzae. Sci Rep 2019; 9:16275. [PMID: 31700013 PMCID: PMC6838067 DOI: 10.1038/s41598-019-52478-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Tyramine receptor (TyrR) is a biogenic amine G protein-coupled receptor (GPCR) associated with many important physiological functions in insect locomotion, reproduction, and pheromone response. Binding of specific ligands to the TyrR triggers conformational changes, relays the signal to G proteins, and initiates an appropriate cellular response. Here, we monitor the binding effect of agonist compounds, tyramine and amitraz, to a Sitophilus oryzae tyramine receptor (SoTyrR) homology model and their elicited conformational changes. All-atom molecular dynamics (MD) simulations of SoTyrR-ligand complexes have shown varying dynamic behavior, especially at the intracellular loop 3 (IL3) region. Moreover, in contrast to SoTyrR-tyramine, SoTyrR-amitraz and non-liganded SoTyrR shows greater flexibility at IL3 residues and were found to be coupled to the most dominant motion in the receptor. Our results suggest that the conformational changes induced by amitraz are different from the natural ligand tyramine, albeit being both agonists of SoTyrR. This is the first attempt to understand the biophysical implication of amitraz and tyramine binding to the intracellular domains of TyrR. Our data may provide insights into the early effects of ligand binding to the activation process of SoTyrR.
Collapse
|
16
|
Pal S, Chattopadhyay A. Extramembranous Regions in G Protein-Coupled Receptors: Cinderella in Receptor Biology? J Membr Biol 2019; 252:483-497. [DOI: 10.1007/s00232-019-00092-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
|
17
|
Tsai CJ, Marino J, Adaixo R, Pamula F, Muehle J, Maeda S, Flock T, Taylor NMI, Mohammed I, Matile H, Dawson RJP, Deupi X, Stahlberg H, Schertler G. Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the gβ subunit. eLife 2019; 8:e46041. [PMID: 31251171 PMCID: PMC6629373 DOI: 10.7554/elife.46041] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
One of the largest membrane protein families in eukaryotes are G protein-coupled receptors (GPCRs). GPCRs modulate cell physiology by activating diverse intracellular transducers, prominently heterotrimeric G proteins. The recent surge in structural data has expanded our understanding of GPCR-mediated signal transduction. However, many aspects, including the existence of transient interactions, remain elusive. We present the cryo-EM structure of the light-sensitive GPCR rhodopsin in complex with heterotrimeric Gi. Our density map reveals the receptor C-terminal tail bound to the Gβ subunit of the G protein, providing a structural foundation for the role of the C-terminal tail in GPCR signaling, and of Gβ as scaffold for recruiting Gα subunits and G protein-receptor kinases. By comparing available complexes, we found a small set of common anchoring points that are G protein-subtype specific. Taken together, our structure and analysis provide new structural basis for the molecular events of the GPCR signaling pathway.
Collapse
Affiliation(s)
- Ching-Ju Tsai
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
| | - Jacopo Marino
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
| | - Ricardo Adaixo
- Center for Cellular Imaging and NanAnalytics (C-CINA), BiozentrumUniversity of BaselBaselSwitzerland
| | - Filip Pamula
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
| | - Jonas Muehle
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
| | - Shoji Maeda
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
| | - Tilman Flock
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
- Department of BiologyETH ZurichZürichSwitzerland
| | - Nicholas MI Taylor
- Center for Cellular Imaging and NanAnalytics (C-CINA), BiozentrumUniversity of BaselBaselSwitzerland
| | - Inayatulla Mohammed
- Center for Cellular Imaging and NanAnalytics (C-CINA), BiozentrumUniversity of BaselBaselSwitzerland
| | - Hugues Matile
- Pharma Research and Early Development, Therapeutic modalities, Roche Innovation Center BaselHoffmann-La Roche LtdBaselSwitzerland
| | - Roger JP Dawson
- Pharma Research and Early Development, Therapeutic modalities, Roche Innovation Center BaselHoffmann-La Roche LtdBaselSwitzerland
| | - Xavier Deupi
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
- Condensed Matter Theory GroupPaul Scherrer InstituteVilligenSwitzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanAnalytics (C-CINA), BiozentrumUniversity of BaselBaselSwitzerland
| | - Gebhard Schertler
- Division of Biology and Chemistry / Laboratory of Biomolecular ResearchPaul Scherrer InstituteVilligenSwitzerland
- Department of BiologyETH ZurichZürichSwitzerland
| |
Collapse
|
18
|
New Binding Sites, New Opportunities for GPCR Drug Discovery. Trends Biochem Sci 2019; 44:312-330. [PMID: 30612897 DOI: 10.1016/j.tibs.2018.11.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/11/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022]
Abstract
Many central biological events rely on protein-ligand interactions. The identification and characterization of protein-binding sites for ligands are crucial for the understanding of functions of both endogenous ligands and synthetic drug molecules. G protein-coupled receptors (GPCRs) typically detect extracellular signal molecules on the cell surface and transfer these chemical signals across the membrane, inducing downstream cellular responses via G proteins or β-arrestin. GPCRs mediate many central physiological processes, making them important targets for modern drug discovery. Here, we focus on the most recent breakthroughs in finding new binding sites and binding modes of GPCRs and their potentials for the development of new medicines.
