1
|
Borek A, Wójcik-Augustyn A, Kuleta P, Ekiert R, Osyczka A. Identification of hydrogen bonding network for proton transfer at the quinol oxidation site of Rhodobacter capsulatus cytochrome bc 1. J Biol Chem 2023; 299:105249. [PMID: 37714464 PMCID: PMC10583091 DOI: 10.1016/j.jbc.2023.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Cytochrome bc1 catalyzes electron transfer from quinol (QH2) to cytochrome c in reactions coupled to proton translocation across the energy-conserving membrane. Energetic efficiency of the catalytic cycle is secured by a two-electron and two-proton bifurcation reaction leading to oxidation of QH2 and reduction of the Rieske cluster and heme bL. The proton paths associated with this reaction remain elusive. Here, we used site-directed mutagenesis and quantum mechanical calculations to analyze the contribution of protonable side chains located at the heme bL side of the QH2 oxidation site in Rhodobacter capsulatus cytochrome bc1. We observe that the proton path is effectively switched off when H276 and E295 are simultaneously mutated to the nonprotonable residues in the H276F/E295V double mutant. The two single mutants, H276F or E295V, are less efficient but still transfer protons at functionally relevant rates. Natural selection exposed two single mutations, N279S and M154T, that restored the functional proton transfers in H276F/E295V. Quantum mechanical calculations indicated that H276F/E295V traps the side chain of Y147 in a position distant from QH2, whereas either N279S or M154T induce local changes releasing Y147 from that position. This shortens the distance between the protonable groups of Y147 and D278 and/or increases mobility of the Y147 side chain, which makes Y147 efficient in transferring protons from QH2 toward D278 in H276F/E295V. Overall, our study identified an extended hydrogen bonding network, build up by E295, H276, D278, and Y147, involved in efficient proton removal from QH2 at the heme bL side of QH2 oxidation site.
Collapse
Affiliation(s)
- Arkadiusz Borek
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Wójcik-Augustyn
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Patryk Kuleta
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Robert Ekiert
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
2
|
Borek A, Ekiert R, Osyczka A. On the inter-monomer electron transfer in cytochrome bc 1. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148981. [PMID: 37164301 DOI: 10.1016/j.bbabio.2023.148981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
Cytochrome bc1 is a structural and functional homodimer. The catalytically-relevant inter-monomer electron transfer has been implicated by a number of experiments, including those based on analyses of the cross-dimer mutated derivatives. As some of the original data on these derivatives have recently been questioned, we extend kinetic analysis of these mutants to confirm the enzymatic origin of the observed activities and their relevance in exploration of conditions that expose electron transfer between the monomers. While obtained data consistently implicate rapid inter-monomer electron equilibration in cytochrome bc1, the mechanistic and physiological meaning of this equilibration is yet to be established.
Collapse
Affiliation(s)
- Arkadiusz Borek
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Robert Ekiert
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
3
|
Sarewicz M, Pintscher S, Bujnowicz Ł, Wolska M, Artur Osyczka. The High-Spin Heme b L Mutant Exposes Dominant Reaction Leading to the Formation of the Semiquinone Spin-Coupled to the [2Fe-2S] + Cluster at the Q o Site of Rhodobacter capsulatus Cytochrome bc 1. Front Chem 2021; 9:658877. [PMID: 34026724 PMCID: PMC8138165 DOI: 10.3389/fchem.2021.658877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Cytochrome bc 1 (mitochondrial complex III) catalyzes electron transfer from quinols to cytochrome c and couples this reaction with proton translocation across lipid membrane; thus, it contributes to the generation of protonmotive force used for the synthesis of ATP. The energetic efficiency of the enzyme relies on a bifurcation reaction taking place at the Qo site which upon oxidation of ubiquinol directs one electron to the Rieske 2Fe2S cluster and the other to heme b L. The molecular mechanism of this reaction remains unclear. A semiquinone spin-coupled to the reduced 2Fe2S cluster (SQo-2Fe2S) was identified as a state associated with the operation of the Qo site. To get insights into the mechanism of the formation of this state, we first constructed a mutant in which one of the histidine ligands of the iron ion of heme b L Rhodobacter capsulatus cytochrome bc 1 was replaced by asparagine (H198N). This converted the low-spin, low-potential heme into the high-spin, high-potential species which is unable to support enzymatic turnover. We performed a comparative analysis of redox titrations of antimycin-supplemented bacterial photosynthetic membranes containing native enzyme and the mutant. The titrations revealed that H198N failed to generate detectable amounts of SQo-2Fe2S under neither equilibrium (in dark) nor nonequilibrium (in light), whereas the native enzyme generated clearly detectable SQo-2Fe2S in light. This provided further support for the mechanism in which the back electron transfer from heme b L to a ubiquinone bound at the Qo site is mainly responsible for the formation of semiquinone trapped in the SQo-2Fe2S state in R. capusulatus cytochrome bc 1.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Sebastian Pintscher
