1
|
Wu H, Feng E, Yin H, Zhang Y, Chen G, Zhu B, Yue X, Zhang H, Liu Q, Xiong L. Biomaterials for neuroengineering: applications and challenges. Regen Biomater 2025; 12:rbae137. [PMID: 40007617 PMCID: PMC11855295 DOI: 10.1093/rb/rbae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/19/2024] [Accepted: 11/03/2024] [Indexed: 02/27/2025] Open
Abstract
Neurological injuries and diseases are a leading cause of disability worldwide, underscoring the urgent need for effective therapies. Neural regaining and enhancement therapies are seen as the most promising strategies for restoring neural function, offering hope for individuals affected by these conditions. Despite their promise, the path from animal research to clinical application is fraught with challenges. Neuroengineering, particularly through the use of biomaterials, has emerged as a key field that is paving the way for innovative solutions to these challenges. It seeks to understand and treat neurological disorders, unravel the nature of consciousness, and explore the mechanisms of memory and the brain's relationship with behavior, offering solutions for neural tissue engineering, neural interfaces and targeted drug delivery systems. These biomaterials, including both natural and synthetic types, are designed to replicate the cellular environment of the brain, thereby facilitating neural repair. This review aims to provide a comprehensive overview for biomaterials in neuroengineering, highlighting their application in neural functional regaining and enhancement across both basic research and clinical practice. It covers recent developments in biomaterial-based products, including 2D to 3D bioprinted scaffolds for cell and organoid culture, brain-on-a-chip systems, biomimetic electrodes and brain-computer interfaces. It also explores artificial synapses and neural networks, discussing their applications in modeling neural microenvironments for repair and regeneration, neural modulation and manipulation and the integration of traditional Chinese medicine. This review serves as a comprehensive guide to the role of biomaterials in advancing neuroengineering solutions, providing insights into the ongoing efforts to bridge the gap between innovation and clinical application.
Collapse
Affiliation(s)
- Huanghui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Enduo Feng
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Huanxin Yin
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yuxin Zhang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Guozhong Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Beier Zhu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xuezheng Yue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China
| | - Qiong Liu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
2
|
Hayashi K, Zhang C, Taleb Alashkar AN, Ishikawa K. Carbonate Apatite Honeycomb Scaffold-Based Drug Delivery System for Repairing Osteoporotic Bone Defects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45956-45968. [PMID: 39182190 PMCID: PMC11378151 DOI: 10.1021/acsami.4c08047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Osteoporotic bone defects are difficult to repair in elderly patients. This study aimed to repair osteoporotic bone defects using a combination of bone tissue engineering (BTE) and drug delivery systems (DDS). Herein, honeycomb granules (HCGs) composed of carbonate apatite microspheres were fabricated as BTE scaffolds. Each HCG possesses hexagonal macropores and abundant interconnected micropores between the microspheres. Owing to these multiscale interconnected pores, HCGs can readily contain antibodies against sclerostin (Scl), which causes imbalances in bone homeostasis. Anti-Scl antibody-loaded HCGs (Scl-Ab-HCGs) regulate the release of Scl-Abs in response to the pH of the osteoporotic environment. In ovariectomized rabbit osteoporotic femurs, HCG monotherapy forms new bone with less osteocyte damage (fewer empty bone lacunae) and fewer osteoclasts than osteoporotic bone; however, it is insufficient to prevent receptor activator of nuclear factor-kappa B ligand (RANKL) overexpression. Consequently, HCG monotherapy restores bone quantity better than no treatment but not to normal levels. In contrast, new bone tissue formed by Scl-Ab-HCG-based DDS predominantly expresses osteocalcin rather than RANKL, similar to normal bone, and shows a similar osteocyte apoptosis level, bone quantity, and osteoclast number as normal bone. Thus, Scl-Ab-HCG-based DDS is a promising approach for osteoporotic bone defect repair.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Cheng Zhang
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ahmad Nazir Taleb Alashkar
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
3
|
Li H, Guan Z, Wei L, Lu J, Tan Y, Wei Q. In situ co-deposition synthesis for collagen-Astragalus polysaccharide composite with intrafibrillar mineralization as potential biomimetic-bone repair materials. Regen Biomater 2024; 11:rbae070. [PMID: 39022124 PMCID: PMC11254354 DOI: 10.1093/rb/rbae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 07/20/2024] Open