Collapse
|
19
|
Zhou J, Zhao S, Dunker AK. Intrinsically Disordered Proteins Link Alternative Splicing and Post-translational Modifications to Complex Cell Signaling and Regulation. J Mol Biol 2018; 430:2342-2359. [DOI: 10.1016/j.jmb.2018.03.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 10/24/2022]
|
20
|
Farran B. An update on the physiological and therapeutic relevance of GPCR oligomers. Pharmacol Res 2017; 117:303-327. [PMID: 28087443 DOI: 10.1016/j.phrs.2017.01.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/17/2023]
Abstract
The traditional view on GPCRs held that they function as single monomeric units composed of identical subunits. This notion was overturned by the discovery that GPCRs can form homo- and hetero-oligomers, some of which are obligatory, and can further assemble into receptor mosaics consisting of three or more protomers. Oligomerisation exerts significant impacts on receptor function and physiology, offering a platform for the diversification of receptor signalling, pharmacology, regulation, crosstalk, internalization and trafficking. Given their involvement in the modulation of crucial physiological processes, heteromers could constitute important therapeutic targets for a wide range of diseases, including schizophrenia, Parkinson's disease, substance abuse or obesity. This review aims at depicting the current developments in GPCR oligomerisation research, documenting various class A, B and C GPCR heteromers detected in vitro and in vivo using biochemical and biophysical approaches, as well as recently identified higher-order oligomeric complexes. It explores the current understanding of dimerization dynamics and the possible interaction interfaces that drive oligomerisation. Most importantly, it provides an inventory of the wide range of physiological processes and pathophysiological conditions to which GPCR oligomers contribute, surveying some of the oligomers that constitute potential drug targets. Finally, it delineates the efforts to develop novel classes of ligands that specifically target and tether to receptor oligomers instead of a single monomeric entity, thus ameliorating their ability to modulate GPCR function.
Collapse
Affiliation(s)
- Batoul Farran
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
21
|
Latty SL, Felce JH, Weimann L, Lee SF, Davis SJ, Klenerman D. Referenced Single-Molecule Measurements Differentiate between GPCR Oligomerization States. Biophys J 2016; 109:1798-806. [PMID: 26536257 PMCID: PMC4643199 DOI: 10.1016/j.bpj.2015.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
The extent to which Rhodopsin family G-protein-coupled receptors (GPCRs) form invariant oligomers is contentious. Recent single-molecule fluorescence imaging studies mostly argue against the existence of constitutive receptor dimers and instead suggest that GPCRs only dimerize transiently, if at all. However, whether or not even transient dimers exist is not always clear due to difficulties in unambiguously distinguishing genuine interactions from chance colocalizations, particularly with respect to short-lived events. Previous single-molecule studies have depended critically on calculations of chance colocalization rates and/or comparison with unfixed control proteins whose diffusional behavior may or may not differ from that of the test receptor. Here, we describe a single-molecule imaging assay that 1) utilizes comparisons with well-characterized control proteins, i.e., the monomer CD86 and the homodimer CD28, and 2) relies on cell fixation to limit artifacts arising from differences in the distribution and diffusion of test proteins versus these controls. The improved assay reliably reports the stoichiometry of the Glutamate-family GPCR dimer, γ-amino butyric acid receptor b2, whereas two Rhodopsin-family GPCRs, β2-adrenergic receptor and mCannR2, exhibit colocalization levels comparable to those of CD86 monomers, strengthening the case against invariant GPCR oligomerization.
Collapse
Affiliation(s)
- Sarah L Latty
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - James H Felce
- Radcliffe Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura Weimann
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
22
|
Paré P, Paixão-Côrtes VR, Tovo-Rodrigues L, Vargas-Pinilla P, Viscardi LH, Salzano FM, Henkes LE, Bortolini MC. Oxytocin and arginine vasopressin receptor evolution: implications for adaptive novelties in placental mammals. Genet Mol Biol 2016; 39:646-657. [PMID: 27505307 PMCID: PMC5127151 DOI: 10.1590/1678-4685-gmb-2015-0323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/28/2016] [Indexed: 11/28/2022] Open
Abstract
Oxytocin receptor (OXTR) and arginine vasopressin receptors
(AVPR1a, AVPR1b, and AVPR2) are paralogous genes
that emerged through duplication events; along the evolutionary timeline, owing to
speciation, numerous orthologues emerged as well. In order to elucidate the
evolutionary forces that shaped these four genes in placental mammals and to reveal
specific aspects of their protein structures, 35 species were selected. Specifically,
we investigated their molecular evolutionary history and intrinsic protein disorder
content, and identified the presence of short linear interaction motifs.
OXTR seems to be under evolutionary constraint in placental
mammals, whereas AVPR1a, AVPR1b, and AVPR2 exhibit
higher evolutionary rates, suggesting that they have been under relaxed or
experienced positive selection. In addition, we describe here, for the first time,
that the OXTR, AVPR1a, AVPR1b, and AVPR2 mammalian orthologues preserve their
disorder content, while this condition varies among the paralogues. Finally, our
results reveal the presence of short linear interaction motifs, indicating possible
functional adaptations related to physiological and/or behavioral taxa-specific
traits.
