1
|
Jeremy M, Gurusubramanian G, Kharwar RK, Roy VK. Evaluation of a single dose of intra-testicular insulin treatment in heat-stressed mice model. Andrologia 2022; 54:e14603. [PMID: 36156807 DOI: 10.1111/and.14603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/25/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Insulin plays important role in testicular functions such as germ cell proliferation and steroidogenesis, despite its conventional role as a hypoglycaemic agent. It is also well known that testicular activity is severely get affected by heat stress and heat stress induces testicular pathogenesis. The effect of insulin on heat-induced testicular impairment has not been investigated. Thus, it is hypothesized that insulin might modulate testicular activity in a heat-stressed model. Experimental mice were separated into 4 groups; the first group was the normal control (CN), and the second group was subjected to heat stress (HS) by submerging the lower body part in a thermostatically controlled water bath maintained at 43°C for 15 min. The third and fourth groups were treated with a single dose of intra-testicular insulin (0.6 IU/mice) before and after heat stress. Animal tissue samples were collected after 14 days of heat treatment. Insulin treatment did not improve the sperm parameters; however, both insulin pre and post-treatment improved the markers of spermatogenesis such as Johnsen score, germinal epithelium height and the number of stages VII/VIII. The histoarchitecture of testis also showed amelioration from heat-induced pathogenesis in the insulin-treated groups. Insulin treatment has also increased the proliferation of germ cells (increased PCNA and GCN), survival (Bcl2), and decreased apoptosis (active caspase-3). Furthermore, insulin treatment decreased MDA levels, without pronounced effects on the activities of antioxidant enzymes. Heat stress also decreased the circulating testosterone and oestrogen levels, and insulin treatment significantly increased oestrogen levels only. Although testosterone showed an increasing trend, it was insignificant. The expression of aromatase, AR, ER-α, and ER-β was down regulated by heat-stress and insulin treatment up regulated these markers. In conclusion, our results showed the amelioration of heat-induced testicular impairment by pre and post-intra-testicular insulin treatments. Insulin-associated improvements in the pre-and post-treatment groups suggested a preventive mechanism of insulin against heat stress in the testis.
Collapse
|
2
|
Giatti S, Mastrangelo R, D'Antonio M, Pesaresi M, Romano S, Diviccaro S, Caruso D, Mitro N, Melcangi RC. Neuroactive steroids and diabetic complications in the nervous system. Front Neuroendocrinol 2018; 48:58-69. [PMID: 28739507 DOI: 10.1016/j.yfrne.2017.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022]
Abstract
Important complications of diabetes mellitus in the nervous system are represented by diabetic peripheral neuropathy and diabetic encephalopathy. In this context, an important link is represented by neuroactive steroids (i.e., steroids coming from peripheral glands and affecting nervous functionality as well as directly synthesized in the nervous system). Indeed, diabetes does not only affect the reproductive axis and consequently the levels of sex steroid hormones, but also those of neuroactive steroids. Indeed, as will be here summarized, the levels of these neuromodulators present in the central and peripheral nervous system are affected by the pathology in a sex-dimorphic way. In addition, some of these neuroactive steroids, such as the metabolites of progesterone or testosterone, as well as pharmacological tools able to increase their levels have been demonstrated, in experimental models, to be promising protective agents against diabetic peripheral neuropathy and diabetic encephalopathy.