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Łukasz Bujnowicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Małgorzata Wolska
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
5
|
Purhonen J, Grigorjev V, Ekiert R, Aho N, Rajendran J, Pietras R, Truvé K, Wikström M, Sharma V, Osyczka A, Fellman V, Kallijärvi J. A spontaneous mitonuclear epistasis converging on Rieske Fe-S protein exacerbates complex III deficiency in mice. Nat Commun 2020; 11:322. [PMID: 31949167 PMCID: PMC6965120 DOI: 10.1038/s41467-019-14201-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
We previously observed an unexpected fivefold (35 vs. 200 days) difference in the survival of respiratory chain complex III (CIII) deficient Bcs1lp.S78G mice between two congenic backgrounds. Here, we identify a spontaneous homoplasmic mtDNA variant (m.G14904A, mt-Cybp.D254N), affecting the CIII subunit cytochrome b (MT-CYB), in the background with short survival. We utilize maternal inheritance of mtDNA to confirm this as the causative variant and show that it further decreases the low CIII activity in Bcs1lp.S78G tissues to below survival threshold by 35 days of age. Molecular dynamics simulations predict D254N to restrict the flexibility of MT-CYB ef loop, potentially affecting RISP dynamics. In Rhodobacter cytochrome bc1 complex the equivalent substitution causes a kinetics defect with longer occupancy of RISP head domain towards the quinol oxidation site. These findings represent a unique case of spontaneous mitonuclear epistasis and highlight the role of mtDNA variation as modifier of mitochondrial disease phenotypes.
Collapse
Affiliation(s)
- Janne Purhonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vladislav Grigorjev
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Robert Ekiert
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Noora Aho
- Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014, Helsinki, Finland.,Department of Chemistry, University of Jyväskylä, P.O. Box 35 (Survontie 9B), FI-40014, Jyväskylä, Finland
| | - Jayasimman Rajendran
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rafał Pietras
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Katarina Truvé
- Sahlgrenska Academy, University of Gothenburg, P.O. Box 413 (Medicinaregatan 3), 41390, Gothenburg, Sweden
| | - Mårten Wikström
- Institute of Biotechnology, University of Helsinki, PL 56 (Viikinkaari 9), FI-00014, Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, PL 56 (Viikinkaari 9), FI-00014, Helsinki, Finland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Vineta Fellman
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Sciences, Pediatrics, BMC F12, Lund University, 221 84, Lund, Sweden.,Children's Hospital, Helsinki University Hospital, P.O. Box 281 (Stenbäckinkatu 11), FI-00029, Helsinki, Finland
| | - Jukka Kallijärvi
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Pintscher S, Pietras R, Sarewicz M, Osyczka A. Electron sweep across four b-hemes of cytochrome bc1 revealed by unusual paramagnetic properties of the Qi semiquinone intermediate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:459-469. [DOI: 10.1016/j.bbabio.2018.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/08/2018] [Accepted: 03/18/2018] [Indexed: 01/05/2023]
|
7
|
Kuleta P, Sarewicz M, Postila P, Róg T, Osyczka A. Identifying involvement of Lys251/Asp252 pair in electron transfer and associated proton transfer at the quinone reduction site of Rhodobacter capsulatus cytochrome bc1. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1661-8. [PMID: 27421232 PMCID: PMC5001787 DOI: 10.1016/j.bbabio.2016.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/22/2016] [Accepted: 07/10/2016] [Indexed: 11/23/2022]
Abstract
Describing dynamics of proton transfers in proteins is challenging, but crucial for understanding processes which use them for biological functions. In cytochrome bc1, one of the key enzymes of respiration or photosynthesis, proton transfers engage in oxidation of quinol (QH2) and reduction of quinone (Q) taking place at two distinct catalytic sites. Here we evaluated by site-directed mutagenesis the contribution of Lys251/Asp252 pair (bacterial numbering) in electron transfers and associated with it proton uptake to the quinone reduction site (Qi site). We showed that the absence of protonable group at position 251 or 252 significantly changes the equilibrium levels of electronic reactions including the Qi-site mediated oxidation of heme bH, reverse reduction of heme bH by quinol and heme bH/Qi semiquinone equilibrium. This implicates the role of H-bonding network in binding of quinone/semiquinone and defining thermodynamic properties of Q/SQ/QH2 triad. The Lys251/Asp252 proton path is disabled only when both protonable groups are removed. With just one protonable residue from this pair, the entrance of protons to the catalytic site is sustained, albeit at lower rates, indicating that protons can travel through parallel routes, possibly involving water molecules. This shows that proton paths display engineering tolerance for change as long as all the elements available for functional cooperation secure efficient proton delivery to the catalytic site.