Abstract
A hybrid material possessing both componential and structural imitation of bone tissue is the preferable composites for bone defect repair. Inspired by the microarchitecture of native bone, this work synthesized in vitro a functional mineralized collagen fibril (MCF) material by utilizing the method of in situ co-precipitation, which was designed to proceed in the presence of Astragalus polysaccharide (APS), thus achieving APS load within the biomineralized collagen-Astragalus polysaccharide (MCAPS) fibrils. Transmission electron microscope (TEM), selected area electron diffraction (SAED) and scanning electronic microscopy (SEM) identified the details of the intrafibrillar mineralization of the MCAPS fibrils, almost mimicking the secondary level of bone tissue microstructure. A relatively uniform and continuous mineral layer formed on and within all collagen fibrils and the mineral phase was identified as typical weak-crystalline hydroxyapatite (HA) with a Ca/P ratio of about 1.53. The proliferation of bone marrow-derived mesenchymal stem cells (BMSC) and mouse embryo osteoblast precursor cells (MC3T3-E1) obtained a significant promotion by MCAPS. As for the osteogenic properties of MCAPS, a distinct increase in the alkaline phosphatase (ALP) activity and the number of calcium nodules (CN) in BMSC and MC3T3-E1 was detected. The up-regulation of three osteogenic-related genes of RUNX-2, BMP-2 and OCN were confirmed via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to further verify the osteogenic performance promotion of MCAPS. A period of 14 days of culture demonstrated that MCAPS-L exhibited a preferable efficacy in enhancing ALP activity and CN quantity, as well as in promoting the expression of osteogenic-related genes over MCAPS-M and MCAPS-H, indicating that a lower dose of APS within the material of MCAPS is more appropriate for its osteogenesis promotion properties.
Collapse
Affiliation(s)
- Han Li
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Ziying Guan
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Liren Wei
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jian Lu
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yanfei Tan
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Qingrong Wei
- National Engineering Research Center for Biomaterials (NERCB), Sichuan University, Chengdu 610065, P.R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
4
|
Wang Y, Wu H, Chen Z, Cao J, Zhu X, Zhang X. Nano-hydroxyapatite promotes cell apoptosis by co-activating endoplasmic reticulum stress and mitochondria damage to inhibit glioma growth. Regen Biomater 2024; 11:rbae038. [PMID: 38799701 PMCID: PMC11127112 DOI: 10.1093/rb/rbae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 05/29/2024] Open
Abstract
Despite a growing body of studies demonstrating the specific anti-tumor effect of nano-hydroxyapatite (n-HA), the underlying mechanism remained unclear. Endoplasmic reticulum (ER) and mitochondria are two key players in intracellular Ca2+ homeostasis and both require Ca2+ to participate. Moreover, the ER-mitochondria interplay coordinates the maintenance of cellular Ca2+ homeostasis to prevent any negative consequences from excess of Ca2+, hence there needs in-depth study of n-HA effect on them. In this study, we fabricated needle-like n-HA to investigate the anti-tumor effectiveness as well as the underlying mechanisms from cellular and molecular perspectives. Data from in vitro experiments indicated that the growth and invasion of glioma cells were obviously reduced with the aid of n-HA. It is interesting to note that the expression of ER stress biomarkers (GRP78, p-IRE1, p-PERK, PERK, and ATF6) were all upregulated after n-HA treatment, along with the activation of the pro-apoptotic transcription factor CHOP, showing that ER stress produced by n-HA triggered cell apoptosis. Moreover, the increased expression level of intracellular reactive oxygen species and the mitochondrial membrane depolarization, as well as the downstream cell apoptotic signaling activation, further demonstrated the pro-apoptotic roles of n-HA induced Ca2+ overload through inducing mitochondria damage. The in vivo data provided additional evidence that n-HA caused ER stress and mitochondria damage in cells and effectively restrain the growth of glioma tumors. Collectively, the work showed that n-HA co-activated intracellular ER stress and mitochondria damage are critical triggers for cancer cells apoptosis, offering fresh perspectives on ER-mitochondria targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Yifu Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Medical School, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Institute of tissue engineering and stem cells, Nanchong Central Hospital, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
5
|