Collapse
Affiliation(s)
- S Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - R Mastrangelo
- Division of Genetic and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
| | - M D'Antonio
- Division of Genetic and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
| | - M Pesaresi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - S Romano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - S Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - D Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - N Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - R C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
3
|
nee Pathak ND, Kumar P, Lal B. Endocrine regulation of testosterone production by Leydig cells in the catfish, Clarias batrachus: Probable mediators of growth hormone. Anim Reprod Sci 2015; 154:158-65. [DOI: 10.1016/j.anireprosci.2015.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/08/2014] [Accepted: 01/14/2015] [Indexed: 11/24/2022]
|
4
|
MacLean JA, Hu Z, Welborn JP, Song HW, Rao MK, Wayne CM, Wilkinson MF. The RHOX homeodomain proteins regulate the expression of insulin and other metabolic regulators in the testis. J Biol Chem 2013; 288:34809-25. [PMID: 24121513 DOI: 10.1074/jbc.m113.486340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Defects in cellular metabolism have been widely implicated in causing male infertility, but there has been little progress in understanding the underlying mechanism. Here we report that several key metabolism genes are regulated in the testis by Rhox5, the founding member of a large X-linked homeobox gene cluster. Among these Rhox5-regulated genes are insulin 2 (Ins2), resistin (Retn), and adiponectin (Adipoq), all of which encode secreted proteins that have profound and wide-ranging effects on cellular metabolism. The ability of Rhox5 to regulate their levels in the testis has the potential to dictate metabolism locally in this organ, given the existence of the blood-testes barrier. We demonstrate that Ins2 is a direct target of Rhox5 in Sertoli cells, and we show that this regulation is physiologically significant, because Rhox5-null mice fail to up-regulate Ins2 expression during the first wave of spermatogenesis and have insulin-signaling defects. We identify other Rhox family members that induce Ins2 transcription, define protein domains and homeodomain amino acid residues crucial for this property, and demonstrate that this regulation is conserved. Rhox5-null mice also exhibit altered expression of other metabolism genes, including those encoding the master transcriptional regulators of metabolism, PPARG and PPARGC1A, as well as SCD1, the rate-limiting enzyme for fatty acid metabolism. These results, coupled with the known roles of RHOX5 and its target metabolism genes in spermatogenesis in vivo, lead us to propose a model in which RHOX5 is a central transcription factor that promotes the survival of male germ cells via its effects on cellular metabolism.
Collapse
Affiliation(s)
- James A MacLean
- From the Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | | | | | | | | | | | | |
Collapse
|
5
|
Guibert E, Prieur B, Cariou R, Courant F, Antignac JP, Pain B, Brillard JP, Froment P. Effects of mono-(2-ethylhexyl) phthalate (MEHP) on chicken germ cells cultured in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2771-83. [PMID: 23354615 DOI: 10.1007/s11356-013-1487-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/09/2013] [Indexed: 05/23/2023]
Abstract
In recent decades, many toxicological tests based on in vivo or in vitro models, mainly from mammalian (rat-mouse) and fish species, were used to assess the risks raised by contact or ingestion of molecules of pharmaceutical, agricultural, or natural origin. But no, or few, in vitro tests using other non-mammalian models such as bird have been explored despite their advantages: the embryonic gonads of birds have a high plasticity of development sensitive to estrogen, and sperm production is nearly two times faster than in rodents. Hence, we have established an in vitro culture of germ cells and somatic cells from chicken post-natal testis, and we have evaluated the sensitivity against the endocrine disruptor compound mono-(2-ethylhexyl) phthalate (MEHP) in comparison to previous studies using rodent and human models. After 96 h of exposure in presence of 10 μM MEHP, chicken seminiferous tubules cultures present a structural alteration, a reduction in cell proliferation and in germ cells population. Apoptosis of germ and somatic cells increases in presence of 1 μM MEHP. Furthermore, MEHP does not affect inhibin B and lactate production by Sertoli cells. These results are in accordance with previous studies using rat, mice, or human culture of testicular cells and in similar range of exposures or even better sensitivity for some "end-points" (biological parameters). In conclusion, the establishment of this postnatal testicular cells culture could be considered as an alternative method to in vivo experiments frequently used for evaluating the impact on the terrestrial wildlife species. This method could be also complementary to mammal model due to the limiting number of animals used and its elevated sensitivity.
Collapse
Affiliation(s)
- Edith Guibert
- UMR 6175 INRA CNRS Université de Tours Haras Nationaux Physiologie de Reproduction et des Comportements, 37380 Nouzilly, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Schoeller EL, Schon S, Moley KH. The effects of type 1 diabetes on the hypothalamic, pituitary and testes axis. Cell Tissue Res 2012; 349:839-47. [PMID: 22526620 DOI: 10.1007/s00441-012-1387-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/23/2012] [Indexed: 12/27/2022]
Abstract
Type 1 diabetes is an autoimmune disorder characterized by a lack of insulin production by the beta cells of the pancreas. This lack of insulin causes a variety of systemic effects on whole-body metabolism. Poorly managed type 1 diabetes can lead to cardiovascular disease, diabetic neuropathy, and diabetic retinopathy. Increasingly, even well-managed type 1 diabetic patients show damage to peripheral organs related to complications from the disease. The central role of insulin in energy homeostasis also renders it an important signaling factor in the reproductive tract. type 1 diabetes has now been demonstrated to cause defects in sperm and testes. The aim of this review is to present the known effects of insulin's role in the function of the male reproductive tract. These effects might be mediated through hormonal alterations in the hypothalamic pituitary gonadal axis or through the direct interaction of insulin on the testes and sperm cells. Although fertility complications also occur in type 2 diabetic males, this review will focus on the defects specifically linked with the lack of insulin seen in type 1 diabetes.
