1
|
Kant R, Kaushik R, Chopra M, Saluja D. Structure-based drug discovery to identify SARS-CoV2 spike protein-ACE2 interaction inhibitors. J Biomol Struct Dyn 2025; 43:3652-3670. [PMID: 38174578 DOI: 10.1080/07391102.2023.2300060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
After the emergence of the COVID-19 pandemic in late 2019, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has undergone a dynamic evolution driven by the acquisition of genetic modifications, resulting in several variants that are further classified as variants of interest (VOIs), variants under monitoring (VUM) and variants of concern (VOC) by World Health Organization (WHO). Currently, there are five SARS-CoV-2 VOCs (Alpha, Beta, Delta, Gamma and Omicron), two VOIs (Lambda and Mu) and several other VOIs that have been reported globally. In this study, we report a natural compound, Curcumin, as the potential inhibitor to the interactions between receptor binding domain (RBD(S1)) and human angiotensin-converting enzyme 2 (hACE2) domains and showcased its inhibitory potential for the Delta and Omicron variants through a computational approach by implementing state of the art methods. The study for the first time revealed a higher efficiency of Curcumin, especially for hindering the interaction between RBD(S1) and hACE-2 domains of Delta and Omicron variants as compared to other lead compounds. We investigated that the mutations in the RBD(S1) of VOC especially Delta and Omicron variants affect its structure compared to that of the wild type and other variants and therefore altered its binding to the hACE2 receptor. Molecular docking and molecular dynamics (MD) simulation analyses substantially supported the findings in terms of the stability of the docked complexes. This study offers compelling evidence, warranting a more in-depth exploration into the impact of these alterations on the binding of identified drug molecules with the Spike protein. Further investigation into their potential therapeutic effects in vivo is highly recommended.
Collapse
Affiliation(s)
- Ravi Kant
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research &Delhi School of Public Health, IoE, University of Delhi, Delhi, India
| | - Rahul Kaushik
- Biotechology Research Center, Technology Innovation Institute, Masdar City, UAE
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Daman Saluja
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research &Delhi School of Public Health, IoE, University of Delhi, Delhi, India
| |
Collapse
|
2
|
Roterman I, Stapor K, Konieczny L. Role of environmental specificity in CASP results. BMC Bioinformatics 2023; 24:425. [PMID: 37950210 PMCID: PMC10638730 DOI: 10.1186/s12859-023-05559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Recently, significant progress has been made in the field of protein structure prediction by the application of artificial intelligence techniques, as shown by the results of the CASP13 and CASP14 (Critical Assessment of Structure Prediction) competition. However, the question of the mechanism behind the protein folding process itself remains unanswered. Correctly predicting the structure also does not solve the problem of, for example, amyloid proteins, where a polypeptide chain with an unaltered sequence adopts a different 3D structure. RESULTS This work was an attempt at explaining the structural variation by considering the contribution of the environment to protein structuring. The application of the fuzzy oil drop (FOD) model to assess the validity of the selected models provided in the CASP13, CASP14 and CASP15 projects reveals the need for an environmental factor to determine the 3D structure of proteins. Consideration of the external force field in the form of polar water (Fuzzy Oil Drop) and a version modified by the presence of the hydrophobic compounds, FOD-M (FOD-Modified) reveals that the protein folding process is environmentally dependent. An analysis of selected models from the CASP competitions indicates the need for structure prediction as dependent on the consideration of the protein folding environment. CONCLUSIONS The conditions governed by the environment direct the protein folding process occurring in a certain environment. Therefore, the variation of the external force field should be taken into account in the models used in protein structure prediction.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Medyczna 7, 30-688, Krakow, Poland.