Collapse
Affiliation(s)
- Pamela Paré
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Vanessa R Paixão-Côrtes
- Programa de Pós-Graduação em Genética e Biodiversidade, Instituto de Biologia, Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil
| | - Luciana Tovo-Rodrigues
- Laboratório de Fisiologia da Reprodução Animal, Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC, Brazil
| | - Pedro Vargas-Pinilla
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucas Henriques Viscardi
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Francisco Mauro Salzano
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luiz E Henkes
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Maria Catira Bortolini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
23
|
Manna M, Kulig W, Javanainen M, Tynkkynen J, Hensen U, Müller DJ, Rog T, Vattulainen I. How To Minimize Artifacts in Atomistic Simulations of Membrane Proteins, Whose Crystal Structure Is Heavily Engineered: β₂-Adrenergic Receptor in the Spotlight. J Chem Theory Comput 2016; 11:3432-45. [PMID: 26575777 DOI: 10.1021/acs.jctc.5b00070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atomistic molecular dynamics (MD) simulations are used extensively to elucidate membrane protein properties. These simulations are based on three-dimensional protein structures that in turn are often based on crystallography. The protein structures resolved in crystallographic studies typically do not correspond to pristine proteins, however. Instead the crystallized proteins are commonly engineered, including structural modifications (mutations, replacement of protein sequences by antibodies, bound ligands, etc.) whose impact on protein structure and dynamics is largely unknown. Here we explore this issue through atomistic MD simulations (∼5 μs in total), focusing on the β2-adrenergic receptor (β2AR) that is one of the most studied members of the G-protein coupled receptor superfamily. Starting from an inactive-state crystal structure of β2AR, we remove the many modifications in β2AR systematically one at a time, in six consecutive steps. After each step, we equilibrate the system and simulate it quite extensively. The results of this step-by-step approach highlight that the structural modifications used in crystallization can affect ligand and G-protein binding sites, packing at the transmembrane-helix interface region, and the dynamics of connecting loops in β2AR. When the results of the systematic step-by-step approach are compared to an all-at-once technique where all modifications done on β2AR are removed instantaneously at the same time, it turns out that the step-by-step method provides results that are superior in terms of maintaining protein structural stability. The results provide compelling evidence that for membrane proteins whose 3D structure is based on structural engineering, the preparation of protein structure for atomistic MD simulations is a delicate and sensitive process. The results show that most valid results are found when the structural modifications are reverted slowly, one at a time.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Waldemar Kulig
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Matti Javanainen
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Joona Tynkkynen
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Ulf Hensen
- Department of Biosystems Science and Engineering (D-BSSE), ETH-Zürich , 4058 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering (D-BSSE), ETH-Zürich , 4058 Basel, Switzerland
| | - Tomasz Rog
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland.,MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark , Odense, Denmark
| |
Collapse
|
24
|
Jatana N, Thukral L, Latha N. Structural signatures of DRD4 mutants revealed using molecular dynamics simulations: Implications for drug targeting. J Mol Model 2015; 22:14. [PMID: 26680992 DOI: 10.1007/s00894-015-2868-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
Abstract
Human Dopamine Receptor D4 (DRD4) orchestrates several neurological functions and represents a target for many psychological disorders. Here, we examined two rare variants in DRD4; V194G and R237L, which elicit functional alterations leading to disruption of ligand binding and G protein coupling, respectively. Using atomistic molecular dynamics (MD) simulations, we provide in-depth analysis to reveal structural signatures of wild and mutant complexes with their bound agonist and antagonist ligands. We constructed intra-protein network graphs to discriminate the global conformational changes induced by mutations. The simulations also allowed us to elucidate the local side-chain dynamical variations in ligand-bound mutant receptors. The data suggest that the mutation in transmembrane V (V194G) drastically disrupts the organization of ligand binding site and causes disorder in the native helical arrangement. Interestingly, the R237L mutation leads to significant rewiring of side-chain contacts in the intracellular loop 3 (site of mutation) and also affects the distant transmembrane topology. Additionally, these mutations lead to compact ICL3 region compared to the wild type, indicating that the receptor would be inaccessible for G protein coupling. Our findings thus reveal unreported structural determinants of the mutated DRD4 receptor and provide a robust framework for design of effective novel drugs.
Collapse
Affiliation(s)
- Nidhi Jatana
- Bioinformatics Infrastructure Facility, Sri Venkateswara College (University of Delhi), Benito Juarez Road, Dhaula Kuan, New Delhi, 110 021, India.,CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India.
| | - N Latha
- Bioinformatics Infrastructure Facility, Sri Venkateswara College (University of Delhi), Benito Juarez Road, Dhaula Kuan, New Delhi, 110 021, India.