Collapse
Affiliation(s)
- Patryk Kuleta
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Kraków, Poland
| | - Pekka Postila
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland; Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
8
|
Ekiert R, Borek A, Kuleta P, Czernek J, Osyczka A. Mitochondrial disease-related mutations at the cytochrome b-iron-sulfur protein (ISP) interface: Molecular effects on the large-scale motion of ISP and superoxide generation studied in Rhodobacter capsulatus cytochrome bc1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1102-1110. [PMID: 27032290 PMCID: PMC4906154 DOI: 10.1016/j.bbabio.2016.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 01/06/2023]
Abstract
One of the important elements of operation of cytochrome bc1 (mitochondrial respiratory complex III) is a large scale movement of the head domain of iron–sulfur protein (ISP-HD), which connects the quinol oxidation site (Qo) located within the cytochrome b, with the outermost heme c1 of cytochrome c1. Several mitochondrial disease-related mutations in cytochrome b are located at the cytochrome b-ISP-HD interface, thus their molecular effects can be associated with altered motion of ISP-HD. Using purple bacterial model, we recently showed that one of such mutations — G167P shifts the equilibrium position of ISP-HD towards positions remote from the Qo site as compared to the native enzyme [Borek et al., J. Biol. Chem. 290 (2015) 23781-23792]. This resulted in the enhanced propensity of the mutant to generate reactive oxygen species (ROS) which was explained on the basis of the model evoking “semireverse” electron transfer from heme bL to quinone. Here we examine another mutation from that group — G332D (G290D in human), finding that it also shifts the equilibrium position of ISP-HD in the same direction, however displays less of the enhancement in ROS production. We provide spectroscopic indication that G332D might affect the electrostatics of interaction between cytochrome b and ISP-HD. This effect, in light of the measured enzymatic activities and electron transfer rates, appears to be less severe than structural distortion caused by proline in G167P mutant. Comparative analysis of the effects of G332D and G167P confirms a general prediction that mutations located at the cytochrome b-ISP-HD interface influence the motion of ISP-HD and indicates that “pushing” ISP-HD away from the Qo site is the most likely outcome of this influence. It can also be predicted that an increase in ROS production associated with the “pushing” effect is quite sensitive to overall severity of this change with more active mutants being generally more protected against elevated ROS. This article is part of a Special Issue entitled ‘EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2–6, 2016’, edited by Prof. Paolo Bernardi. Several mitochondrial mutations are located at the cytochrome b-ISP interface. We compare molecular effects of two mutations from that group. In both mutants ISP is shifted away from the Qo catalytic site. This effect is generally associated with increased ROS production. More active mutants are more protected against elevated ROS.
Collapse
Affiliation(s)
- Robert Ekiert
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Patryk Kuleta
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Justyna Czernek
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
9
|
Pintscher S, Kuleta P, Cieluch E, Borek A, Sarewicz M, Osyczka A. Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer. J Biol Chem 2016; 291:6872-81. [PMID: 26858251 PMCID: PMC4807273 DOI: 10.1074/jbc.m115.712307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 11/22/2022] Open
Abstract
In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemes b. The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on heme b ligand mutants of cytochrome bc1 in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functional in vivo. This reveals that cytochrome bc1 can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemes b in this cytochrome and in other membranous cytochromes b act as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential.