Keshavarz M, Alizadeh P, Kadumudi FB, Orive G, Gaharwar AK, Castilho M, Golafshan N, Dolatshahi-Pirouz A. Multi-leveled Nanosilicate Implants Can Facilitate Near-Perfect Bone Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21476-21495. [PMID: 37073785 PMCID: PMC10165608 DOI: 10.1021/acsami.3c01717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Several studies have shown that nanosilicate-reinforced scaffolds are suitable for bone regeneration. However, hydrogels are inherently too soft for load-bearing bone defects of critical sizes, and hard scaffolds typically do not provide a suitable three-dimensional (3D) microenvironment for cells to thrive, grow, and differentiate naturally. In this study, we bypass these long-standing challenges by fabricating a cell-free multi-level implant consisting of a porous and hard bone-like framework capable of providing load-bearing support and a softer native-like phase that has been reinforced with nanosilicates. The system was tested with rat bone marrow mesenchymal stem cells in vitro and as a cell-free system in a critical-sized rat bone defect. Overall, our combinatorial and multi-level implant design displayed remarkable osteoconductivity in vitro without differentiation factors, expressing significant levels of osteogenic markers compared to unmodified groups. Moreover, after 8 weeks of implantation, histological and immunohistochemical assays indicated that the cell-free scaffolds enhanced bone repair up to approximately 84% following a near-complete defect healing. Overall, our results suggest that the proposed nanosilicate bioceramic implant could herald a new age in the field of orthopedics.
Collapse
Affiliation(s)
- Mozhgan Keshavarz
- Department
of Materials Science and Engineering, Faculty of Engineering &
Technology, Tarbiat Modares University, P.O. Box 14115-143, Tehran 14115-143, Iran
- NanoBioCel
Research Group, School of Pharmacy, University
of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Parvin Alizadeh
- Department
of Materials Science and Engineering, Faculty of Engineering &
Technology, Tarbiat Modares University, P.O. Box 14115-143, Tehran 14115-143, Iran
| | - Firoz Babu Kadumudi
- DTU
Health Tech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Gorka Orive
- NanoBioCel
Research Group, School of Pharmacy, University
of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical
Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
- University
Institute for Regenerative Medicine and Oral Implantology—UIRMI
(UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz 01006, Spain
- Bioaraba,
NanoBioCel Research Group, Vitoria-Gasteiz 01006, Spain
| | - Akhilesh K. Gaharwar
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College
Station, Texas TX 77843, United States
| | - Miguel Castilho
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5612 AE, The Netherlands
- Department
of Orthopedics, University Medical Center
Utrecht, Utrecht University, Utrecht 3508 GA, The Netherlands
| | - Nasim Golafshan
- Department
of Orthopedics, University Medical Center
Utrecht, Utrecht University, Utrecht 3508 GA, The Netherlands
| | - Alireza Dolatshahi-Pirouz
- DTU
Health Tech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
6
|
Zhou Q, Chen W, Gu C, Liu H, Hu X, Deng L, He W, Xu Y, Zhu X, Yang H, Chen X, He F, Liu T. Selenium-modified bone cement promotes osteoporotic bone defect repair in ovariectomized rats by restoring GPx1-mediated mitochondrial antioxidant functions. Regen Biomater 2023; 10:rbad011. [PMID: 36852397 PMCID: PMC9960915 DOI: 10.1093/rb/rbad011] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Over-accumulation of reactive oxygen species (ROS) causes mitochondrial dysfunction and impairs the osteogenic potential of bone marrow-derived mesenchymal stem cells (BMMSCs). Selenium (Se) protects BMMSCs from oxidative stress-induced damage; however, it is unknown whether Se supplementation can promote the repair of osteoporotic bone defects by rescuing the impaired osteogenic potential of osteoporotic BMMSCs (OP-BMMSCs). In vitro treatment with sodium selenite (Na2SeO3) successfully improved the osteogenic differentiation of OP-BMMSCs, as demonstrated by increased matrix mineralization and up-regulated osteogenic genes expression. More importantly, Na2SeO3 restored the impaired mitochondrial functions of OP-BMMSCs, significantly up-regulated glutathione peroxidase 1 (GPx1) expression and attenuated the intracellular ROS and mitochondrial superoxide. Silencing of Gpx1 completely abrogated the protective effects of Na2SeO3 on mitochondrial functions of OP-BMMSCs, suggesting the important role of GPx1 in protecting OP-BMMSCs from oxidative stress. We further fabricated Se-modified bone cement based on silk fibroin and calcium phosphate cement (SF/CPC). After 8 weeks of implantation, Se-modified bone cement significantly promoted bone defect repair, evidenced by the increased new bone tissue formation and enhanced GPx1 expression in ovariectomized rats. These findings revealed that Se supplementation rescued mitochondrial functions of OP-BMMSCs through activation of the GPx1-mediated antioxidant pathway, and more importantly, supplementation with Se in SF/CPC accelerated bone regeneration in ovariectomized rats, representing a novel strategy for treating osteoporotic bone fractures or defects.
