1
|
Bailey GL, Wells AU, Desai SR. Imaging of Pulmonary Sarcoidosis-A Review. J Clin Med 2024; 13:822. [PMID: 38337517 PMCID: PMC10856519 DOI: 10.3390/jcm13030822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Sarcoidosis is the classic multisystem granulomatous disease. First reported as a disorder of the skin, it is now clear that, in the overwhelming majority of patients with sarcoidosis, the lungs will bear the brunt of the disease. This review explores some of the key concepts in the imaging of pulmonary sarcoidosis: the wide array of typical (and some of the less common) findings on high-resolution computed tomography (HRCT) are reviewed and, with this, the concept of morphologic/HRCT phenotypes is discussed. The pathophysiologic insights provided by HRCT through studies where morphologic abnormalities and pulmonary function tests are compared are evaluated. Finally, this review outlines the important contribution of HRCT to disease monitoring and prognostication.
Collapse
Affiliation(s)
- Georgina L. Bailey
- Department of Radiology, Royal Brompton Hospital, London SW3 6NP, UK (S.R.D.)
| | - Athol U. Wells
- The Interstitial Lung Disease Unit, Royal Brompton Hospital, London SW3 6NP, UK
- The National Heart & Lung Institute, Imperial College London, London W12 7RQ, UK
- The Margaret Turner-Warwick Centre for Fibrosing Lung Diseases, Imperial College London, London W12 7RQ, UK
| | - Sujal R. Desai
- Department of Radiology, Royal Brompton Hospital, London SW3 6NP, UK (S.R.D.)
- The National Heart & Lung Institute, Imperial College London, London W12 7RQ, UK
- The Margaret Turner-Warwick Centre for Fibrosing Lung Diseases, Imperial College London, London W12 7RQ, UK
| |
Collapse
|
2
|
Wucherpfennig L, Kauczor HU, Eichinger M, Wielpütz MO. [Magnetic resonance imaging of the lung : State of the art]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:849-862. [PMID: 37851088 DOI: 10.1007/s00117-023-01229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Due to the low proton density of the lung parenchyma and the rapid signal decay at the air-tissue interfaces, for a long time the lungs were difficult to access using magnetic resonance imaging (MRI); however, technical advances could address most of these obstacles. Pulmonary alterations associated with tissue proliferation ("plus pathologies"), can now be detected with high diagnostic accuracy because of the locally increased proton density. Compared to computed tomography (CT), MRI provides a comprehensive range of functional imaging procedures (respiratory mechanics, perfusion and ventilation). In addition, as a radiation-free noninvasive examination modality, it enables repeated examinations for assessment of the course or monitoring of the effects of treatment, even in children. This article discusses the technical aspects, gives suggestions for protocols and explains the role of MRI of the lungs in the routine assessment of various diseases.
Collapse
Affiliation(s)
- Lena Wucherpfennig
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Hans-Ulrich Kauczor
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Monika Eichinger
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Mark O Wielpütz
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland.
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland.
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland.
| |
Collapse
|
3
|
Hobbs SB, Chung JH, Walker CM, Bang TJ, Carter BW, Christensen JD, Danoff SK, Kandathil A, Madan R, Moore WH, Shah SD, Kanne JP. ACR Appropriateness Criteria® Diffuse Lung Disease. J Am Coll Radiol 2021; 18:S320-S329. [PMID: 34794591 DOI: 10.1016/j.jacr.2021.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022]
Abstract
Diffuse lung disease, frequently referred to as interstitial lung disease, encompasses numerous disorders affecting the lung parenchyma. The potential etiologies of diffuse lung disease are broad with several hundred established clinical syndromes and pathologies currently identified. Imaging plays a critical role in diagnosis and follow-up of many of these diseases, although multidisciplinary discussion is the current standard for diagnosis of several DLDs. This document aims to establish guidelines for evaluation of diffuse lung diseases for 1) initial imaging of suspected diffuse lung disease, 2) initial imaging of suspected acute exacerbation or acute deterioration in cases of confirmed diffuse lung disease, and 3) clinically indicated routine follow-up of confirmed diffuse lung disease without acute deterioration. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
- Stephen B Hobbs
- Vice-Chair, Informatics and Integrated Clinical Operations and Division Chief, Cardiovascular and Thoracic Radiology, University of Kentucky, Lexington, Kentucky.