Collapse
Affiliation(s)
- Sebastian Pintscher
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Patryk Kuleta
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Ewelina Cieluch
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Marcin Sarewicz
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Artur Osyczka
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
10
|
Borek A, Kuleta P, Ekiert R, Pietras R, Sarewicz M, Osyczka A. Mitochondrial Disease-related Mutation G167P in Cytochrome b of Rhodobacter capsulatus Cytochrome bc1 (S151P in Human) Affects the Equilibrium Distribution of [2Fe-2S] Cluster and Generation of Superoxide. J Biol Chem 2015; 290:23781-92. [PMID: 26245902 PMCID: PMC4583038 DOI: 10.1074/jbc.m115.661314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 12/04/2022] Open
Abstract
Cytochrome bc1 is one of the key enzymes of many bioenergetic systems. Its operation involves a large scale movement of a head domain of iron-sulfur protein (ISP-HD), which functionally connects the catalytic quinol oxidation Qo site in cytochrome b with cytochrome c1. The Qo site under certain conditions can generate reactive oxygen species in the reaction scheme depending on the actual position of ISP-HD in respect to the Qo site. Here, using a bacterial system, we show that mutation G167P in cytochrome b shifts the equilibrium distribution of ISP-HD toward positions remote from the Qo site. This renders cytochrome bc1 non-functional in vivo. This effect is remediated by addition of alanine insertions (1Ala and 2Ala) in the neck region of the ISP subunit. These insertions, which on their own shift the equilibrium distribution of ISP-HD in the opposite direction (i.e. toward the Qo site), also act in this manner in the presence of G167P. Changes in the equilibrium distribution of ISP-HD in G167P lead to an increased propensity of cytochrome bc1 to generate superoxide, which becomes evident when the concentration of quinone increases. This result corroborates the recently proposed model in which “semireverse” electron transfer back to the Qo site, occurring when ISP-HD is remote from the site, favors reactive oxygen species production. G167P suggests possible molecular effects of S151P (corresponding in sequence to G167P) identified as a mitochondrial disease-related mutation in human cytochrome b. These effects may be valid for other human mutations that change the equilibrium distribution of ISP-HD in a manner similar to G167P.
Collapse
Affiliation(s)
- Arkadiusz Borek
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Patryk Kuleta
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Robert Ekiert
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Marcin Sarewicz
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Artur Osyczka
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
11
|
Ekiert R, Czapla M, Sarewicz M, Osyczka A. Hybrid fusions show that inter-monomer electron transfer robustly supports cytochrome bc1 function in vivo. Biochem Biophys Res Commun 2014; 451:270-5. [PMID: 25089001 PMCID: PMC4152375 DOI: 10.1016/j.bbrc.2014.07.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 10/25/2022]
Abstract
Electronic connection between Qo and Qi quinone catalytic sites of dimeric cytochrome bc1 is a central feature of the energy-conserving Q cycle. While both the intra- and inter-monomer electron transfers were shown to connect the sites in the enzyme, mechanistic and physiological significance of the latter remains unclear. Here, using a series of mutated hybrid cytochrome bc1-like complexes, we show that inter-monomer electron transfer robustly sustains the function of the enzyme in vivo, even when the two subunits in a dimer come from different species. This indicates that minimal requirement for bioenergetic efficiency is to provide a chain of cofactors for uncompromised electron flux between the catalytic sites, while the details of protein scaffold are secondary.
Collapse
Affiliation(s)
- Robert Ekiert
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Monika Czapla
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland.
| |
Collapse
|
12
|
Hasan SS, Zakharov SD, Chauvet A, Stadnytskyi V, Savikhin S, Cramer WA. A map of dielectric heterogeneity in a membrane protein: the hetero-oligomeric cytochrome b6f complex. J Phys Chem B 2014; 118:6614-25. [PMID: 24867491 PMCID: PMC4067154 DOI: 10.1021/jp501165k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
cytochrome b6f complex,
a member of the cytochrome bc family that
mediates energy transduction in photosynthetic and respiratory membranes,
is a hetero-oligomeric complex that utilizes two pairs of b-hemes in a symmetric dimer to accomplish trans-membrane
electron transfer, quinone oxidation–reduction, and generation
of a proton electrochemical potential. Analysis of electron storage
in this pathway, utilizing simultaneous measurement of heme reduction,
and of circular dichroism (CD) spectra, to assay heme–heme
interactions, implies a heterogeneous distribution of the dielectric
constants that mediate electrostatic interactions between the four
hemes in the complex. Crystallographic information was used to determine
the identity of the interacting hemes. The Soret band CD signal is
dominated by excitonic interaction between the intramonomer b-hemes, bn and bp, on the electrochemically negative and positive sides
of the complex. Kinetic data imply that the most probable pathway
for transfer of the two electrons needed for quinone oxidation–reduction
utilizes this intramonomer heme pair, contradicting the expectation
based on heme redox potentials and thermodynamics, that the two higher
potential hemes bn on different monomers
would be preferentially reduced. Energetically preferred intramonomer
electron storage of electrons on the intramonomer b-hemes is found to require heterogeneity of interheme dielectric
constants. Relative to the medium separating the two higher potential
hemes bn, a relatively large dielectric
constant must exist between the intramonomer b-hemes,
allowing a smaller electrostatic repulsion between the reduced hemes.
