1
|
Milee M, Greeshma SP, Deeksha W, Rajakumara E. Regulatory and Catalytic Domains of Poly(ADP-ribose) Polymerases Cross-Complement for DNA-Break-Dependent Allosteric Stimulation of Catalytic Activity. ACS Chem Biol 2025; 20:607-619. [PMID: 39935093 DOI: 10.1021/acschembio.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Allosteric regulation is achieved by regulatory domains that sense stimuli and induce conformational changes in the functional domain that performs the catalytic activity of the enzyme. Poly-ADP-ribose polymerases (PARPs) are modular enzymes present across all domains of life including Archaea, Bacteria, and Eukarya. A typical domain architecture of PARPs consists of a conserved C-terminal catalytic domain (CAT) associated with multiple distinct N-terminal sensory and/or regulatory domains which together serve as regulatory region (REG). In this study, we investigated whether REG of different orthologs and paralogs of PARPs from mammals (hPARP1 and hPARP2), plants (atPARP2), and bacteria (haPARP) can assemble with CAT of each other to generate functional chimeric assemblies. We have employed qualitative and quantitative enzyme activity assays along with binding studies to examine these in vitro chimeric assemblies. The cis-complemented REG and CAT of hPARP2 exhibited micromolar binding affinity, suggesting that these domains can interact independent of allosteric ligands. Also, our results show that REG and CAT of PARP proteins can assemble in a functionally active conformation in the presence of DNA implying that REG and CAT are not required to be present on a single polypeptide for catalytic activity stimulation. Interestingly, only CAT of atPARP2 displayed functional complementation with REG of the other studied PARPs. Conversely, REG of hPARP1 and atPARP2 failed to cross-complement CAT of other PARPs while REG of hPARP2 showed robust cross-complementation. Our novel studies on chimeric PARP assemblies can be developed as a powerful synthetic biology tool to interrogate and control their activities in living cells. In addition, by co-engineering non-complementing REG and CAT domains of different PARPs, new functional chimeric PARPs can be developed for selective allosteric ligand-dependent regulation of PARP systems. Furthermore, our study can facilitate the understanding of the coevolution of REG and CAT domains in PARP enzymes.
Collapse
Affiliation(s)
- Makwana Milee
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Shanavas P Greeshma
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Waghela Deeksha
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|
2
|
Khersonsky O, Fleishman SJ. What Have We Learned from Design of Function in Large Proteins? BIODESIGN RESEARCH 2022; 2022:9787581. [PMID: 37850148 PMCID: PMC10521758 DOI: 10.34133/2022/9787581] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2023] Open
Abstract
The overarching goal of computational protein design is to gain complete control over protein structure and function. The majority of sophisticated binders and enzymes, however, are large and exhibit diverse and complex folds that defy atomistic design calculations. Encouragingly, recent strategies that combine evolutionary constraints from natural homologs with atomistic calculations have significantly improved design accuracy. In these approaches, evolutionary constraints mitigate the risk from misfolding and aggregation, focusing atomistic design calculations on a small but highly enriched sequence subspace. Such methods have dramatically optimized diverse proteins, including vaccine immunogens, enzymes for sustainable chemistry, and proteins with therapeutic potential. The new generation of deep learning-based ab initio structure predictors can be combined with these methods to extend the scope of protein design, in principle, to any natural protein of known sequence. We envision that protein engineering will come to rely on completely computational methods to efficiently discover and optimize biomolecular activities.
Collapse
Affiliation(s)
- Olga Khersonsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel J. Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Romero-Romero S, Kordes S, Michel F, Höcker B. Evolution, folding, and design of TIM barrels and related proteins. Curr Opin Struct Biol 2021; 68:94-104. [PMID: 33453500 PMCID: PMC8250049 DOI: 10.1016/j.sbi.2020.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
Proteins are chief actors in life that perform a myriad of exquisite functions. This diversity has been enabled through the evolution and diversification of protein folds. Analysis of sequences and structures strongly suggest that numerous protein pieces have been reused as building blocks and propagated to many modern folds. This information can be traced to understand how the protein world has diversified. In this review, we discuss the latest advances in the analysis of protein evolutionary units, and we use as a model system one of the most abundant and versatile topologies, the TIM-barrel fold, to highlight the existing common principles that interconnect protein evolution, structure, folding, function, and design.