Collapse
Affiliation(s)
| | | | | | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiayu Hu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Lei Deng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Wei He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yong Xu
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Xi Chen
- Correspondence address. Tel: +86 519 68870891, E-mail: (X.C.); Tel: +86 512 67781420, E-mail: (T.L.); Tel: +86 512 67781420, E-mail: (F.H.)
| | - Fan He
- Correspondence address. Tel: +86 519 68870891, E-mail: (X.C.); Tel: +86 512 67781420, E-mail: (T.L.); Tel: +86 512 67781420, E-mail: (F.H.)
| | - Tao Liu
- Correspondence address. Tel: +86 519 68870891, E-mail: (X.C.); Tel: +86 512 67781420, E-mail: (T.L.); Tel: +86 512 67781420, E-mail: (F.H.)
| |
Collapse
|
7
|
Cao D, Ding J. Recent advances in regenerative biomaterials. Regen Biomater 2022; 9:rbac098. [PMID: 36518879 PMCID: PMC9745784 DOI: 10.1093/rb/rbac098] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 07/22/2023] Open
Abstract
Nowadays, biomaterials have evolved from the inert supports or functional substitutes to the bioactive materials able to trigger or promote the regenerative potential of tissues. The interdisciplinary progress has broadened the definition of 'biomaterials', and a typical new insight is the concept of tissue induction biomaterials. The term 'regenerative biomaterials' and thus the contents of this article are relevant to yet beyond tissue induction biomaterials. This review summarizes the recent progress of medical materials including metals, ceramics, hydrogels, other polymers and bio-derived materials. As the application aspects are concerned, this article introduces regenerative biomaterials for bone and cartilage regeneration, cardiovascular repair, 3D bioprinting, wound healing and medical cosmetology. Cell-biomaterial interactions are highlighted. Since the global pandemic of coronavirus disease 2019, the review particularly mentions biomaterials for public health emergency. In the last section, perspectives are suggested: (i) creation of new materials is the source of innovation; (ii) modification of existing materials is an effective strategy for performance improvement; (iii) biomaterial degradation and tissue regeneration are required to be harmonious with each other; (iv) host responses can significantly influence the clinical outcomes; (v) the long-term outcomes should be paid more attention to; (vi) the noninvasive approaches for monitoring in vivo dynamic evolution are required to be developed; (vii) public health emergencies call for more research and development of biomaterials; and (viii) clinical translation needs to be pushed forward in a full-chain way. In the future, more new insights are expected to be shed into the brilliant field-regenerative biomaterials.