Heterogeneity of dielectric constants is an additional structure–function
parameter of membrane protein complexes.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences and ‡Department of Physics, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | | | | | |
Collapse
|
13
|
Crofts AR, Hong S, Wilson C, Burton R, Victoria D, Harrison C, Schulten K. The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:1362-77. [PMID: 23396004 PMCID: PMC3995752 DOI: 10.1016/j.bbabio.2013.01.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/12/2012] [Accepted: 01/18/2013] [Indexed: 01/04/2023]
Abstract
1. Recent results suggest that the major flux is carried by a monomeric function, not by an intermonomer electron flow. 2. The bifurcated reaction at the Qo-site involves sequential partial processes, - a rate limiting first electron transfer generating a semiquinone (SQ) intermediate, and a rapid second electron transfer in which the SQ is oxidized by the low potential chain. 3. The rate constant for the first step in a strongly endergonic, proton-first-then-electron mechanism, is given by a Marcus-Brønsted treatment in which a rapid electron transfer is convoluted with a weak occupancy of the proton configuration needed for electron transfer. 4. A rapid second electron transfer pulls the overall reaction over. Mutation of Glu-295 of cyt b shows it to be a key player. 5. In more crippled mutants, electron transfer is severely inhibited and the bell-shaped pH dependence of wildtype is replaced by a dependence on a single pK at ~8.5 favoring electron transfer. Loss of a pK ~6.5 is explained by a change in the rate limiting step from the first to the second electron transfer; the pK ~8.5 may reflect dissociation of QH. 6. A rate constant (<10(3)s(-1)) for oxidation of SQ in the distal domain by heme bL has been determined, which precludes mechanisms for normal flux in which SQ is constrained there. 7. Glu-295 catalyzes proton exit through H(+) transfer from QH, and rotational displacement to deliver the H(+) to exit channel(s). This opens a volume into which Q(-) can move closer to the heme to speed electron transfer. 8. A kinetic model accounts well for the observations, but leaves open the question of gating mechanisms. For the first step we suggest a molecular "escapement"; for the second a molecular ballet choreographed through coulombic interactions. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Antony R Crofts
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Khalfaoui-Hassani B, Lanciano P, Daldal F. A robust genetic system for producing heterodimeric native and mutant cytochrome bc(1). Biochemistry 2013; 52:7184-95. [PMID: 24028512 DOI: 10.1021/bi400560p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ubihydroquinone:cytochrome c oxidoreductase, or cytochrome bc1, is central to the production of ATP by oxidative phosphorylation and photophosphorylation in many organisms. Its three-dimensional structure depicts it as a homodimer with each monomer composed of the Fe-S protein, cytochrome b, and cytochrome c1 subunits. Recent genetic approaches successfully produced heterodimeric variants of this enzyme, providing insights into its mechanism of function. However, these experimental setups are inherently prone to genetic rearrangements as they carry repeated copies of cytochrome bc1 structural genes. Duplications present on a single replicon (one-plasmid system) or a double replicon (two-plasmid system) could yield heterogeneous populations via homologous recombination or other genetic events at different frequencies, especially under selective growth conditions. In this work, we assessed the origins and frequencies of genetic variations encountered in these systems and describe an improved variant of the two-plasmid system. We found that use of a recombination-deficient background (recA) minimizes spontaneous formation of co-integrant plasmids and renders the homologous recombination within the cytochrome b gene copies inconsequential. On the basis of the data, we conclude that both the newly improved RecA-deficient and the previously used RecA-proficient two-plasmid systems reliably produce native and mutant heterodimeric cytochrome bc1 variants. The two-plasmid system developed here might contribute to the study of "mitochondrial heteroplasmy"-like heterogeneous states in model bacteria (e.g., Rhodobacter species) suitable for bioenergetics studies. In the following paper (DOI 10.1021/bi400561e), we describe the use of the two-plasmid system to produce and characterize, in membranes and in purified states, an active heterodimeric cytochrome bc1 variant with unusual intermonomer electron transfer properties.