| | - Jonathan H Chung
- Panel Chair; and Vice-Chair of Quality, and Section Chief, Chest Imaging, Department of Radiology, University of Chicago, Chicago, Illinois
| | | | - Tami J Bang
- Co-Director, Cardiothoracic Imaging Fellowship Committee, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado; Co-Chair, membership committee, NASCI; and Membership committee, ad-hoc online content committee, STR
| | - Brett W Carter
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared D Christensen
- Vice-Chair, Department of Radiology, Duke University Medical Center, Durham, North Carolina; and Chair, ACR Lungs-RADS
| | - Sonye K Danoff
- Johns Hopkins Medicine, Baltimore, Maryland; Board of Directors, American Thoracic Society; Senior Medical Advisor, Pulmonary Fibrosis Foundation; and Medical Advisory Board Member, The Myositis Association
| | | | - Rachna Madan
- Associate Fellowship Director, Division of Thoracic Imaging, Brigham & Women's Hospital, Boston, Massachusetts
| | - William H Moore
- Associate Chair, Clinical Informatics and Chief, Thoracic Imaging, New York University Langone Medical Center, New York, New York
| | - Sachin D Shah
- Associate Chief and Medical Information Officer, University of Chicago, Chicago, Illinois; and Primary care physician
| | - Jeffrey P Kanne
- Specialty Chair, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
4
|
Novelties in Imaging of Thoracic Sarcoidosis. J Clin Med 2021; 10:jcm10112222. [PMID: 34063811 PMCID: PMC8196662 DOI: 10.3390/jcm10112222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 01/14/2023] Open
Abstract
Sarcoidosis is a systemic granulomatous disease affecting various organs, and the lungs are the most commonly involved. According to guidelines, diagnosis relies on a consistent clinical picture, histological demonstration of non-caseating granulomas, and exclusion of other diseases with similar histological or clinical picture. Nevertheless, chest imaging plays an important role in both diagnostic assessment, allowing to avoid biopsy in some situations, and prognostic evaluation. Despite the demonstrated lower sensitivity of chest X-ray (CXR) in the evaluation of chest findings compared to high-resolution computed tomography (HRCT), CXR still retains a pivotal role in both diagnostic and prognostic assessment in sarcoidosis. Moreover, despite the huge progress made in the field of radiation dose reduction, chest magnetic resonance (MR), and quantitative imaging, very little research has focused on their application in sarcoidosis. In this review, we aim to describe the latest novelties in diagnostic and prognostic assessment of thoracic sarcoidosis and to identify the fields of research that require investigation.
Collapse
|
5
|
|
6
|
Lonzetti L, Zanon M, Pacini GS, Altmayer S, Martins de Oliveira D, Rubin AS, Gazzoni FF, Barros MC, Hochhegger B. Magnetic resonance imaging of interstitial lung diseases: A state-of-the-art review. Respir Med 2019; 155:79-85. [PMID: 31323528 DOI: 10.1016/j.rmed.2019.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/31/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023]
Abstract
Magnetic resonance imaging (MRI) has been emerging as an imaging modality to assess interstitial lung diseases (ILD). An optimal chest MRI protocol for ILDs should include non-contrast breath-holding sequences, steady-state free-precession sequences, and contrast-enhanced sequences. One of the main MRI applications in ILDs is the differentiation between areas of active inflammation (i.e. reversible stage) and fibrosis. Alveolitis presents high signal intensity on T2-weighted sequences (WS) and early-enhancement on contrast-enhanced MR sequences, while fibrotic-predominant lesions present low signal and late-enhancement in these sequences, respectively. MRI can be useful in connective tissue diseases, idiopathic pulmonary fibrosis, and sarcoidosis. The aim of this state-of-the-art review was to perform a state-of-the-art review on the use of MRI in ILDs, and propose the optimal MRI protocols for imaging ILDs.