Collapse
Affiliation(s)
- Dinglingge Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
8
|
Ramadas M, Abimanyu R, Ferreira JMF, Ballamurugan AM. Fabrication and biological evaluation of three-dimensional (3D) Mg substituted bi-phasic calcium phosphate porous scaffolds for hard tissue engineering. RSC Adv 2022; 12:33706-33715. [PMID: 36505699 PMCID: PMC9685373 DOI: 10.1039/d2ra04009c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
This work reports on the fabrication of three-dimensional (3D) magnesium substituted bi-phasic calcium phosphate (Mg-BCP) scaffolds by gel-casting, their structural and physico-chemical characterization, and on the assessment of their in vitro and in vivo performances. The crystalline phase assemblage, chemical functional groups and porous morphology features of the scaffolds were evaluated by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM), respectively. The sintered scaffolds revealed an interconnected porosity with pore sizes ranging from 4.3 to 7.28 μm. The scaffolds exhibited good biomineralization activity upon immersion in simulated body fluid (SBF), while an in vitro study using MG-63 cell line cultures confirmed their improved biocompatibility, cell proliferation and bioactivity. Bone grafting of 3D scaffolds was performed in non-load bearing bone defects surgically created in tibia of rabbits, used as animal model. Histological and radiological observations indicated the successful restoration of bone defects. The overall results confirmed the suitability of the scaffolds to be further tested as synthetic bone grafts in bone regeneration surgeries and in bone tissue engineering applications.
Collapse
Affiliation(s)
- Munusamy Ramadas
- Department of Nanoscience and Technology, Bharathiar UniversityCoimbatore 641046India
| | - Ravichandran Abimanyu
- Department of Nanoscience and Technology, Bharathiar UniversityCoimbatore 641046India
| | - José M. F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO, University of AveiroAveiroPortugal
| | | |
Collapse
|
9
|
Dong B, Liu X, Li J, Wang B, Yin J, Zhang H, Liu W. Berberine encapsulated in exosomes derived from platelet-rich plasma promotes chondrogenic differentiation of the Bone Marrow Mesenchymal Stem Cells via the Wnt/β-catenin pathway. Biol Pharm Bull 2022; 45:1444-1451. [PMID: 35858798 DOI: 10.1248/bpb.b22-00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cartilage regenerative medicine, wherein the stem cells from adults exert a crucial role, has high potential in the treatment of defective articular cartilage. Recently, Bone marrow mesenchymal stem cells (BMSCs) are being increasingly recognized as an alternative source of adult stem cells, which are capable of differentiating into several cell types (e.g., adipocytes, chondrocytes, and osteoblasts). However, their proliferative properties and tendency to dedifferentiate restrict their use in clinical settings. Recently, a possible bioactive material PRP-exos (exosomes derived from platelet-rich plasma), has emerged, which can effectively facilitate the differentiation and proliferation of cells. Recent studies have reported that berberine (Ber), known to have anti-inflammatory properties, plays a role in osteogenesis. Since biological molecules are used in combinations, we attempted to assess the effect of Exos-Ber (PRP-exos in combination with Ber) on the chondrogenic differentiation of BMSCs in vitro. In this study, Exos-Ber was observed to promote the proliferation of BMSCs and cause their chondrogenic differentiation in vitro. Additionally, Exos-Ber could promote the migration of BMSCs and increase the protein expression of the chondrogenic genes (Collagen II, SOX9, Aggrecan). After treatment with Exos-Ber, significant induction of β-catenin expression was observed, which could be repressed successfully by adding β-catenin inhibitor XAV-939. Interestingly, the repression of the Wnt/β-catenin axis also resulted in reduced gene expression levels of Collagen II, SOX9, and Aggrecan. These observations indicated that Exos-Ber facilitated the differentiation of chondrogenic BMSCs by modulating the Wnt/β-catenin axis, which offers innovative insights into the reconstruction of cartilage.