Collapse
Affiliation(s)
| | - Sina Kordes
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Florian Michel
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
4
|
Ferruz N, Noske J, Höcker B. Protlego: A Python package for the analysis and design of chimeric proteins. Bioinformatics 2021; 37:3182-3189. [PMID: 33901273 PMCID: PMC8504633 DOI: 10.1093/bioinformatics/btab253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/05/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
Motivation Duplication and recombination of protein fragments have led to the highly diverse protein space that we observe today. By mimicking this natural process, the design of protein chimeras via fragment recombination has proven experimentally successful and has opened a new era for the design of customizable proteins. The in silico building of structural models for these chimeric proteins, however, remains a manual task that requires a considerable degree of expertise and is not amenable for high-throughput studies. Energetic and structural analysis of the designed proteins often require the use of several tools, each with their unique technical difficulties and available in different programming languages or web servers. Results We implemented a Python package that enables automated, high-throughput design of chimeras and their structural analysis. First, it fetches evolutionarily conserved fragments from a built-in database (also available at fuzzle.uni-bayreuth.de). These relationships can then be represented via networks or further selected for chimera construction via recombination. Designed chimeras or natural proteins are then scored and minimized with the Charmm and Amber forcefields and their diverse structural features can be analyzed at ease. Here, we showcase Protlego’s pipeline by exploring the relationships between the P-loop and Rossmann superfolds, building and characterizing their offspring chimeras. We believe that Protlego provides a powerful new tool for the protein design community. Availability and implementation Protlego runs on the Linux platform and is freely available at (https://hoecker-lab.github.io/protlego/) with tutorials and documentation. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Noelia Ferruz
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Jakob Noske
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
5
|
Ferruz N, Lobos F, Lemm D, Toledo-Patino S, Farías-Rico JA, Schmidt S, Höcker B. Identification and Analysis of Natural Building Blocks for Evolution-Guided Fragment-Based Protein Design. J Mol Biol 2020; 432:3898-3914. [PMID: 32330481 PMCID: PMC7322520 DOI: 10.1016/j.jmb.2020.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Natural evolution has generated an impressively diverse protein universe via duplication and recombination from a set of protein fragments that served as building blocks. The application of these concepts to the design of new proteins using subdomain-sized fragments from different folds has proven to be experimentally successful. To better understand how evolution has shaped our protein universe, we performed an all-against-all comparison of protein domains representing all naturally existing folds and identified conserved homologous protein fragments. Overall, we found more than 1000 protein fragments of various lengths among different folds through similarity network analysis. These fragments are present in very different protein environments and represent versatile building blocks for protein design. These data are available in our web server called F(old P)uzzle (fuzzle.uni-bayreuth.de), which allows to individually filter the dataset and create customized networks for folds of interest. We believe that our results serve as an invaluable resource for structural and evolutionary biologists and as raw material for the design of custom-made proteins.
Collapse
Affiliation(s)
- Noelia Ferruz
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Francisco Lobos
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Dominik Lemm
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Saacnicteh Toledo-Patino
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Steffen Schmidt
- Max Planck Institute for Developmental Biology, Tübingen, Germany; Computational Biochemistry, University of Bayreuth, Bayreuth, Germany.
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
6
|
Zhou J, Panaitiu AE, Grigoryan G. A general-purpose protein design framework based on mining sequence-structure relationships in known protein structures. Proc Natl Acad Sci U S A 2020; 117:1059-1068. [PMID: 31892539 PMCID: PMC6969538 DOI: 10.1073/pnas.1908723117] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Current state-of-the-art approaches to computational protein design (CPD) aim to capture the determinants of structure from physical principles. While this has led to many successful designs, it does have strong limitations associated with inaccuracies in physical modeling, such that a reliable general solution to CPD has yet to be found. Here, we propose a design framework-one based on identifying and applying patterns of sequence-structure compatibility found in known proteins, rather than approximating them from models of interatomic interactions. We carry out extensive computational analyses and an experimental validation for our method. Our results strongly argue that the Protein Data Bank is now sufficiently large to enable proteins to be designed by using only examples of structural motifs from unrelated proteins. Because our method is likely to have orthogonal strengths relative to existing techniques, it could represent an important step toward removing remaining barriers to robust CPD.