Collapse
Affiliation(s)
- Erica L Schoeller
- Department of Obstetrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
7
|
Grzegorzewska AK, Sechman A, Paczoska-Eliasiewicz HE, Rzasa J. The expression of pituitary FSHbeta and LHbeta mRNA and gonadal FSH and LH receptor mRNA in the chicken embryo. Reprod Biol 2010; 9:253-69. [PMID: 19997478 DOI: 10.1016/s1642-431x(12)60030-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In avian species, synthesis of sex steroids by embryonic gonads is regulated by luteinizing hormone (LH) and follicle-stimulating hormone (FSH). In order to elucidate the role of the two gonadotropins in gonadal axis development during the second half of chicken embryogenesis, pituitary expression of LH beta subunit (LHbeta) and FSH beta subunit (FSHbeta) mRNAs as well as gonadal expression of LH and FSH receptor (LHR and FSHR) mRNAs were determined on days 11 (E11) and 17 (E17) of embryonic development and after hatching (D1). In the pituitary of the female embryo, the gene expression of FSHbeta was the lowest on E11 and increased on E17. In the male pituitary, the expression of FSHbeta did not differ among the studied days. The FSHbeta mRNA expression on E11 was higher in the male than in the female pituitary gland. The expression of LHbeta mRNA in the female pituitary increased on D1 in comparison to E11. In the male pituitary gland, the expression of LHbeta gene was relatively constant. The expression of mRNA encoding FSHR in the ovary increased on E17, while in testes it did not differ among the studied days. There were no significant alterations in LHR gene expression in the ovary or in the testes in the examined period however, the gene expression on E17 was higher in the ovary than in the testes. We observed positive correlations between the pituitary FSHbeta mRNA expression and ovarian expression of FSHR mRNA (r = 0.63; p<0.01) as well as between LHbeta mRNA and LHR mRNA in the testes (r=0.65; p<0.01). The reported alterations in gene expression of FSHbeta, LHbeta and their receptors between sexes and among the stages of embryonic development indicate time- and sex-dependent action of gonadotropins in gonads of chicken embryos.
Collapse
Affiliation(s)
- Agnieszka K Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Kraków, Poland.
| | | | | | | |
Collapse
|
8
|
Dubey N, Lal B. Paracrine role of macrophage produced-nitric oxide (NO) in Leydig cell steroidogenesis in a teleost, Clarias batrachus: Impact of gonadotropin, growth hormone and insulin on NO production by testicular macrophages. Gen Comp Endocrinol 2009; 160:12-8. [PMID: 18977357 DOI: 10.1016/j.ygcen.2008.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/24/2008] [Accepted: 10/06/2008] [Indexed: 11/16/2022]
Abstract
The present in vitro study for the first time demonstrates the role of extragonadal hormones in regulation of NO production by testicular macrophages in vertebrates and paracrine role of NO in Leydig cell steroidogenesis in fishes. N-nitro L-arginine methyl ester (L-NAME - a NOS inhibitor) treatment substantially reduced NO production by testicular macrophages suggesting that testicular macrophages are one of the sources of testicular NO in the catfish, Clarias batrachus. Significant decline in NO production was also recorded following treatment of macrophages with the gonadotropin (GtH), growth hormone (GH) and insulin indicating that macrophage-produced NO is under endocrine inhibitory control. Treatment of Leydig cells with sodium nitroprusside (SNP) decreased testosterone (T) production. SNP treatment also remarkably suppressed the GtH, GH and insulin-stimulated T production by Leydig cells indicating that Leydig cell steroidogenesis is sensitive to exogenous NO. Further, effect of conditioned medium of testicular macrophages incubated with medium alone (non-treated TMCM) or GtH (GtH-treated TMCM) or GH (GH-treated TMCM) or insulin (insulin-treated TMCM) were also observed on Leydig cell T production. Non-treated TMCM as well as hormone-treated TMCM stimulated T production by Leydig cells; hormone-treated TMCM were more effective in stimulating T production than non-treated TMCM and/or hormones alone. These experiments altogether suggest that testicular macrophage secrete some factors, which influence Leydig cell steroidogenic activity through paracrine mechanism, and these paracrine secretions are under the endocrine control. Decline in NO in hormone-treated TMCM might also be one of the reasons for more stimulation in T production than that of hormones alone.