Collapse
Affiliation(s)
- Bingjiang Dong
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Xinhui Liu
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Jiwei Li
- Department of Clinical Laboratory, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Bin Wang
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Jian Yin
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Hailong Zhang
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| | - Wei Liu
- Department of Orthopaedics, The Affiliated Jiangning Hospital with Nanjing Medical University
| |
Collapse
|
10
|
da Costa Marques R, Simon J, d’Arros C, Landfester K, Jurk K, Mailänder V. Proteomics reveals differential adsorption of angiogenic platelet lysate proteins on calcium phosphate bone substitute materials. Regen Biomater 2022; 9:rbac044. [PMID: 35936551 PMCID: PMC9348553 DOI: 10.1093/rb/rbac044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Protein adsorption on biomaterials for bone substitution, such as calcium phosphates (CaP), evokes biological responses and shapes the interactions of biomaterials with the surrounding biological environment. Proteins adsorb when CaP materials are combined with growth factor-rich hemoderivatives prior to implantation to achieve enhanced angiogenesis and stimulate new bone formation. However, the identification of the adsorbed proteins and their angiogenic effect on bone homeostasis remain incompletely investigated. In this study, we analyzed the adsorbed complex protein composition on CaP surfaces when using the hemoderivatives plasma, platelet lysate in plasma (PL), and washed platelet lysate proteins (wPL). We detected highly abundant, non-regenerative proteins and anti-angiogenic proteins adsorbed on CaP surfaces after incubation with PL and wPL by liquid chromatography and mass spectrometry (LC–MS) proteomics. Additionally, we measured a decreased amount of adsorbed pro-angiogenic growth factors. Tube formation assays with human umbilical endothelial cells demonstrated that the CaP surfaces only stimulate an angiogenic response when kept in the hemoderivative medium but not after washing with PBS. Our results highlight the necessity to correlate biomaterial surfaces with complex adsorbed protein compositions to tailor the biomaterial surface toward an enrichment of pro-angiogenic factors.
Collapse
Affiliation(s)
- Richard da Costa Marques
- University Medical Center of the Johannes Gutenberg-University Mainz Dermatology Clinic, , Langenbeckstr. 1, Mainz, 55131, Germany
- Max Planck Institute for Polymer Research , Ackermannweg 10, Mainz, 55128, Germany
| | - Johanna Simon
- University Medical Center of the Johannes Gutenberg-University Mainz Dermatology Clinic, , Langenbeckstr. 1, Mainz, 55131, Germany
- Max Planck Institute for Polymer Research , Ackermannweg 10, Mainz, 55128, Germany
| | - Cyril d’Arros
- INSERM, UMR 1229, Regenerative Medicine and Skeleton, ONIRIS, Université de Nantes , Nantes, 44042, France
- Biomatlante—Advanced Medical Solutions Group Plc , Vigneux-de-Bretagne, 44360, France
| | - Katharina Landfester
- Max Planck Institute for Polymer Research , Ackermannweg 10, Mainz, 55128, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz , Langenbeckstrasse 1, Mainz, 55131, Germany
| | - Volker Mailänder
- University Medical Center of the Johannes Gutenberg-University Mainz Dermatology Clinic, , Langenbeckstr. 1, Mainz, 55131, Germany
- Max Planck Institute for Polymer Research , Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
11
|
Shi G, Yang C, Wang Q, Wang S, Wang G, Ao R, Li D. Traditional Chinese Medicine Compound-Loaded Materials in Bone Regeneration. Front Bioeng Biotechnol 2022; 10:851561. [PMID: 35252158 PMCID: PMC8894853 DOI: 10.3389/fbioe.2022.851561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Bone is a dynamic organ that has the ability to repair minor injuries via regeneration. However, large bone defects with limited regeneration are debilitating conditions in patients and cause a substantial clinical burden. Bone tissue engineering (BTE) is an alternative method that mainly involves three factors: scaffolds, biologically active factors, and cells with osteogenic potential. However, active factors such as bone morphogenetic protein-2 (BMP-2) are costly and show an unstable release. Previous studies have shown that compounds of traditional Chinese medicines (TCMs) can effectively promote regeneration of bone defects when administered locally and systemically. However, due to the low bioavailability of these compounds, many recent studies have combined TCM compounds with materials to enhance drug bioavailability and bone regeneration. Hence, the article comprehensively reviewed the local application of TCM compounds to the materials in the bone regeneration in vitro and in vivo. The compounds included icariin, naringin, quercetin, curcumin, berberine, resveratrol, ginsenosides, and salvianolic acids. These findings will contribute to the potential use of TCM compound-loaded materials in BTE.