| | - Katarzyna Stapor
- Faculty of Automatic, Electronics and Computer Science, Department of Applied, Informatics, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Leszek Konieczny
- Jagiellonian University - Medical College, Kopernika 7, 31-034, Krakow, Poland
| |
Collapse
|
3
|
Kumar N, Kaushik R, Zhang KYJ, Uversky VN, Sahu U, Sood R, Bhatia S. A novel consensus-based computational pipeline for screening of antibody therapeutics for efficacy against SARS-CoV-2 variants of concern including Omicron variant. Proteins 2023; 91:798-806. [PMID: 36629264 DOI: 10.1002/prot.26467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/11/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to evolve carrying flexible amino acid substitutions in the spike protein's receptor binding domain (RBD). These substitutions modify the binding of the SARS-CoV-2 to human angiotensin-converting enzyme 2 (hACE2) receptor and have been implicated in altered host fitness, transmissibility, and efficacy against antibody therapeutics and vaccines. Reliably predicting the binding strength of SARS-CoV-2 variants RBD to hACE2 receptor and neutralizing antibodies (NAbs) can help assessing their fitness, and rapid deployment of effective antibody therapeutics, respectively. Here, we introduced a two-step computational framework with 3-fold validation that first identified dissociation constant as a reliable predictor of binding affinity in hetero- dimeric and trimeric protein complexes. The second step implements dissociation constant as descriptor of the binding strengths of SARS-CoV-2 variants RBD to hACE2 and NAbs. Then, we examined several variants of concerns (VOCs) such as Alpha, Beta, Gamma, Delta, and Omicron and demonstrated that these VOCs RBD bind to the hACE2 with enhanced affinity. Furthermore, the binding affinity of Omicron variant's RBD was reduced with majority of the RBD-directed NAbs, which is highly consistent with the experimental neutralization data. By studying the atomic contacts between RBD and NAbs, we revealed the molecular footprints of four NAbs (GH-12, P2B-1A1, Asarnow_3D11, and C118)-that may likely neutralize the recently emerged Omicron variant-facilitating enhanced binding affinity. Finally, our findings suggest a computational pathway that could aid researchers identify a range of current NAbs that may be effective against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Naveen Kumar
- Zoonotic Diseases Group, ICAR-National Institute of High Security Animal Diseases, Bhopal, India
| | - Rahul Kaushik
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, UAE.,Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Pushchino, Russia
| | - Upasana Sahu
- Zoonotic Diseases Group, ICAR-National Institute of High Security Animal Diseases, Bhopal, India
| | - Richa Sood
- Zoonotic Diseases Group, ICAR-National Institute of High Security Animal Diseases, Bhopal, India
| | - Sandeep Bhatia
- Zoonotic Diseases Group, ICAR-National Institute of High Security Animal Diseases, Bhopal, India
| |
Collapse
|
4
|
Kaushik R, Zhang KY. An Integrated Protein Structure Fitness Scoring Approach for Identifying Native-Like Model Structures. Comput Struct Biotechnol J 2022; 20:6467-6472. [DOI: 10.1016/j.csbj.2022.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
|
5
|
Kaushik R, Kumar N, Zhang KYJ, Srivastava P, Bhatia S, Malik YS. A novel structure-based approach for identification of vertebrate susceptibility to SARS-CoV-2: Implications for future surveillance programmes. ENVIRONMENTAL RESEARCH 2022; 212:113303. [PMID: 35460633 PMCID: PMC9020514 DOI: 10.1016/j.envres.2022.113303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/09/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Understanding the origin of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a highly debatable and unresolved issue for scientific communities all over the world. Understanding the mechanism of virus entry to the host cells is crucial to deciphering the susceptibility profiles of animal species to SARS-CoV-2. The interaction of SARS-CoV-2 ligands (receptor-binding domain on spike protein) with its host cell receptor, angiotensin-converting enzyme 2 (ACE2), is a critical determinant of host range and cross-species transmission. In this study, we developed and implemented a rigorous computational approach for predicting binding affinity between 299 ACE2 orthologs from diverse vertebrate species and the SARS-CoV-2 spike protein. The findings show that the SARS-CoV-2 spike protein can bind to a wide range of vertebrate species carrying evolutionary divergent ACE2, implying a broad host range at the virus entry level, which may contribute to cross-species transmission and further viral evolution. Furthermore, the current study facilitated the identification of genetic determinants that may differentiate susceptible from resistant host species based on the conservation of ACE2-spike protein interacting residues in vertebrate host species known to facilitate SARS-CoV-2 infection; however, these genetic determinants warrant in vivo experimental confirmation. The molecular interactions associated with varied binding affinity of distinct ACE2 isoforms in a specific bat species were identified using protein structure analysis, implying the existence of diversified bat species' susceptibility to SARS-CoV-2. The current study's findings highlight the importance of intensive surveillance programmes aimed at identifying susceptible hosts, especially those with the potential to transmit zoonotic pathogens, in order to prevent future outbreaks.
Collapse
Affiliation(s)
- Rahul Kaushik
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Naveen Kumar
- Zoonotic Diseases Group, ICAR- National Institute of High Security Animal Diseases, Bhopal, 462022, India
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa, 230-0045, Japan
| | - Pratiksha Srivastava
- Zoonotic Diseases Group, ICAR- National Institute of High Security Animal Diseases, Bhopal, 462022, India
| | - Sandeep Bhatia
- Zoonotic Diseases Group, ICAR- National Institute of High Security Animal Diseases, Bhopal, 462022, India
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University (GADVASU), Ludhiana, 141004, Punjab, India.