| |
Collapse
|
25
|
Tirupula KC, Ithychanda SS, Mohan ML, Naga Prasad SV, Qin J, Karnik SS. G protein-coupled receptors directly bind filamin A with high affinity and promote filamin phosphorylation. Biochemistry 2015; 54:6673-83. [PMID: 26460884 PMCID: PMC4642222 DOI: 10.1021/acs.biochem.5b00975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although interaction of a few G protein-coupled receptors (GPCRs) with Filamin A, a key actin cross-linking and biomechanical signal transducer protein, has been observed, a comprehensive structure-function analysis of this interaction is lacking. Through a systematic sequence-based analysis, we found that a conserved filamin binding motif is present in the cytoplasmic domains of >20% of the 824 GPCRs encoded in the human genome. Direct high-affinity interaction of filamin binding motif peptides of select GPCRs with the Ig domain of Filamin A was confirmed by nuclear magnetic resonance spectroscopy and isothermal titration calorimetric experiments. Engagement of the filamin binding motif with the Filamin A Ig domain induced the phosphorylation of filamin by protein kinase A in vitro. In transfected cells, agonist activation as well as constitutive activation of representative GPCRs dramatically elicited recruitment and phosphorylation of cellular Filamin A, a phenomenon long known to be crucial for regulating the structure and dynamics of the cytoskeleton. Our data suggest a molecular mechanism for direct GPCR-cytoskeleton coupling via filamin. Until now, GPCR signaling to the cytoskeleton was predominantly thought to be indirect, through canonical G protein-mediated signaling cascades involving GTPases, adenylyl cyclases, phospholipases, ion channels, and protein kinases. We propose that the GPCR-induced filamin phosphorylation pathway is a conserved, novel biochemical signaling paradigm.
Collapse
Affiliation(s)
- Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio 44195, United States
| | - Sujay S Ithychanda
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio 44195, United States
| | - Maradumane L Mohan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio 44195, United States
| | - Sathyamangla V Naga Prasad
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio 44195, United States
| | - Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio 44195, United States
| | - Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio 44195, United States
| |
Collapse
|
26
|
Structured and disordered facets of the GPCR fold. Curr Opin Struct Biol 2014; 27:129-37. [PMID: 25198166 DOI: 10.1016/j.sbi.2014.08.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 07/28/2014] [Accepted: 08/05/2014] [Indexed: 01/14/2023]
Abstract
The seven-transmembrane (7TM) helix fold of G-protein coupled receptors (GPCRs) has been adapted for a wide variety of physiologically important signaling functions. Here, we discuss the diversity in the structured and disordered regions of GPCRs based on the recently published crystal structures and sequence analysis of all human GPCRs. A comparison of the structures of rhodopsin-like receptors (class A), secretin-like receptors (class B), metabotropic receptors (class C) and frizzled receptors (class F) shows that the relative arrangement of the transmembrane helices is conserved across all four GPCR classes although individual receptors can be activated by ligand binding at varying positions within and around the transmembrane helical bundle. A systematic analysis of GPCR sequences reveals the presence of disordered segments in the cytoplasmic side, abundant post-translational modification sites, evidence for alternative splicing and several putative linear peptide motifs that have the potential to mediate interactions with cytosolic proteins. While the structured regions permit the receptor to bind diverse ligands, the disordered regions appear to have an underappreciated role in modulating downstream signaling in response to the cellular state. An integrated paradigm combining the knowledge of structured and disordered regions is imperative for gaining a holistic understanding of the GPCR (un)structure-function relationship.
Collapse
|
27
|
van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones D, Kim PM, Kriwacki R, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright P, Babu MM. Classification of intrinsically disordered regions and proteins. Chem Rev 2014; 114:6589-631. [PMID: 24773235 PMCID: PMC4095912 DOI: 10.1021/cr400525m] [Citation(s) in RCA: 1568] [Impact Index Per Article: 142.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Robin van der Lee
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Centre
for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6500 HB Nijmegen, The
Netherlands
| | - Marija Buljan
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Benjamin Lang
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Gary W. Daughdrill
- Department
of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 3720 Spectrum Boulevard, Suite 321, Tampa, Florida 33612, United States
| | - A. Keith Dunker
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Monika Fuxreiter
- MTA-DE
Momentum Laboratory of Protein Dynamics, Department of Biochemistry
and Molecular Biology, University of Debrecen, H-4032 Debrecen, Nagyerdei krt 98, Hungary
| | - Julian Gough
- Department
of Computer Science, University of Bristol, The Merchant Venturers Building, Bristol BS8 1UB, United Kingdom
| | - Joerg Gsponer
- Department
of Biochemistry and Molecular Biology, Centre for High-Throughput
Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David
T. Jones
- Bioinformatics
Group, Department of Computer Science, University
College London, London, WC1E 6BT, United Kingdom
| | - Philip M. Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular
Genetics, and Department of Computer Science, University
of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Richard
W. Kriwacki
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
| | - Christopher J. Oldfield
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Rohit V. Pappu
- Department
of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Peter Tompa
- VIB Department
of Structural Biology, Vrije Universiteit
Brussel, Brussels, Belgium
- Institute
of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Vladimir N. Uversky
- Department
of Molecular Medicine and USF Health Byrd Alzheimer’s Research
Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation,
Russian Academy of Sciences, Pushchino,
Moscow Region, Russia
| | - Peter
E. Wright
- Department
of Integrative Structural and Computational Biology and Skaggs Institute
of Chemical Biology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - M. Madan Babu
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
28
|
Tovo-Rodrigues L, Roux A, Hutz MH, Rohde LA, Woods AS. Functional characterization of G-protein-coupled receptors: a bioinformatics approach. Neuroscience 2014; 277:764-79. [PMID: 24997265 DOI: 10.1016/j.neuroscience.2014.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/22/2014] [Accepted: 06/18/2014] [Indexed: 12/18/2022]
Abstract
Complex molecular and cellular mechanisms regulate G protein-coupled receptors (GPCRs). It is suggested that proteins intrinsically disordered regions (IDRs) are to play a role in GPCR's intra and extracellular regions plasticity, due to their potential for post-translational modification and interaction with other proteins. These regions are defined as lacking a stable three-dimensional (3D) structure. They are rich in hydrophilic and charged, amino acids and are capable to assume different conformations which allow them to interact with multiple partners. In this study we analyzed 75 GPCR involved in synaptic transmission using computational tools for sequence-based prediction of IDRs within a protein. We also evaluated putative ligand-binding motifs using receptor sequences. The disorder analysis indicated that neurotransmitter GPCRs have a significant amount of disorder in their N-terminus, third intracellular loop (3IL) and C-terminus. About 31%, 39% and 53% of human GPCR involved in synaptic transmission are disordered in these regions. Thirty-three percent of receptors show at least one predicted PEST motif, this being statistically greater than the estimate for the rest of human GPCRs. About 90% of the receptors had at least one putative site for dimerization in their 3IL or C-terminus. ELM instances sampled in these domains were 14-3-3, SH3, SH2 and PDZ motifs. In conclusion, the increased flexibility observed in GPCRs, added to the enrichment of linear motifs, PEST and heteromerization sites, may be critical for the nervous system's functional plasticity.
Collapse
Affiliation(s)
- L Tovo-Rodrigues
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States
| | - A Roux
- Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States
| | - M H Hutz
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - L A Rohde
- Child and Adolescent Psychiatric Division, Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A S Woods
- Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States.
| |
Collapse
|
29
|
Thompson MD, Xhaard H, Sakurai T, Rainero I, Kukkonen JP. OX1 and OX2 orexin/hypocretin receptor pharmacogenetics. Front Neurosci 2014; 8:57. [PMID: 24834023 PMCID: PMC4018553 DOI: 10.3389/fnins.2014.00057] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 03/12/2014] [Indexed: 01/01/2023] Open
Abstract
Orexin/hypocretin peptide mutations are rare in humans. Even though human narcolepsy is associated with orexin deficiency, this is only extremely rarely due to mutations in the gene coding prepro-orexin, the precursor for both orexin peptides. In contrast, coding and non-coding variants of the OX1 and OX2 orexin receptors have been identified in many human populations; sometimes, these have been associated with disease phenotype, although most confer a relatively low risk. In most cases, these studies have been based on a candidate gene hypothesis that predicts the involvement of orexins in the relevant pathophysiological processes. In the current review, the known human OX1/HCRTR1 and OX2/HCRTR2 genetic variants/polymorphisms as well as studies concerning their involvement in disorders such as narcolepsy, excessive daytime sleepiness, cluster headache, polydipsia-hyponatremia in schizophrenia, and affective disorders are discussed. In most cases, the functional cellular or pharmacological correlates of orexin variants have not been investigated—with the exception of the possible impact of an amino acid 10 Pro/Ser variant of OX2 on orexin potency—leaving conclusions on the nature of the receptor variant effects speculative. Nevertheless, we present perspectives that could shape the basis for further studies. The pharmacology and other properties of the orexin receptor variants are discussed in the context of GPCR signaling. Since orexinergic therapeutics are emerging, the impact of receptor variants on the affinity or potency of ligands deserves consideration. This perspective (pharmacogenetics) is also discussed in the review.