Collapse
Affiliation(s)
- Guiwen Shi
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chaohua Yang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Song Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gaoju Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rongguang Ao
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Dejian Li
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| |
Collapse
|
12
|
Zhou Z, Li D, Fan X, Yuan Y, Wang H, Wang D, Mei X. Gold nanoclusters conjugated berberine reduce inflammation and alleviate neuronal apoptosis by mediating M2 polarization for spinal cord injury repair. Regen Biomater 2021; 9:rbab072. [PMID: 35558096 PMCID: PMC9089162 DOI: 10.1093/rb/rbab072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) leads to nerve cell apoptosis and loss of motor function. Herein, excessive activation of the M1 phenotype macrophages/microglia is found to be the main reason for the poor prognosis of SCI, but the selective activation phenotype (M2) macrophages/microglia facilitates the recovery of SCI. Thereafter, we used gold nanoclusters loaded berberine (BRB-AuNCs) to reduce inflammation by inhibiting the activation of M1 phenotype macrophages/microglia, which simultaneously inhibited neuronal apoptosis after SCI. In vitro and in vivo experiments showed that BRB-AuNCs reduced M1 protein marker CD86, increased M2 protein marker CD206, reduced inflammation and apoptotic cytokines (IL-1β, IL-6, TNF-α, Cleaved Caspase-3 and Bax). These results indicate that BRB-AuNCs have excellent anti-inflammatory and anti-apoptotic effects by inducing the polarization of macrophages/microglia from M1 phenotype to M2 phenotype. Thereafter, the motor functions of SCI rats were significantly improved after treatment with BRB-AuNCs. This work not only provides a new way for the treatment of SCI but also broadens BRB utilization strategies.
Collapse
Affiliation(s)
- Zipeng Zhou
- Department of The First Clinical College, Liaoning University of Traditional Chinese Medicine, No. 79, Chongshan East Road, Huanggu District, Shenyang City, Liaoning Province 110847, P.R. China
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dan Li
- Department of Basic Science, Jinzhou Medical University, Jinzhou, China
| | - Xiangyi Fan
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yajiang Yuan
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hongyu Wang
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dahao Wang
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xifan Mei
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Jinzhou Medical University, No.40, Section 3, Songpo Road, Linghe District Jinzhou City, Liaoning Province 121001, P.R.China
| |
Collapse
|
13
|
Song C, Xu S, Chang L, Zhao X, Mei X, Ren X, Chen Z. Preparation of EGCG decorated, injectable extracellular vesicles for cartilage repair in rat arthritis. Regen Biomater 2021; 8:rbab067. [PMID: 34858635 PMCID: PMC8634449 DOI: 10.1093/rb/rbab067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Arthritis is a kind of chronic inflammatory autoimmune disease, which can destroy joint cartilage and bone, leading to joint pain, joint swelling, and limited mobility. Traditional therapies have many side effects or focus too much on anti-inflammation while neglecting joint repair. In this experiment, we combined Epigallocatechin gallate (EGCG) with extracellular vesicles derived from macrophages to treat rheumatoid arthritis. Sustained-release resulted in a significant decrease in chondrocyte expression of hypoxia-inducible factor 1-alpha, a decrease in apoptosis-related proteins Cytochrome C, Caspase-3, Caspase-9, and Bax. Molecular biological analysis showed that extracellular vesicles-encapsulated EGCG (EVs-EGCG) more significantly upregulated type II collagen expression by about 1.8-fold than EGCG alone, which was more beneficial for arthritis repair. Animal experiments revealed that these EGCG-coated extracellular vesicles significantly reduced swelling, decreased synovial hyperplasia, repaired cartilage, and attenuated arthritis-related pathology scores in arthritic rats. Measurement data showed that EVs-EGCG treatment reduced joint swelling by approximately 39.5% in rheumatoid rats. In vitro studies have shown that this EVs-EGCG can increase the expression of cartilage type II collagen and reduce apoptosis of chondrocytes. Moreover, it was demonstrated in vivo experiments to reduce cartilage destruction in rheumatoid arthritis rats, providing a solution for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Changwei Song
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Shibo Xu
- Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Linna Chang
- Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Xingjun Zhao
- Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Xifan Mei
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xiuli Ren
- Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Zhenhua Chen
- Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| |
Collapse
|