Collapse
Affiliation(s)
- Bahia Khalfaoui-Hassani
- Department of Biology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
15
|
Czapla M, Cieluch E, Borek A, Sarewicz M, Osyczka A. Catalytically-relevant electron transfer between two hemes bL in the hybrid cytochrome bc1-like complex containing a fusion of Rhodobacter sphaeroides and capsulatus cytochromes b. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:751-60. [PMID: 23428397 PMCID: PMC4330944 DOI: 10.1016/j.bbabio.2013.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 11/24/2022]
Abstract
To address mechanistic questions about the functioning of dimeric cytochrome bc1 new genetic approaches have recently been developed. They were specifically designed to enable construction of asymmetrically-mutated variants suitable for functional studies. One approach exploited a fusion of two cytochromes b that replaced the separate subunits in the dimer. The fusion protein, built from two copies of the same cytochrome b of purple bacterium Rhodobacter capsulatus, served as a template to create a series of asymmetrically-mutated cytochrome bc1-like complexes (B–B) which, through kinetic studies, disclosed several important principles of dimer engineering. Here, we report on construction of another fusion protein complex that adds a new tool to investigate dimeric function of the enzyme through the asymmetrically mutated forms of the protein. This complex (BS–B) contains a hybrid protein that combines two different cytochromes b: one coming from R. capsulatus and the other — from a closely related species, R. sphaeroides. With this new fusion we addressed a still controversial issue of electron transfer between the two hemes bL in the core of dimer. Kinetic data obtained with a series of BS–B variants provided new evidence confirming the previously reported observations that electron transfer between those two hemes occurs on a millisecond timescale, thus is a catalytically-relevant event. Both types of the fusion complexes (B–B and BS–B) consistently implicate that the heme-bL–bL bridge forms an electronic connection available for inter-monomer electron transfer in cytochrome bc1.
Collapse
Affiliation(s)
| | | | | | | | - Artur Osyczka
- Corresponding author. Tel.: + 48 12 664 6348; fax: + 48 12 664 69 02.
| |
Collapse
|
16
|
Victoria D, Burton R, Crofts AR. Role of the -PEWY-glutamate in catalysis at the Q(o)-site of the Cyt bc(1) complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:365-86. [PMID: 23123515 DOI: 10.1016/j.bbabio.2012.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/09/2023]
Abstract
We re-examine the pH dependence of partial processes of ubihydroquinone (QH(2)) turnover in Glu-295 mutants in Rhodobacter sphaeroides to clarify the mechanistic role. In more crippled mutants, the bell-shaped pH profile of wildtype was replaced by dependence on a single pK at ~8.5 favoring electron transfer. Loss of the pK at 6.5 reflects a change in the rate-limiting step from the first to the second electron transfer. Over the range of pH 6-8, no major pH dependence of formation of the initial reaction complex was seen, and the rates of bypass reactions were similar to the wildtype. Occupancy of the Q(o)-site by semiquinone (SQ) was similar in the wildtype and the Glu→Trp mutant. Since heme b(L) is initially oxidized in the latter, the bifurcated reaction can still occur, allowing estimation of an empirical rate constant <10(3)s(-1) for reduction of heme b(L) by SQ from the domain distal from heme b(L), a value 1000-fold smaller than that expected from distance. If the pK ~8.5 in mutant strains is due to deprotonation of the neutral semiquinone, with Q(•-) as electron donor to heme b(L), then in wildtype this low value would preclude mechanisms for normal flux in which semiquinone is constrained to this domain. A kinetic model in which Glu-295 catalyzes H(+) transfer from QH•, and delivery of the H(+) to exit channel(s) by rotational displacement, and facilitates rapid electron transfer from SQ to heme b(L) by allowing Q(•-) to move closer to the heme, accounts well for the observations.