Collapse
Affiliation(s)
- Jianfu Zhou
- Department of Computer Science, Dartmouth College, Hanover, NH 03755
| | | | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH 03755;
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
7
|
Lechner H, Ferruz N, Höcker B. Strategies for designing non-natural enzymes and binders. Curr Opin Chem Biol 2018; 47:67-76. [PMID: 30248579 DOI: 10.1016/j.cbpa.2018.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
The design of tailor-made enzymes is a major goal in biochemical research that can result in wide-range applications and will lead to a better understanding of how proteins fold and function. In this review we highlight recent advances in enzyme and small molecule binder design. A focus is placed on novel strategies for the design of scaffolds, developments in computational methods, and recent applications of these techniques on receptors, sensors, and enzymes. Further, the integration of computational and experimental methodologies is discussed. The outlined examples of designed enzymes and binders for various purposes highlight the importance of this topic and underline the need for tailor-made proteins.
Collapse
Affiliation(s)
- Horst Lechner
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Noelia Ferruz
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
8
|
Recurring sequence-structure motifs in (βα) 8-barrel proteins and experimental optimization of a chimeric protein designed based on such motifs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:165-175. [PMID: 27836620 DOI: 10.1016/j.bbapap.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/04/2016] [Accepted: 11/06/2016] [Indexed: 11/22/2022]
Abstract
An interesting way of generating novel artificial proteins is to combine sequence motifs from natural proteins, mimicking the evolutionary path suggested by natural proteins comprising recurring motifs. We analyzed the βα and αβ modules of TIM barrel proteins by structure alignment-based sequence clustering. A number of preferred motifs were identified. A chimeric TIM was designed by using recurring elements as mutually compatible interfaces. The foldability of the designed TIM protein was then significantly improved by six rounds of directed evolution. The melting temperature has been improved by more than 20°C. A variety of characteristics suggested that the resulting protein is well-folded. Our analysis provided a library of peptide motifs that is potentially useful for different protein engineering studies. The protein engineering strategy of using recurring motifs as interfaces to connect partial natural proteins may be applied to other protein folds.
Collapse
|
9
|
Zheng F, Huang H, Wang X, Tu T, Liu Q, Meng K, Wang Y, Su X, Xie X, Luo H. Improvement of the catalytic performance of a Bispora antennata cellulase by replacing the N-terminal semi-barrel structure. BIORESOURCE TECHNOLOGY 2016; 218:279-285. [PMID: 27372007 DOI: 10.1016/j.biortech.2016.06.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
The aim of this work was to study the contribution of the N-terminal structure to cellulase catalytic performance. A wild-type cellulase (BaCel5) of glycosyl hydrolase (GH) family 5 from Bispora antennata and two hybrid enzymes (BaCel5(127) and BaCel5(167)) with replacement of the N-terminal (βα)3 (127 residues) or (βα)4 (167 residues)-barrel with the corresponding sequences of TeEgl5A from Talaromyces emersonii were produced in Pichia pastoris and biochemically characterized. BaCel5 exhibited optimal activity at pH 5.0 and 50°C but had low catalytic efficiency (25.4±0.8mLs(-1)mg(-1)). In contrast, BaCel5(127) and BaCel5(167) showed similar enzymatic properties but improved catalytic performance. When using CMC-Na, barley β-glucan, lichenan, and cellooligosaccharides as substrates, BaCel5(127) and BaCel5(167) had increased specific activities and catalytic efficiencies by ∼1.8-6.7-fold and ∼1.0-4.7-fold, respectively. The catalytic efficiency of BaCel5(167) was even higher than that of parental proteins. The underlying mechanism was analyzed by molecular docking and molecular dynamic simulation.