Collapse
Affiliation(s)
- Neelima Dubey
- Department of Zoology, Fish Endocrinology Laboratory, Banaras Hindu University, Varanasi, U.P., India
| | | |
Collapse
|
9
|
Velázquez PN, Peralta I, Bobes RJ, Romano MC. Insulin Stimulates Proliferation but Not 17β-Estradiol Production in Cultured Chick Embryo Ovarian Cells. Poult Sci 2006; 85:100-5. [PMID: 16493952 DOI: 10.1093/ps/85.1.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The development of the chick embryo gonads is influenced by gonadotropins [follicle-stimulating hormone (FSH), luteinizing hormone, human chorionic gonadotropin (hCG)]. We have previously shown that insulin enhanced the production of androgens in the testis of the newly hatched chicken and increased the proliferation of chick embryo testis cells. In the present paper, we have studied the effect of insulin on embryonic chick embryo ovarian cells and compared them with those of human FSH and hCG. The ovaries of 18-d-old chick embryos were dissociated and cultured for different periods in Dulbecco's modified Eagle's medium in the presence and absence of insulin, human FSH, hCG, and combinations of them. 3H-thymidine incorporation was used as an indicator of cell proliferation; steroids were measured by radioimmunoassay. Results showed that insulin enhanced the proliferation of ovarian cells in a dose- and time-dependent manner. Gonadotropins did not affect significantly the ovarian cell proliferation. Insulin did not change 17beta-estradiol production. The combination of insulin and FSH or insulin and hCG decreased the stimulation of estrogen secretion caused by the addition of the gonadotropins. In some experiments, ovarian cells were cultured with or without insulin, and subpopulations were identified. The results showed that insulin but not human FSH or hCG increased the proliferation of germinal cells after 60 h in culture. Insulin and human FSH did stimulate the other 2 subpopulations. In summary, present results suggest that insulin is an important hormone in the development of the chick embryo ovary.
Collapse
Affiliation(s)
- P N Velázquez
- Dpto de Biología Celular y Tisular, Fac Medicina, UNAM, México DF
| | | | | | | |
Collapse
|
10
|
Peralta I, Romano MC, Velázquez PN. Proliferative and Steroidogenic Effects of Follicle-Stimulating Hormone on Cultured Chick Embryo Testis Cells. Poult Sci 2004; 83:1193-8. [PMID: 15285511 DOI: 10.1093/ps/83.7.1193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The present study evaluated the follicle-stimulating hormone (FSH) effect on cell proliferation and steroid production by chick embryo testis. Dissociated cells from 18-d-old embryos were cultured on polycarbonate membranes in defined media. In some experiments, cells were further separated by a metrizamide gradient, and 5 cellular subpopulations were recovered and cultured. [3H]thymidine was added to the culture media. When necessary, 17beta-estradiol, human FSH (hFSH), recombinant human FSH (rhFSH), or human chorionic gonadotropin (hCG) was added to the medium at the beginning of the culture. The total number of cells and the incorporation of [3H]thymidine increased when hFSH or rhFSH was added. No changes were produced by the addition of hCG or 17beta-estradiol. The dose-response curve to hFSH resulted in an ED50 of 0.25 IU/mL. The stimulatory effect of hFSH on total number of cells and on [3H]thymidine incorporation was significant at 36 h of culture and was maintained up to 60 h. Testosterone production increased with the addition of FSH or rhFSH, meanwhile estradiol production was below the limit of detection of RIA. The hFSH proliferative effect measured as [3H]thymidine incorporation was observed only in the F3, F4, and F5 fractions of the density gradient. Present results show that hFSH and rhFSH, but not hCG or estradiol, stimulate testis cell proliferation in a time- and dose-dependent manner. The combination of [3H]thymidine incorporation and testosterone production in fractions obtained from the metrizamide density gradients suggests that the cell fractions of the chick embryo testis show a differential response to FSH.
Collapse
Affiliation(s)
- I Peralta
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico D. F., 04510 México
| | | | | |
Collapse
|