Collapse
Affiliation(s)
- Miles D Thompson
- University of Toronto Epilepsy Research Program, Department of Pharmacology, University of Toronto Toronto, ON, Canada
| | - Henri Xhaard
- Faculty of Pharmacy, Centre for Drug Research, University of Helsinki Helsinki, Finland
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University Kanazawa, Japan
| | | | - Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki Helsinki, Finland
| |
Collapse
|
30
|
Deupi X. Relevance of rhodopsin studies for GPCR activation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:674-82. [PMID: 24041646 DOI: 10.1016/j.bbabio.2013.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
Rhodopsin, the dim-light photoreceptor present in the rod cells of the retina, is both a retinal-binding protein and a G protein-coupled receptor (GPCR). Due to this conjunction, it benefits from an arsenal of spectroscopy techniques that can be used for its characterization, while being a model system for the important family of Class A (also referred to as "rhodopsin-like") GPCRs. For instance, rhodopsin has been a crucial player in the field of GPCR structural biology. Until 2007, it was the only GPCR for which a high-resolution crystal structure was available, so all structure-activity analyses on GPCRs, from structure-based drug discovery to studies of structural changes upon activation, were based on rhodopsin. At present, about a third of currently available GPCR structures are still from rhodopsin. In this review, I show some examples of how these structures can still be used to gain insight into general aspects of GPCR activation. First, the analysis of the third intracellular loop in rhodopsin structures allows us to gain an understanding of the structural and dynamic properties of this region, which is absent (due to protein engineering or poor electron density) in most of the currently available GPCR structures. Second, a detailed analysis of the structure of the transmembrane domains in inactive, intermediate and active rhodopsin structures allows us to detect early conformational changes in the process of ligand-induced GPCR activation. Finally, the analysis of a conserved ligand-activated transmission switch in the transmembrane bundle of GPCRs in the context of the rhodopsin activation cycle, allows us to suggest that the structures of many of the currently available agonist-bound GPCRs may correspond to intermediate active states. While the focus in GPCR structural biology is inevitably moving away from rhodopsin, in other aspects rhodopsin is still at the forefront. For instance, the first studies of the structural basis of disease mutants in GPCRs, or the most detailed analysis of cellular GPCR signal transduction networks using a systems biology approach, have been carried out in rhodopsin. Finally, due again to its unique properties among GPCRs, rhodopsin will likely play an important role in the application of X-ray free electron laser crystallography to time-resolved structural biology in membrane proteins. Rhodopsin, thus, still remains relevant as a model system to study the molecular mechanisms of GPCR activation. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Xavier Deupi
- Condensed Matter Theory Group and Laboratory of Biomolecular Research, Paul Scherrer Institute, WHGA/106, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
31
|
Elgeti M, Rose AS, Bartl FJ, Hildebrand PW, Hofmann KP, Heck M. Precision vs flexibility in GPCR signaling. J Am Chem Soc 2013; 135:12305-12. [PMID: 23883288 DOI: 10.1021/ja405133k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The G protein coupled receptor (GPCR) rhodopsin activates the heterotrimeric G protein transducin (Gt) to transmit the light signal into retinal rod cells. The rhodopsin activity is virtually zero in the dark and jumps by more than one billion fold after photon capture. Such perfect switching implies both high fidelity and speed of rhodopsin/Gt coupling. We employed Fourier transform infrared (FTIR) spectroscopy and supporting all-atom molecular dynamics (MD) simulations to study the conformational diversity of rhodopsin in membrane environment and extend the static picture provided by the available crystal structures. The FTIR results show how the equilibria of inactive and active protein states of the receptor (so-called metarhodopsin states) are regulated by the highly conserved E(D)RY and Yx7K(R) motives. The MD data identify an intrinsically unstructured cytoplasmic loop region connecting transmembrane helices 5 and 6 (CL3) and show how each protein state is split into conformational substates. The C-termini of the Gtγ- and Gtα-subunits (GαCT and GγCT), prepared as synthetic peptides, are likely to bind sequentially and at different sites of the active receptor. The peptides have different effects on the receptor conformation. While GγCT stabilizes the active states but preserves CL3 flexibility, GαCT selectively stabilizes a single conformational substate with largely helical CL3, as it is found in crystal structures. Based on these results we propose a mechanism for the fast and precise signal transfer from rhodopsin to Gt, which assumes a stepwise and mutual reduction of their conformational space. The mechanism relies on conserved amino acids and may therefore underlie GPCR/G protein coupling in general.
Collapse
Affiliation(s)
- Matthias Elgeti
- Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Molecular signatures of G-protein-coupled receptors. Nature 2013; 494:185-94. [PMID: 23407534 DOI: 10.1038/nature11896] [Citation(s) in RCA: 1159] [Impact Index Per Article: 96.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 01/07/2013] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are physiologically important membrane proteins that sense signalling molecules such as hormones and neurotransmitters, and are the targets of several prescribed drugs. Recent exciting developments are providing unprecedented insights into the structure and function of several medically important GPCRs. Here, through a systematic analysis of high-resolution GPCR structures, we uncover a conserved network of non-covalent contacts that defines the GPCR fold. Furthermore, our comparative analysis reveals characteristic features of ligand binding and conformational changes during receptor activation. A holistic understanding that integrates molecular and systems biology of GPCRs holds promise for new therapeutics and personalized medicine.
Collapse
|
33
|
Daiyasu H, Hirokawa T, Kamiya N, Toh H. Computational analysis of ligand recognition mechanisms by prostaglandin E2 (subtype 2) and D2 receptors. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-1034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Abstract
Proteins provide much of the scaffolding for life, as well as undertaking a variety of essential catalytic reactions. These characteristic functions have led us to presuppose that proteins are in general functional only when well structured and correctly folded. As we begin to explore the repertoire of possible protein sequences inherent in the human and other genomes, two stark facts that belie this supposition become clear: firstly, the number of apparent open reading frames in the human genome is significantly smaller than appears to be necessary to code for all of the diverse proteins in higher organisms, and secondly that a significant proportion of the protein sequences that would be coded by the genome would not be expected to form stable three-dimensional (3D) structures. Clearly the genome must include coding for a multitude of alternative forms of proteins, some of which may be partly or fully disordered or incompletely structured in their functional states. At the same time as this likelihood was recognized, experimental studies also began to uncover examples of important protein molecules and domains that were incompletely structured or completely disordered in solution, yet remained perfectly functional. In the ensuing years, we have seen an explosion of experimental and genome-annotation studies that have mapped the extent of the intrinsic disorder phenomenon and explored the possible biological rationales for its widespread occurrence. Answers to the question 'why would a particular domain need to be unstructured?' are as varied as the systems where such domains are found. This review provides a survey of recent new directions in this field, and includes an evaluation of the role not only of intrinsically disordered proteins but also of partially structured and highly dynamic members of the disorder-order continuum.