Collapse
Affiliation(s)
- Fei Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiaoyu Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China; Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Qiong Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Kun Meng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiangming Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| |
Collapse
|
10
|
Khersonsky O, Fleishman SJ. Why reinvent the wheel? Building new proteins based on ready-made parts. Protein Sci 2016; 25:1179-87. [PMID: 26821641 DOI: 10.1002/pro.2892] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
We protein engineers are ambivalent about evolution: on the one hand, evolution inspires us with myriad examples of biomolecular binders, sensors, and catalysts; on the other hand, these examples are seldom well-adapted to the engineering tasks we have in mind. Protein engineers have therefore modified natural proteins by point substitutions and fragment exchanges in an effort to generate new functions. A counterpoint to such design efforts, which is being pursued now with greater success, is to completely eschew the starting materials provided by nature and to design new protein functions from scratch by using de novo molecular modeling and design. While important progress has been made in both directions, some areas of protein design are still beyond reach. To this end, we advocate a synthesis of these two strategies: by using design calculations to both recombine and optimize fragments from natural proteins, we can build stable and as of yet un-sampled structures, thereby granting access to an expanded repertoire of conformations and desired functions. We propose that future methods that combine phylogenetic analysis, structure and sequence bioinformatics, and atomistic modeling may well succeed where any one of these approaches has failed on its own.
Collapse
Affiliation(s)
- Olga Khersonsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
11
|
King IC, Gleixner J, Doyle L, Kuzin A, Hunt JF, Xiao R, Montelione GT, Stoddard BL, DiMaio F, Baker D. Precise assembly of complex beta sheet topologies from de novo designed building blocks. eLife 2015; 4. [PMID: 26650357 PMCID: PMC4737653 DOI: 10.7554/elife.11012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/08/2015] [Indexed: 01/22/2023] Open
Abstract
Design of complex alpha-beta protein topologies poses a challenge because of the large number of alternative packing arrangements. A similar challenge presumably limited the emergence of large and complex protein topologies in evolution. Here, we demonstrate that protein topologies with six and seven-stranded beta sheets can be designed by insertion of one de novo designed beta sheet containing protein into another such that the two beta sheets are merged to form a single extended sheet, followed by amino acid sequence optimization at the newly formed strand-strand, strand-helix, and helix-helix interfaces. Crystal structures of two such designs closely match the computational design models. Searches for similar structures in the SCOP protein domain database yield only weak matches with different beta sheet connectivities. A similar beta sheet fusion mechanism may have contributed to the emergence of complex beta sheets during natural protein evolution. DOI:http://dx.doi.org/10.7554/eLife.11012.001 A protein is made up of a sequence of amino acids and must fold into a specific three-dimensional structure if it is to work correctly. The structure is formed by segments of the protein adopting specific shapes, the two most common shapes being alpha helices and beta strands. Beta strands commonly interact with each other to form regions called beta sheets. Researchers trying to design proteins with new abilities have managed to create proteins that contain up to five beta strands and four alpha helices. Larger and more complex proteins are more challenging to make because there are many different ways that a protein can fold. It is also difficult to understand how complex structures such as large beta sheets emerged naturally, over the course of evolution. King et al. have now used computer modeling to explore how a large, complex beta sheet might form. In the model, one small, newly designed protein was inserted into another so that their beta sheets merged to form a single extended sheet. The model then stabilized this structure by changing the amino acids found at the points where the two proteins met. King et al. were then able to synthesize these new proteins in bacteria and use a technique called X-ray crystallography to determine the structure of two of them. The structures closely matched the computer models; one protein contained a six-stranded beta sheet, and the other had a seven-stranded beta sheet. The folds of the two designed proteins were then compared with those found in a database that classifies proteins on the basis of their structure. The beta sheets in the designed proteins did not match the protein structures in the database, which suggests that the designed proteins contained new types of folds. In the future, the technique used by King et al. could be used to design other large and complex beta sheet structures. Furthermore, the results suggest that such large structures could have evolved naturally through the combination of smaller, less complex proteins. DOI:http://dx.doi.org/10.7554/eLife.11012.002