| |
Collapse
|
6
|
Singh A, Kaushik R, Chaurasia DK, Singh M, Jayaram B. PvP01-DB: computational structural and functional characterization of soluble proteome of PvP01 strain of Plasmodium vivax. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5857404. [PMID: 32542363 PMCID: PMC7296392 DOI: 10.1093/database/baaa036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 01/09/2023]
Abstract
Despite Plasmodium vivax being the main offender in the majority of malarial infections, very little information is available about its adaptation and development in humans. Its capability for activating relapsing infections through its dormant liver stage and resistance to antimalarial drugs makes it as one of the major challenges in eradicating malaria. Noting the immediate necessity for the availability of a comprehensive and reliable structural and functional repository for P. vivax proteome, here we developed a web resource for the new reference genome, PvP01, furnishing information on sequence, structure, functions, active sites and metabolic pathways compiled and predicted using some of the state-of-the-art methods in respective fields. The PvP01 web resource comprises organized data on the soluble proteome consisting of 3664 proteins in blood and liver stages of malarial cycle. The current public resources represent only 163 proteins of soluble proteome of PvP01, with complete information about their molecular function, biological process and cellular components. Also, only 46 proteins of P. vivax have experimentally determined structures. In this milieu of extreme scarcity of structural and functional information, PvP01 web resource offers meticulously validated structures of 3664 soluble proteins. The sequence and structure-based functional characterization led to a quantum leap from 163 proteins available presently to whole soluble proteome offered through PvP01 web resource. We believe PvP01 web resource will serve the researchers in identifying novel protein drug targets and in accelerating the development of structure-based new drug candidates to combat malaria. Database Availability: http://www.scfbio-iitd.res.in/PvP01
Collapse
Affiliation(s)
- Ankita Singh
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, 110016.,Centre of Evolution and Medicine, Arizona State University, Life Sciences C, 427 East Tyler Mall, Tempe, AZ 85281, United States
| | - Rahul Kaushik
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, 110016.,Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Dheeraj Kumar Chaurasia
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, 110016
| | - Manpreet Singh
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, 110016
| | - B Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India, 110016.,Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India, 110016.,Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India, 110016
| |
Collapse
|
7
|
Bhat R, Kaushik R, Singh A, DasGupta D, Jayaraj A, Soni A, Shandilya A, Shekhar V, Shekhar S, Jayaram B. A comprehensive automated computer-aided discovery pipeline from genomes to hit molecules. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Singh A, Kaushik R, Kuntal H, Jayaram B. PvaxDB: a comprehensive structural repository of Plasmodium vivax proteome. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4938395. [PMID: 29688373 PMCID: PMC5852996 DOI: 10.1093/database/bay021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
The severity of malaria caused by Plasmodium vivax worldwide and its resistance against the available general antimalarial drugs has created an urgent need for a comprehensive insight into its biology and biochemistry for developing some novel potential vaccines and therapeutics. P.vivax comprises 5392 proteins mostly predicted, out of which 4211 are soluble proteins and 2205 of these belong to blood and liver stages of malarial cycle. Presently available public resources report functional annotation (gene ontology) of only 28% (627 proteins) of the enzymatic soluble proteins and experimental structures are determined for only 42 proteins P. vivax proteome. In this milieu of severe paucity of structural and functional data, we have generated structures of 2205 soluble proteins, validated them thoroughly, identified their binding pockets (including active sites) and annotated their function increasing the coverage from the existing 28% to 100%. We have pooled all this information together and created a database christened as PvaxDB, which furnishes extensive sequence, structure, ligand binding site and functional information. We believe PvaxDB could be helpful in identifying novel protein drug targets, expediting development of new drugs to combat malaria. This is also the first attempt to create a reliable comprehensive computational structural repository of all the soluble proteins of P. vivax. Database URL: http://www.scfbio-iitd.res.in/PvaxDB
Collapse
Affiliation(s)
- Ankita Singh
- Department of Bioinformatics, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India.,Supercomputing Facility for Bioinformatics and Computational Biology, IIT Delhi, Delhi, India
| | - Rahul Kaushik
- Supercomputing Facility for Bioinformatics and Computational Biology, IIT Delhi, Delhi, India.,Kusuma School of Biological Sciences, IIT Delhi, Delhi, India
| | - Himani Kuntal
- Department of Bioinformatics, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - B Jayaram
- Supercomputing Facility for Bioinformatics and Computational Biology, IIT Delhi, Delhi, India.,Kusuma School of Biological Sciences, IIT Delhi, Delhi, India.,Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, Delhi, India
| |
Collapse
|
9
|
Affiliation(s)
- Rahul Kaushik
- Kusuma
School of Biological Sciences, Indian Institute of Technology, Delhi, India
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology, Delhi, India
| | - Ankita Singh
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology, Delhi, India
- Department
of Bioinformatics, Banasthali Vidyapith, Banasthali, India
| | - B. Jayaram
- Kusuma
School of Biological Sciences, Indian Institute of Technology, Delhi, India
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology, Delhi, India
- Department
of Chemistry, Indian Institute of Technology, Delhi, India
| |
Collapse
|