Collapse
Affiliation(s)
- Doreen Victoria
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
17
|
Fusing proteins as an approach to study bioenergetic enzymes and processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1847-51. [PMID: 22484274 DOI: 10.1016/j.bbabio.2012.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 11/21/2022]
Abstract
Fusing proteins is an attractive genetic tool used in several biochemical and biophysical investigations. Within a group of redox proteins, certain fusion constructs appear to provide valuable templates for spectroscopy with which specific bioenergetic questions can be addressed. Here we briefly summarize three different cases of fusions reported for bacterial cytochrome bc(1) (prokaryotic equivalent of mitochondrial respiratory complex III), a common component of electron transport chains. These fusions were used to study supramolecular organization of enzymatic complexes in bioenergetic membrane, influence of the accessory subunits on the activity and stability of the complex, and molecular mechanism of operation of the enzyme in the context of its dimeric structure. Besides direct connotation to molecular bioenergetics, these fusions also appeared interesting from the protein design, biogenesis, and assembly points of view. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
18
|
Hong S, Victoria D, Crofts AR. Inter-monomer electron transfer is too slow to compete with monomeric turnover in bc(1) complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1053-62. [PMID: 22465023 DOI: 10.1016/j.bbabio.2012.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 03/08/2012] [Accepted: 03/11/2012] [Indexed: 11/30/2022]
Abstract
The homodimeric bc(1) complexes are membrane proteins essential in respiration and photosynthesis. The ~11Å distance between the two b(L)-hemes of the dimer opens the possibility of electron transfer between them, but contradictory reports make such inter-monomer electron transfer controversial. We have constructed in Rhodobacter sphaeroides a heterodimeric expression system similar to those used before, in which the bc(1) complex can be mutated differentially in the two copies of cyt b to test for inter-monomer electron transfer, but found that genetic recombination by cross-over then occurs to produce wild-type homodimer. Selection pressure under photosynthetic growth always favored the homodimer over heterodimeric variants enforcing inter-monomer electron transfer, showing that the latter are not competitive. These results, together with kinetic analysis of myxothiazol titrations, demonstrate that inter-monomer electron transfer does not occur at rates competitive with monomeric turnover. We examine the results from other groups interpreted as demonstrating rapid inter-monomer electron transfer, conclude that similar mechanisms are likely to be in play, and suggest that such claims might need to be re-examined.
Collapse
Affiliation(s)
- Sangjin Hong
- Departments of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
19
|
Czapla M, Borek A, Sarewicz M, Osyczka A. Enzymatic activities of isolated cytochrome bc₁-like complexes containing fused cytochrome b subunits with asymmetrically inactivated segments of electron transfer chains. Biochemistry 2012; 51:829-35. [PMID: 22233445 PMCID: PMC3269193 DOI: 10.1021/bi2016316] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Homodimeric structure of cytochrome bc1, a common component of biological energy conversion
systems, builds
in four catalytic quinone oxidation/reduction sites and four chains
of cofactors (branches) that, connected by a centrally located bridge,
form a symmetric H-shaped electron transfer system. The mechanism
of operation of this complex system is under constant debate. Here,
we report on isolation and enzymatic examination of cytochrome bc1-like complexes containing fused cytochrome b subunits in which asymmetrically introduced mutations
inactivated individual branches in various combinations. The structural
asymmetry of those forms was confirmed spectroscopically. All the
asymmetric forms corresponding to cytochrome bc1 with partial or full inactivation of one monomer retain high
enzymatic activity but at the same time show a decrease in the maximum
turnover rate by a factor close to 2. This strongly supports the model
assuming independent operation of monomers. The cross-inactivated
form corresponding to cytochrome bc1 with
disabled complementary parts of each monomer retains the enzymatic
activity at the level that, for the first time on isolated from membranes
and purified to homogeneity preparations, demonstrates that intermonomer
electron transfer through the bridge effectively sustains the enzymatic
turnover. The results fully support the concept that electrons freely
distribute between the four catalytic sites of a dimer and that any
path connecting the catalytic sites on the opposite sides of the membrane
is enzymatically competent. The possibility to examine enzymatic properties
of isolated forms of asymmetric complexes constructed using the cytochrome b fusion system extends the array of tools available for
investigating the engineering of dimeric cytochrome bc1 from the mechanistic and physiological perspectives.
Collapse
Affiliation(s)
- Monika Czapla
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | | | | |
Collapse
|