Collapse
Affiliation(s)
- Indigo Chris King
- Institute for Protein Design, University of Washington, Seattle, United States
| | - James Gleixner
- Institute for Protein Design, University of Washington, Seattle, United States
| | - Lindsey Doyle
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Alexandre Kuzin
- Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, United States
| | - John F Hunt
- Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, United States
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Barry L Stoddard
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Frank DiMaio
- Institute for Protein Design, University of Washington, Seattle, United States
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, United States
| |
Collapse
|
12
|
Bhargav SP, Vahokoski J, Kallio JP, Torda AE, Kursula P, Kursula I. Two independently folding units of Plasmodium profilin suggest evolution via gene fusion. Cell Mol Life Sci 2015; 72:4193-203. [PMID: 26012696 PMCID: PMC11113795 DOI: 10.1007/s00018-015-1932-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Gene fusion is a common mechanism of protein evolution that has mainly been discussed in the context of multidomain or symmetric proteins. Less is known about fusion of ancestral genes to produce small single-domain proteins. Here, we show with a domain-swapped mutant Plasmodium profilin that this small, globular, apparently single-domain protein consists of two foldons. The separation of binding sites for different protein ligands in the two halves suggests evolution via an ancient gene fusion event, analogous to the formation of multidomain proteins. Finally, the two fragments can be assembled together after expression as two separate gene products. The possibility to engineer both domain-swapped dimers and half-profilins that can be assembled back to a full profilin provides perspectives for engineering of novel protein folds, e.g., with different scaffolding functions.
Collapse
Affiliation(s)
| | - Juha Vahokoski
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - Juha Pekka Kallio
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607, Hamburg, Germany
- German Electron Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Andrew E Torda
- Centre for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146, Hamburg, Germany
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607, Hamburg, Germany.
- German Electron Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany.
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
13
|
Körling M, Geyer A. Beyond Natural Limitations: Long-Range Influence of Non-Natural Flexible and Rigid β-Turn Mimetics in a Native β-Hairpin Motif. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Abstract
AbstractDue to the considerable stability of green fluorescent proteins and their capacity to be readily permutated or mutated, they may be exploited in multiple ways to enhance the functionality of in vitro biosensors. Many possibilities, such as the formation of chimeras with other proteins or antibodies, as well as Förster resonance emission transfer performance, may be used for the highly sensitive and specific detection of the target molecules. This review considers the great potential of green fluorescent proteins as the fluorescent probing or recognition biomolecule in various in vitro biosensors applications, as well as obstacles associated with their use.
Collapse
|
15
|
Höcker B. Design of proteins from smaller fragments-learning from evolution. Curr Opin Struct Biol 2014; 27:56-62. [PMID: 24865156 DOI: 10.1016/j.sbi.2014.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
Nature has generated an impressive set of proteins with diverse folds and functions. It has been able to do so using mechanisms such as duplication and fusion as well as recombination of smaller protein fragments that serve as building blocks. These evolutionary mechanisms provide a template for the rational design of new proteins from fragments of existing proteins. Design by duplication and fusion has been explored for a number of symmetric protein folds, while design by rational recombination has just emerged. First experiments in recombining fragments from the same and different folds are proving successful in building new proteins that harbor easily evolvable properties originating from the parents. Overall, duplication and recombination of smaller fragments shows much potential for future applications in the design of proteins.
Collapse
Affiliation(s)
- Birte Höcker
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076 Tübingen, Germany.
| |
Collapse
|
16
|
Engineering chimaeric proteins from fold fragments: 'hopeful monsters' in protein design. Biochem Soc Trans 2014; 41:1137-40. [PMID: 24059498 DOI: 10.1042/bst20130099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Modern highly complex proteins evolved from much simpler and less specialized subunits. The same concept can be applied in protein engineering to construct new well-folded proteins. Hybrid proteins or chimaeras can be built from contemporary protein fragments through illegitimate recombination. Even parts from different globular folds can be fitted together using rational design methodologies. Furthermore, intrinsic functional properties encoded in the fold fragments allow rapid adaptation of the new proteins and thus provide interesting starting scaffolds for further redesign.