Collapse
Affiliation(s)
- Lilian Lonzetti
- Department of Rheumatology, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, R. Sarmento Leite, 245, 90050-170, Brazil.
| | - Matheus Zanon
- Medical Imaging Research Lab, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil.
| | - Gabriel Sartori Pacini
- Medical Imaging Research Lab, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil.
| | - Stephan Altmayer
- Medical Imaging Research Lab, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil; School of Medicine, Postgraduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Av. Ipiranga, 6681, 90619-900, Brazil.
| | - Diogo Martins de Oliveira
- School of Medicine, Postgraduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Av. Ipiranga, 6681, 90619-900, Brazil.
| | - Adalberto Sperb Rubin
- Department of Pulmonology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil.
| | - Fernando Ferreira Gazzoni
- Medical Imaging Research Lab, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil.
| | - Marcelo Cardoso Barros
- Medical Imaging Research Lab, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil; School of Medicine, Postgraduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Av. Ipiranga, 6681, 90619-900, Brazil; Department of Pulmonology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil.
| | - Bruno Hochhegger
- Medical Imaging Research Lab, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil; School of Medicine, Postgraduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Av. Ipiranga, 6681, 90619-900, Brazil; Department of Pulmonology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil.
| |
Collapse
|
7
|
Llabres M, Brito-Zerón P, Ramos-Casals M, Sellares J. Synthetic pharmacotherapy for pulmonary sarcoidosis. Expert Opin Pharmacother 2019; 20:1397-1404. [PMID: 31090462 DOI: 10.1080/14656566.2019.1615054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Sarcoidosis is a granulomatous systemic disease of unknown cause where the lungs are the most frequently affected. Therapeutic management of the disease is challenging as clinical presentation and prognosis are very heterogeneous. AREAS COVERED This review summarizes the current knowledge of synthetic therapies for pulmonary sarcoidosis. The most commonly used medication for the treatment of sarcoidosis with lung involvement are glucocorticoids. Nevertheless, not all patients reach an acceptable response or tolerate them and the use of second-line treatments like immunosuppressive agents are necessary. Other kind of drugs could be used but there is no solid evidence and most of them are currently under investigation. EXPERT OPINION The majority of patients with pulmonary sarcoidosis do not require treatment and their sarcoidotic lung lesions could regress. However, it is important to treat the disease in those cases that could develop organ failure. Although the number of studies of therapies for pulmonary sarcoidosis have increased in recent years, the information available is still limited and there is no consensus on how to monitor the activity of the disease.
Collapse
Affiliation(s)
- Marta Llabres
- a Interstitial Lung Disease Program, Servei de Pneumologia, ICR, Hospital Clínic, Barcelona.- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , University of Barcelona , Barcelona , Spain
| | - Pilar Brito-Zerón
- b Department of Autoimmune Diseases , Laboratory of Autoimmune Diseases Josep Font, IDIBAPS-CELLEX , Barcelona , Spain.,c Department of Medicine , Autoimmune Diseases Unit , Barcelona , Spain.,d SarcoGEAS-SEMI Study Group , Study Group of Autoimmune Diseases (GEAS), Spanish Society of Internal Medicine (SEMI) , Barcelona , Spain
| | - Manuel Ramos-Casals
- b Department of Autoimmune Diseases , Laboratory of Autoimmune Diseases Josep Font, IDIBAPS-CELLEX , Barcelona , Spain.,d SarcoGEAS-SEMI Study Group , Study Group of Autoimmune Diseases (GEAS), Spanish Society of Internal Medicine (SEMI) , Barcelona , Spain
| | - Jacobo Sellares
- a Interstitial Lung Disease Program, Servei de Pneumologia, ICR, Hospital Clínic, Barcelona.- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , University of Barcelona , Barcelona , Spain.,e Centro de Investigaciones biomedicas En Red-Enfermedades Respiratorias (CibeRes CB06/06/0028)-ISCIII , Barcelona , Spain
