1
|
Skokowa J, Hernandez Alvarez B, Coles M, Ritter M, Nasri M, Haaf J, Aghaallaei N, Xu Y, Mir P, Krahl AC, Rogers KW, Maksymenko K, Bajoghli B, Welte K, Lupas AN, Müller P, ElGamacy M. A topological refactoring design strategy yields highly stable granulopoietic proteins. Nat Commun 2022; 13:2948. [PMID: 35618709 PMCID: PMC9135769 DOI: 10.1038/s41467-022-30157-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Protein therapeutics frequently face major challenges, including complicated production, instability, poor solubility, and aggregation. De novo protein design can readily address these challenges. Here, we demonstrate the utility of a topological refactoring strategy to design novel granulopoietic proteins starting from the granulocyte-colony stimulating factor (G-CSF) structure. We change a protein fold by rearranging the sequence and optimising it towards the new fold. Testing four designs, we obtain two that possess nanomolar activity, the most active of which is highly thermostable and protease-resistant, and matches its designed structure to atomic accuracy. While the designs possess starkly different sequence and structure from the native G-CSF, they show specific activity in differentiating primary human haematopoietic stem cells into mature neutrophils. The designs also show significant and specific activity in vivo. Our topological refactoring approach is largely independent of sequence or structural context, and is therefore applicable to a wide range of protein targets. Skokowa et al. reconstruct the fold of a granulopoietic cytokine, resulting in de novo, hyperstable, highly active proteins with therapeutic potential for treating several neutropenia disorders.
Collapse
Affiliation(s)
- Julia Skokowa
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany.
| | | | - Murray Coles
- Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Malte Ritter
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Masoud Nasri
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Jérémy Haaf
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Narges Aghaallaei
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Yun Xu
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Perihan Mir
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Ann-Christin Krahl
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Katherine W Rogers
- Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany.,Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kateryna Maksymenko
- Max Planck Institute for Biology, 72076, Tübingen, Germany.,Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany
| | - Baubak Bajoghli
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Karl Welte
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Andrei N Lupas
- Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany.,Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - Mohammad ElGamacy
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany. .,Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany. .,Heliopolis Biotechnology Ltd, Cambridge, CB24 9RX, UK. .,Max Planck Institute for Biology, 72076, Tübingen, Germany.
| |
Collapse
|
2
|
|
3
|
Kato K, Nakayoshi T, Kurimoto E, Oda A. Modification of the pH Dependence of Assembly of Yeast Cargo Receptor Emp47p Coiled-Coil Domains: Computational Design and Experimental Mutagenesis. J Phys Chem B 2021; 125:2222-2230. [PMID: 33646773 DOI: 10.1021/acs.jpcb.0c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The coiled-coil domains of the putative yeast cargo receptors Emp46p and Emp47p (Emp46pcc and Emp47pcc) assemble into heterocomplexes at neutral pH. Upon lowering the pH, the complex dissociates and reassembles into homo-oligomers. A glutamate residue (E303) located on the hydrophobic surface of Emp46pcc serves as the pH-sensing switch for assembly and segregation, and we have suggested that its side chains are protonated in the heterocomplex, even at neutral pH. To examine this hypothesis, we constructed two structural models in which the side chains of E303 were negatively charged or protonated and analyzed the effects of these charged states on the structure of the heterocomplex using molecular dynamics (MD) simulations. The calculated structures suggested the side chains of E303 to be protonated in the heterocomplex, even at neutral pH. Based on these computational results, the pH dependence of Emp47pcc homo-oligomer assembly was experimentally modified by a glutamate mutation on its hydrophobic surface. The Q306E mutant of Emp47pcc underwent a structural transition at physiological pH. Our results suggest a method for modifying pH-dependent protein-protein interactions.