Collapse
|
35
|
Rodríguez D, Piñeiro Á, Gutiérrez-de-Terán H. Molecular Dynamics Simulations Reveal Insights into Key Structural Elements of Adenosine Receptors. Biochemistry 2011; 50:4194-208. [DOI: 10.1021/bi200100t] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- David Rodríguez
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago (CHUS), planta-2, A Choupana, s/n E-15706 Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Hugo Gutiérrez-de-Terán
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago (CHUS), planta-2, A Choupana, s/n E-15706 Santiago de Compostela, Spain
| |
Collapse
|
36
|
Bellot G, Granier S, Bourguet W, Seyer R, Rahmeh R, Mouillac B, Pascal R, Mendre C, Déméné H. Structure of the third intracellular loop of the vasopressin V2 receptor and conformational changes upon binding to gC1qR. J Mol Biol 2009; 388:491-507. [PMID: 19285506 DOI: 10.1016/j.jmb.2009.02.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 12/23/2008] [Accepted: 02/27/2009] [Indexed: 11/19/2022]
Abstract
The V2 vasopressin receptor is a G-protein-coupled receptor that regulates the renal antidiuretic response. Its third intracellular loop is involved in the coupling not only with the GalphaS protein but also with gC1qR, a potential chaperone of G-protein-coupled receptors. In this report, we describe the NMR solution structure of the V2 i3 loop under a cyclized form (i3_cyc) and characterize its interaction with gC1qR. i3_cyc formed a left-twisted alpha-helical hairpin structure. The building of a model of the entire V2 receptor including the i3_cyc NMR structure clarified the side-chain orientation of charged residues, in agreement with literature mutagenesis reports. In the model, the i3 loop formed a rigid helical column, protruding deep inside the cytoplasm, as does the i3 loop in the recently elucidated structure of squid rhodopsin. However, its higher packing angle resulted in a different structural motif at the intracellular interface, which may be important for the specific recognition of GalphaS. Moreover, we could estimate the apparent K(d) of the i3_cyc/gC1qR complex by anisotropy fluorescence. Using a shorter and more soluble version of i3_cyc, which encompassed the putative site of gC1qR binding, we showed by NMR saturation transfer difference spectroscopy that the binding surface corresponded to the central arginine cluster. Binding to gC1qR induced the folding of the otherwise disordered short peptide into a spiral-like path formed by a succession of I and IV turns. Our simulations suggested that this folding would rigidify the arginine cluster in the entire i3 loop and would alter the conformation of the cytosolic extensions of TM V and TM VI helices. In agreement with this conformational rearrangement, we observed that binding of gC1qR to the full-length receptor modifies the intrinsic tryptophan fluorescence binding curves of V2 to an antagonist.
Collapse
|
37
|
Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations. Proc Natl Acad Sci U S A 2009; 106:4689-94. [PMID: 19258456 DOI: 10.1073/pnas.0811065106] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fully understanding the mechanisms of signaling proteins such as G protein-coupled receptors (GPCRs) will require the characterization of their conformational states and the pathways connecting those states. The recent crystal structures of the beta(2)- and beta(1)-adrenergic receptors in a nominally inactive state constituted a major advance toward this goal, but also raised new questions. Although earlier biochemical observations had suggested that these receptors possessed a set of contacts between helices 3 and 6, known as the ionic lock, which was believed to form a molecular switch for receptor activation, the crystal structures lacked these contacts. The unexpectedly broken ionic lock has raised questions about the true conformation(s) of the inactive state and the role of the ionic lock in receptor activation and signaling. To address these questions, we performed microsecond-timescale molecular dynamics simulations of the beta(2)-adrenergic receptor (beta(2)AR) in multiple wild-type and mutant forms. In wild-type simulations, the ionic lock formed reproducibly, bringing the intracellular ends of helices 3 and 6 together to adopt a conformation similar to that found in inactive rhodopsin. Our results suggest that inactive beta(2)AR exists in equilibrium between conformations with the lock formed and the lock broken, whether or not the cocrystallized ligand is present. These findings, along with the formation of several secondary structural elements in the beta(2)AR loops during our simulations, may provide a more comprehensive picture of the inactive state of the beta-adrenergic receptors, reconciling the crystal structures with biochemical studies.
Collapse
|
38
|
Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EYT, Lane JR, Ijzerman AP, Stevens RC. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 2008; 322:1211-7. [PMID: 18832607 PMCID: PMC2586971 DOI: 10.1126/science.1164772] [Citation(s) in RCA: 1454] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The adenosine class of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many physiological processes and is antagonized by caffeine. We have determined the crystal structure of the human A2A adenosine receptor, in complex with a high-affinity subtype-selective antagonist, ZM241385, to 2.6 angstrom resolution. Four disulfide bridges in the extracellular domain, combined with a subtle repacking of the transmembrane helices relative to the adrenergic and rhodopsin receptor structures, define a pocket distinct from that of other structurally determined GPCRs. The arrangement allows for the binding of the antagonist in an extended conformation, perpendicular to the membrane plane. The binding site highlights an integral role for the extracellular loops, together with the helical core, in ligand recognition by this class of GPCRs and suggests a role for ZM241385 in restricting the movement of a tryptophan residue important in the activation mechanism of the class A receptors.