| |
Collapse
|
8
|
Chassagnon G, Martin C, Marini R, Vakalopolou M, Régent A, Mouthon L, Paragios N, Revel MP. Use of Elastic Registration in Pulmonary MRI for the Assessment of Pulmonary Fibrosis in Patients with Systemic Sclerosis. Radiology 2019; 291:487-492. [PMID: 30835186 DOI: 10.1148/radiol.2019182099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Current imaging methods are not sensitive to changes in pulmonary function resulting from fibrosis. MRI with ultrashort echo time can be used to image the lung parenchyma and lung motion. Purpose To evaluate elastic registration of inspiratory-to-expiratory lung MRI for the assessment of pulmonary fibrosis in study participants with systemic sclerosis (SSc). Materials and Methods This prospective study was performed from September 2017 to March 2018 and recruited healthy volunteers and participants with SSc and high-resolution CT (within the previous 3 months) of the chest for lung MRI. Two breath-hold, coronal, three-dimensional, ultrashort-echo-time, gradient-echo sequences of the lungs were acquired after full inspiration and expiration with a 3.0-T unit. Images were registered from inspiration to expiration by using an elastic registration algorithm. Jacobian determinants were calculated from deformation fields and represented on color maps. Similarity between areas with marked shrinkage and logarithm of Jacobian determinants less than -0.15 were compared between healthy volunteers and study participants with SSc. Receiver operating characteristic curve analysis was performed to determine the best Dice similarity coefficient threshold for diagnosis of fibrosis. Results Sixteen participants with SSc (seven with pulmonary fibrosis at high-resolution CT) and 11 healthy volunteers were evaluated. Areas of marked shrinkage during expiration with logarithm of Jacobian determinants less than -0.15 were found in the posterior lung bases of healthy volunteers and in participants with SSc without fibrosis, but not in participants with fibrosis. The sensitivity and specificity of MRI for presence of fibrosis at high-resolution CT were 86% and 75%, respectively (area under the curve, 0.81; P = .04) by using a threshold of 0.36 for Dice similarity coefficient. Conclusion Elastic registration of inspiratory-to-expiratory MRI shows less lung base respiratory deformation in study participants with systemic sclerosis-related pulmonary fibrosis compared with participants without fibrosis. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Biederer in this issue.
Collapse
Affiliation(s)
- Guillaume Chassagnon
- From the Department of Radiology, Groupe Hospitalier Cochin-Hôtel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (G.C., C.M., M.P.R.); Center for Visual Computing, École CentraleSupélec, Gif-sur-Yvette, France (G.C., M.V., N.P.); TheraPanacea, Pépinière Santé Cochin, Paris, France (R.M., N.P.); and Department of Internal Medicine, Reference Center for Rare Systemic Autoimmune Diseases of Île de France, Hôpital Cochin, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (A.R., L.M.)
| | - Charlotte Martin
- From the Department of Radiology, Groupe Hospitalier Cochin-Hôtel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (G.C., C.M., M.P.R.); Center for Visual Computing, École CentraleSupélec, Gif-sur-Yvette, France (G.C., M.V., N.P.); TheraPanacea, Pépinière Santé Cochin, Paris, France (R.M., N.P.); and Department of Internal Medicine, Reference Center for Rare Systemic Autoimmune Diseases of Île de France, Hôpital Cochin, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (A.R., L.M.)
| | - Rafael Marini
- From the Department of Radiology, Groupe Hospitalier Cochin-Hôtel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (G.C., C.M., M.P.R.); Center for Visual Computing, École CentraleSupélec, Gif-sur-Yvette, France (G.C., M.V., N.P.); TheraPanacea, Pépinière Santé Cochin, Paris, France (R.M., N.P.); and Department of Internal Medicine, Reference Center for Rare Systemic Autoimmune Diseases of Île de France, Hôpital Cochin, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (A.R., L.M.)