Collapse
Affiliation(s)
- Koichi Kato
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan.,Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Tomoki Nakayoshi
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Eiji Kurimoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Akifumi Oda
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Hernandez Alvarez B, Skokowa J, Coles M, Mir P, Nasri M, Maksymenko K, Weidmann L, Rogers KW, Welte K, Lupas AN, Müller P, ElGamacy M. Design of novel granulopoietic proteins by topological rescaffolding. PLoS Biol 2020; 18:e3000919. [PMID: 33351791 PMCID: PMC7755208 DOI: 10.1371/journal.pbio.3000919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Computational protein design is rapidly becoming more powerful, and improving the accuracy of computational methods would greatly streamline protein engineering by eliminating the need for empirical optimization in the laboratory. In this work, we set out to design novel granulopoietic agents using a rescaffolding strategy with the goal of achieving simpler and more stable proteins. All of the 4 experimentally tested designs were folded, monomeric, and stable, while the 2 determined structures agreed with the design models within less than 2.5 Å. Despite the lack of significant topological or sequence similarity to their natural granulopoietic counterpart, 2 designs bound to the granulocyte colony-stimulating factor (G-CSF) receptor and exhibited potent, but delayed, in vitro proliferative activity in a G-CSF-dependent cell line. Interestingly, the designs also induced proliferation and differentiation of primary human hematopoietic stem cells into mature granulocytes, highlighting the utility of our approach to develop highly active therapeutic leads purely based on computational design. De novo designed cytokines that activate the G-CSF receptor show that the receptor-binding information can be encoded onto stable, miniaturised protein scaffolds that possess potent granulopoietic activity; such novel proteins provide for ideal candidates for protein-based therapeutics.
Collapse
Affiliation(s)
| | - Julia Skokowa
- University Hospital Tübingen, Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Germany
- * E-mail: (JS); (ME)
| | - Murray Coles
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Perihan Mir
- University Hospital Tübingen, Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Germany
| | - Masoud Nasri
- University Hospital Tübingen, Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Germany
| | | | - Laura Weidmann
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Karl Welte
- University Hospital Tübingen, Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Germany
| | - Andrei N. Lupas
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Patrick Müller
- University Hospital Tübingen, Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society Tübingen, Germany
| | - Mohammad ElGamacy
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- University Hospital Tübingen, Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society Tübingen, Germany
- Heliopolis Biotechnology Ltd., London, United Kingdom
- * E-mail: (JS); (ME)
| |
Collapse
|
5
|
Des Soye BJ, Gerbasi VR, Thomas PM, Kelleher NL, Jewett MC. A Highly Productive, One-Pot Cell-Free Protein Synthesis Platform Based on Genomically Recoded Escherichia coli. Cell Chem Biol 2019; 26:1743-1754.e9. [PMID: 31706984 DOI: 10.1016/j.chembiol.2019.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 06/05/2019] [Accepted: 10/18/2019] [Indexed: 12/26/2022]
Abstract
The site-specific incorporation of non-canonical amino acids (ncAAs) into proteins via amber suppression provides access to novel protein properties, structures, and functions. Historically, poor protein expression yields resulting from release factor 1 (RF1) competition has limited this technology. To address this limitation, we develop a high-yield, one-pot cell-free platform for synthesizing proteins bearing ncAAs based on genomically recoded Escherichia coli lacking RF1. A key feature of this platform is the independence on the addition of purified T7 DNA-directed RNA polymerase (T7RNAP) to catalyze transcription. Extracts derived from our final strain demonstrate high productivity, synthesizing 2.67 ± 0.06 g/L superfolder GFP in batch mode without supplementation of purified T7RNAP. Using an optimized one-pot platform, we demonstrate multi-site incorporation of the ncAA p-acetyl-L-phenylalanine into an elastin-like polypeptide with high accuracy of incorporation and yield. Our work has implications for chemical and synthetic biology.