Collapse
Affiliation(s)
- Veli-Pekka Jaakola
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Alexandrov AI, Mileni M, Chien EY, Hanson MA, Stevens RC. Microscale Fluorescent Thermal Stability Assay for Membrane Proteins. Structure 2008; 16:351-9. [DOI: 10.1016/j.str.2008.02.004] [Citation(s) in RCA: 361] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/06/2008] [Accepted: 02/06/2008] [Indexed: 11/25/2022]
|
40
|
Abstract
Protein structure-based molecular design using the computational techniques of protein structure prediction, ligand docking, and virtual screening is an integral part of drug discovery for limiting the application of the structure-based approach to target proteins such as G-protein-coupled receptors (GPCRs). GPCRs play an important role in living organisms and are of major interest to the pharmaceutical industry. However, structural data on ligand-binding forms for GPCRs from experiments to elucidate structural templates for docking simulations are lacking due to the difficulties associated with crystallization and crystallography. Therefore structural prediction of GPCRs in the ligand-bound state using computational methods has been introduced, but the prediction of ligand conformation onto target GPCRs is still constructed manually by human experts. We developed a molecular modeling technique for the prediction of ligand-receptor binding using comparative ligand-binding analysis (CoLBA) that not only considers interaction energy but also the similarity of interaction profiles among ligands. The advantage of CoLBA is that it can facilitate intuitive and flexible screening based on docking results when protein structures with low resolution (or theoretical models) are targeted. We applied CoLBA to ligand-binding prediction in several GPCRs. The predicted ligand-binding models were evaluated in site-directed mutagenesis experiments in collaborative research, and the enrichment rate of activated ligands was compared with random compounds in virtual screening simulations. We propose that CoLBA can be applied in large-scale modeling of ligand-receptor complexes and virtual screening for GPCRs.
Collapse
Affiliation(s)
- Takatsugu Hirokawa
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology, AIST Tokyo Waterfront Bio-IT Research Building, Koto-ku, Tokyo, Japan.
| |
Collapse
|
41
|
Ghimire GD, Imai K, Akazawa F, Tsuji T, Sonoyama M, Mitaku S. Physicochemical properties of amino acid sequences of G-proteins for understanding GPCR-G-protein coupling. CHEM-BIO INFORMATICS JOURNAL 2006. [DOI: 10.1273/cbij.6.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ganga D. Ghimire
- Tokyo University of Agriculture and Technology, Department of Biotechnology
| | - Kenichiro Imai
- Nagoya University, School of Engineering, Department of Applied Physics
| | - Fumitsugu Akazawa
- Tokyo University of Agriculture and Technology, Department of Biotechnology
| | - Toshiyuki Tsuji
- Nagoya University, School of Engineering, Department of Applied Physics
| | - Masashi Sonoyama
- Nagoya University, School of Engineering, Department of Applied Physics
| | - Shigeki Mitaku
- Nagoya University, School of Engineering, Department of Applied Physics
| |
Collapse
|
42
|
Jaakola VP, Vainio M, Sen S, Rehn M, Heimo H, Scheinin M, Goldman A. Intracellularly truncated human alpha2B-adrenoceptors: stable and functional GPCRs for structural studies. J Recept Signal Transduct Res 2005; 25:99-124. [PMID: 16149769 DOI: 10.1081/rrs-200068745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
All three alpha2-adrenoceptor subtypes have a long third intracellular loop (3i), which is conserved by overall size and charge-hydrophobic properties but not by amino acid sequence similarity. These properties must be relevant for function and structure, because they have been preserved during hundreds of millions of years of evolution. The contribution of different loop portions to agonist/antagonist binding properties and G protein coupling of the human alpha2B-adrenoceptor (alpha2B-AR) was investigated with a series of 3i truncated constructs (delta3i). We used a variety of agonists/antagonists in competition binding assays. We stimulated alpha2B-AR delta3i with various agonists and measured [35S]GTPgammaS binding in isolated cell membranes with or without antagonist inhibition. We also evaluated the ability of oligopeptides, analogous to the amino and carboxyl terminal parts of 3i, to promote G protein activation, monitored with the [35S]GTPgammaS assay. Our results reveal that the carboxyl end residues of 3i, R360(6.24) to V372(6.36), are important for Gi/Go protein activation. Deletions in regions from G206(5.72) to R245(5.110) altered the binding of some alpha2B-AR agonists, indicating that agonist binding is dependent on the conformation of the 3i domain, possibly through the involvement of G protein interactions. The truncated receptor constructs may be more stable on purification and thus be useful for structural characterization of alpha2B-AR.
Collapse
Affiliation(s)
- Veli-Pekka Jaakola
- Institute of Biotechnology, Biocenter 3, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|