| | - Maria Vakalopolou
- From the Department of Radiology, Groupe Hospitalier Cochin-Hôtel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (G.C., C.M., M.P.R.); Center for Visual Computing, École CentraleSupélec, Gif-sur-Yvette, France (G.C., M.V., N.P.); TheraPanacea, Pépinière Santé Cochin, Paris, France (R.M., N.P.); and Department of Internal Medicine, Reference Center for Rare Systemic Autoimmune Diseases of Île de France, Hôpital Cochin, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (A.R., L.M.)
| | - Alexis Régent
- From the Department of Radiology, Groupe Hospitalier Cochin-Hôtel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (G.C., C.M., M.P.R.); Center for Visual Computing, École CentraleSupélec, Gif-sur-Yvette, France (G.C., M.V., N.P.); TheraPanacea, Pépinière Santé Cochin, Paris, France (R.M., N.P.); and Department of Internal Medicine, Reference Center for Rare Systemic Autoimmune Diseases of Île de France, Hôpital Cochin, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (A.R., L.M.)
| | - Luc Mouthon
- From the Department of Radiology, Groupe Hospitalier Cochin-Hôtel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (G.C., C.M., M.P.R.); Center for Visual Computing, École CentraleSupélec, Gif-sur-Yvette, France (G.C., M.V., N.P.); TheraPanacea, Pépinière Santé Cochin, Paris, France (R.M., N.P.); and Department of Internal Medicine, Reference Center for Rare Systemic Autoimmune Diseases of Île de France, Hôpital Cochin, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (A.R., L.M.)
| | - Nikos Paragios
- From the Department of Radiology, Groupe Hospitalier Cochin-Hôtel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (G.C., C.M., M.P.R.); Center for Visual Computing, École CentraleSupélec, Gif-sur-Yvette, France (G.C., M.V., N.P.); TheraPanacea, Pépinière Santé Cochin, Paris, France (R.M., N.P.); and Department of Internal Medicine, Reference Center for Rare Systemic Autoimmune Diseases of Île de France, Hôpital Cochin, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (A.R., L.M.)
| | - Marie-Pierre Revel
- From the Department of Radiology, Groupe Hospitalier Cochin-Hôtel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (G.C., C.M., M.P.R.); Center for Visual Computing, École CentraleSupélec, Gif-sur-Yvette, France (G.C., M.V., N.P.); TheraPanacea, Pépinière Santé Cochin, Paris, France (R.M., N.P.); and Department of Internal Medicine, Reference Center for Rare Systemic Autoimmune Diseases of Île de France, Hôpital Cochin, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France (A.R., L.M.)
| |
Collapse
|
9
|
Abstract
Pulmonary hypertension (PH) is characterized by elevated pulmonary arterial pressure caused by a broad spectrum of congenital and acquired disease processes, which are currently divided into five groups based on the 2013 WHO classification. Imaging plays an important role in the evaluation and management of PH, including diagnosis, establishing etiology, quantification, prognostication and assessment of response to therapy. Multiple imaging modalities are available, including radiographs, computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine, echocardiography and invasive catheter angiography (ICA), each with their own advantages and disadvantages. In this article, we review the comprehensive role of imaging in the evaluation of PH.
Collapse
Affiliation(s)
- Harold Goerne
- IMSS Centro Medico Nacional De Occidente, Guadalajara, Jalisco, Mexico.,CID Imaging and Diagnostic Center, Guadalajara, Jalisco, Mexico
| | - Kiran Batra
- Radiology Department, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Prabhakar Rajiah
- Radiology Department, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Bhalla AS, Das A, Naranje P, Goyal A, Guleria R, Khilnani GC. Dilemma of diagnosing thoracic sarcoidosis in tuberculosis-endemic regions: An imaging-based approach. Part 2. Indian J Radiol Imaging 2017; 27:380-388. [PMID: 29379231 PMCID: PMC5761163 DOI: 10.4103/ijri.ijri_201_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The second part of the review discusses the role of different existing imaging modalities in the evaluation of thoracic sarcoidosis, including chest radiograph, computed tomography, magnetic resonance imaging, endobronchial ultrasound, and positron emission tomography. While summarizing the advantages and pitfalls of each imaging modality, the authors propose imaging recommendations and an algorithm to be followed in the evaluation of clinically suspected case of sarcoidosis in tuberculosis-endemic regions.