Collapse
|
17
|
Bonet J, Fiser A, Oliva B, Fernandez-Fuentes N. Smotifs as structural local descriptors of supersecondary elements: classification, completeness and applications. BIO-ALGORITHMS AND MED-SYSTEMS 2014. [DOI: 10.1515/bams-2014-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractProtein structures are made up of periodic and aperiodic structural elements (i.e., α-helices, β-strands and loops). Despite the apparent lack of regular structure, loops have specific conformations and play a central role in the folding, dynamics, and function of proteins. In this article, we reviewed our previous works in the study of protein loops as local supersecondary structural motifs or Smotifs. We reexamined our works about the structural classification of loops (ArchDB) and its application to loop structure prediction (ArchPRED), including the assessment of the limits of knowledge-based loop structure prediction methods. We finalized this article by focusing on the modular nature of proteins and how the concept of Smotifs provides a convenient and practical approach to decompose proteins into strings of concatenated Smotifs and how can this be used in computational protein design and protein structure prediction.
Collapse
|
18
|
Computational tools for designing and engineering enzymes. Curr Opin Chem Biol 2013; 19:8-16. [PMID: 24780274 DOI: 10.1016/j.cbpa.2013.12.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/04/2013] [Accepted: 12/04/2013] [Indexed: 01/23/2023]
Abstract
Protein engineering strategies aimed at constructing enzymes with novel or improved activities, specificities, and stabilities greatly benefit from in silico methods. Computational methods can be principally grouped into three main categories: bioinformatics; molecular modelling; and de novo design. Particularly de novo protein design is experiencing rapid development, resulting in more robust and reliable predictions. A recent trend in the field is to combine several computational approaches in an interactive manner and to complement them with structural analysis and directed evolution. A detailed investigation of designed catalysts provides valuable information on the structural basis of molecular recognition, biochemical catalysis, and natural protein evolution.
Collapse
|
19
|
Trudeau DL, Smith MA, Arnold FH. Innovation by homologous recombination. Curr Opin Chem Biol 2013; 17:902-9. [DOI: 10.1016/j.cbpa.2013.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 10/03/2013] [Indexed: 12/11/2022]
|
20
|
Establishing catalytic activity on an artificial (βα)8-barrel protein designed from identical half-barrels. FEBS Lett 2013; 587:2798-805. [PMID: 23806364 DOI: 10.1016/j.febslet.2013.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/27/2013] [Accepted: 06/16/2013] [Indexed: 01/28/2023]
Abstract
It has been postulated that the ubiquitous (βα)8-barrel enzyme fold has evolved by duplication and fusion of an ancestral (βα)4-half-barrel. We have previously reconstructed this process in the laboratory by fusing two copies of the C-terminal half-barrel HisF-C of imidazole glycerol phosphate synthase (HisF). The resulting construct HisF-CC was stepwise stabilized to Sym1 and Sym2, which are extremely robust but catalytically inert proteins. Here, we report on the generation of a circular permutant of Sym2 and the establishment of a sugar isomerization reaction on its scaffold. Our results demonstrate that duplication and mutagenesis of (βα)4-half-barrels can readily lead to a stable and catalytically active (βα)8-barrel enzyme.
Collapse
|
21
|
Wijma HJ, Floor RJ, Janssen DB. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Curr Opin Struct Biol 2013; 23:588-94. [PMID: 23683520 DOI: 10.1016/j.sbi.2013.04.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/15/2013] [Indexed: 01/03/2023]
Abstract
Protein engineering strategies for increasing stability can be improved by replacing random mutagenesis and high-throughput screening by approaches that include bioinformatics and computational design. Mutations can be focused on regions in the structure that are most flexible and involved in the early steps of thermal unfolding. Sequence analysis can often predict the position and nature of stabilizing mutations, and may allow the reconstruction of thermostable ancestral sequences. Various computational tools make it possible to design stabilizing features, such as hydrophobic clusters and surface charges. Different methods for designing chimeric enzymes can also support the engineering of more stable proteins without the need of high-throughput screening.
Collapse
Affiliation(s)
- Hein J Wijma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|