Collapse
Affiliation(s)
- Benjamin J Des Soye
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Vincent R Gerbasi
- Proteomics Center of Excellence, Northwestern University, Evanston, IL 60208, USA
| | - Paul M Thomas
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60208, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Neil L Kelleher
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Michael C Jewett
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Des Soye BJ, Davidson SR, Weinstock MT, Gibson DG, Jewett MC. Establishing a High-Yielding Cell-Free Protein Synthesis Platform Derived from Vibrio natriegens. ACS Synth Biol 2018; 7:2245-2255. [PMID: 30107122 DOI: 10.1021/acssynbio.8b00252] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new wave of interest in cell-free protein synthesis (CFPS) systems has shown their utility for producing proteins at high titers, establishing genetic regulatory element libraries ( e.g., promoters, ribosome binding sites) in nonmodel organisms, optimizing biosynthetic pathways before implementation in cells, and sensing biomarkers for diagnostic applications. Unfortunately, most previous efforts have focused on a select few model systems, such as Escherichia coli. Broadening the spectrum of organisms used for CFPS promises to better mimic host cell processes in prototyping applications and open up new areas of research. Here, we describe the development and characterization of a facile CFPS platform based on lysates derived from the fast-growing bacterium Vibrio natriegens, which is an emerging host organism for biotechnology. We demonstrate robust preparation of highly active extracts using sonication, without specialized and costly equipment. After optimizing the extract preparation procedure and cell-free reaction conditions, we show synthesis of 1.6 ± 0.05 g/L of superfolder green fluorescent protein in batch mode CFPS, making it competitive with existing E. coli CFPS platforms. To showcase the flexibility of the system, we demonstrate that it can be lyophilized and retain biosynthesis capability, that it is capable of producing antimicrobial peptides, and that our extract preparation procedure can be coupled with the recently described Vmax Express strain in a one-pot system. Finally, to further increase system productivity, we explore a knockout library in which putative negative effectors of CFPS are genetically removed from the source strain. Our V. natriegens-derived CFPS platform is versatile and simple to prepare and use. We expect it will facilitate expansion of CFPS systems into new laboratories and fields for compelling applications in synthetic biology.
Collapse
Affiliation(s)
| | | | | | - Daniel G. Gibson
- Synthetic Genomics, Inc., La Jolla, California 92037, United States
| | | |
Collapse
|
7
|
Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat Commun 2018; 9:1203. [PMID: 29572528 PMCID: PMC5865108 DOI: 10.1038/s41467-018-03469-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/13/2018] [Indexed: 12/24/2022] Open
Abstract
Cell-free protein synthesis has emerged as a powerful approach for expanding the range of genetically encoded chemistry into proteins. Unfortunately, efforts to site-specifically incorporate multiple non-canonical amino acids into proteins using crude extract-based cell-free systems have been limited by release factor 1 competition. Here we address this limitation by establishing a bacterial cell-free protein synthesis platform based on genomically recoded Escherichia coli lacking release factor 1. This platform was developed by exploiting multiplex genome engineering to enhance extract performance by functionally inactivating negative effectors. Our most productive cell extracts enabled synthesis of 1,780 ± 30 mg/L superfolder green fluorescent protein. Using an optimized platform, we demonstrated the ability to introduce 40 identical p-acetyl-l-phenylalanine residues site specifically into an elastin-like polypeptide with high accuracy of incorporation ( ≥ 98%) and yield (96 ± 3 mg/L). We expect this cell-free platform to facilitate fundamental understanding and enable manufacturing paradigms for proteins with new and diverse chemistries. Cell-free protein synthesis allows for producing proteins without the need of a host organism, thus sparing the researcher experimental hassle. Here, the authors developed a cell-free synthesis method that enables incorporating non-standard amino acids in the product.