Collapse
Affiliation(s)
- Ashu S Bhalla
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - A Das
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - P Naranje
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - A Goyal
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - R Guleria
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Gopi C Khilnani
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Gorkem SB, Köse S, Lee EY, Doğanay S, Coskun AS, Köse M. Thoracic MRI evaluation of sarcoidosis in children. Pediatr Pulmonol 2017; 52:494-499. [PMID: 27797454 DOI: 10.1002/ppul.23614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/27/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Childhood sarcoidosis is a very rare granulomatous disorder with an unknown etiology. Stage 1 disease is the most common whereas stages 2, 3, and 0 are rare in children. OBJECTIVE To evaluate thoracic findings of pediatric pulmonary sarcoidosis on MRI and to compare them with CT findings. METHODS Between August 2010 and May 2015, seven consecutive pediatric patients (four male, three female; age range: 8-18 years, mean age: 13.5 ± 3.01 years) who were diagnosed with sarcoidosis were enrolled in our study prospectively. Inclusion criterion was patients with stages 1-4 sarcoidosis who underwent contrast enhanced chest CT for initial diagnosis or follow-up evaluation of thoracic findings and exclusion criteria were patients with stage 0 disease with extra-pulmonary manifestations (n = 4). RESULTS Two patients who recovered from stage 2 to stage 0 were interpreted as normal. Five patients had abnormal findings on chest CT, including hilar/mediastinal lymphadenopathy (n = 5, 71%), nodules larger than 3 mm (n = 4, 57%), ground glass opacity (n = 4, 57%), thickening of the pleura/fissure (n = 3, 42%), interlobular septal thickening (n = 2, 28%), atelectasis (n = 1, 14%), consolidation (n = 1, 14%), bronchiectasis (n = 1, 14%), intraparenchymal and subpleural cysts (n = 1,14%), fibrotic bands (n = 1, 14%), and enlarged pulmonary artery (n = 1, 14%). Findings that were detected on CT but not observed by lung MRI were nodules <3 mm (n = 4, 57%), mild bronchiectasis and mild ground glass opacity (n = 1, 14%), and subpleural and intraparenchymal cysts (n = 1, 14%). The sensitivity and specificity of MRI were 85.2% and 100%, respectively. There was no statistically significant difference between lung MRI and CT in detecting the thoracic findings in stages 1, 2, and 4 sarcoidosis (P = 0.1336, 95%Cl). CONCLUSION Contrast-enhanced lung MRI with fast imaging sequences is a highly sensitive imaging modality and comparable with CT in evaluating both lung and cardiac abnormalities in pediatric sarcoidosis. Given there is no associated ionizing radiation, chest MRI is a promising imaging modality in this pediatric patient population. Pediatr Pulmonol. 2017;52:494-499. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sureyya Burcu Gorkem
- Pediatric Radiology Section, Department of Radiology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Seçil Köse
- Kayseri Eğitim ve Arastırma Hastanesi, Erkilet Çocuk Hastanesi Pediatri Bölümü, Kayseri, Turkey
| | - Edward Y Lee
- Departments of Radiology and Medicine, Pulmonary Division, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Selim Doğanay
- Pediatric Radiology Section, Department of Radiology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Ayse Seda Coskun
- Department of Pediatrics, Erciyes University School of Medicine, Kayseri, Turkey
| | - Mehmet Köse
- Division of Pediatric Pulmonology, Department of Pediatrics, Erciyes University School of Medicine, Kayseri, Turkey
| |
Collapse
|