Collapse
|
8
|
Schoborg JA, Clark LG, Choudhury A, Hodgman CE, Jewett MC. Yeast knockout library allows for efficient testing of genomic mutations for cell-free protein synthesis. Synth Syst Biotechnol 2016; 1:2-6. [PMID: 29062921 PMCID: PMC5640588 DOI: 10.1016/j.synbio.2016.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/27/2016] [Accepted: 02/12/2016] [Indexed: 12/31/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems from crude lysates have benefitted from modifications to their enzyme composition. For example, functionally deleting enzymes in the source strain that are deleterious to CFPS can improve protein synthesis yields. However, making such modifications can take substantial time. As a proof-of-concept to accelerate prototyping capabilities, we assessed the feasibility of using the yeast knockout collection to identify negative effectors in a Saccharomyces cerevisiae CFPS platform. We analyzed extracts made from six deletion strains that targeted the single deletion of potentially negative effectors (e.g., nucleases). We found a statistically significant increase in luciferase yields upon loss of function of GCN3, PEP4, PPT1, NGL3, and XRN1 with a maximum increase of over 6-fold as compared to the wild type. Our work has implications for yeast CFPS and for rapidly prototyping strains to enable cell-free synthetic biology applications.
Collapse
Key Words
- ANOVA, analysis of variance
- ATP, adenosine triphosphate
- CFPS, cell-free protein synthesis
- CRISPR, clustered regularly interspaced short palindromic repeats
- Cell-free biology
- Cell-free protein synthesis
- In vitro translation
- NTP, nucleoside triphosphate
- OD, optical density
- Protein expression
- SC, synthetic complete media
- Saccharomyces cerevisiae
- Synthetic biology
- YKO, yeast knockout
- cAMP, cyclic adenosine monophosphate
- eIF, eukaryotic initiation factor
Collapse
Affiliation(s)
- Jennifer A. Schoborg
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Lauren G. Clark
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Alaksh Choudhury
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL 60208-3120, USA
- Masters in Biotechnology Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
| | - C. Eric Hodgman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL 60208-3120, USA
- Masters in Biotechnology Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 N. St Clair St, Suite 1200, Chicago, IL 60611-3068, USA
- Simpson Querrey Institute, Northwestern University, 303 E. Superior St, Suite 11-131, Chicago, IL 60611-2875, USA
- Corresponding author. 2145 Sheridan Road, Tech E-136, Evanston, IL 60208-3120, USA.2145 Sheridan RoadTech E-136EvanstonIL60208-3120USA
| |
Collapse
|
9
|
Li J, Lawton TJ, Kostecki JS, Nisthal A, Fang J, Mayo SL, Rosenzweig AC, Jewett MC. Cell‐free protein synthesis enables high yielding synthesis of an active multicopper oxidase. Biotechnol J 2015; 11:212-8. [DOI: 10.1002/biot.201500030] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/26/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Jian Li
- Department of Chemical and Biological Engineering Northwestern University Evanston IL USA
- Chemistry of Life Processes Institute Northwestern University Evanston IL USA
- Robert H. Lurie Comprehensive Cancer Center Northwestern University Chicago IL USA
- Simpson Querrey Institute for BioNanotechnology in Medicine Northwestern University Chicago IL USA
| | - Thomas J. Lawton
- Department of Molecular Biosciences Northwestern University Evanston IL USA
| | - Jan S. Kostecki
- Division of Biological Sciences California Institute of Technology Pasadena CA USA
| | - Alex Nisthal
- Division of Biological Sciences California Institute of Technology Pasadena CA USA
| | - Jia Fang
- Department of Molecular Biosciences Northwestern University Evanston IL USA
| | - Stephen L. Mayo
- Division of Biological Sciences California Institute of Technology Pasadena CA USA
| | - Amy C. Rosenzweig
- Robert H. Lurie Comprehensive Cancer Center Northwestern University Chicago IL USA
- Department of Molecular Biosciences Northwestern University Evanston IL USA
- Department of Chemistry Northwestern University Evanston IL USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering Northwestern University Evanston IL USA
- Chemistry of Life Processes Institute Northwestern University Evanston IL USA
- Robert H. Lurie Comprehensive Cancer Center Northwestern University Chicago IL USA
- Simpson Querrey Institute for BioNanotechnology in Medicine Northwestern University Chicago IL USA
| |
Collapse
|