1
|
Trembecka-Wójciga K, Ortyl J. Enhancing 3D printed ceramic components: The function of dispersants, adhesion promoters, and surface-active agents in Photopolymerization-based additive manufacturing. Adv Colloid Interface Sci 2024; 332:103251. [PMID: 39053160 DOI: 10.1016/j.cis.2024.103251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
In the domain of photopolymerization-based additive manufacturing (3D vat printing), ceramic photopolymer resins represent a multifaceted composite, predominantly comprising oligomers, ceramic fillers, and photoinitiators. However, the synergy between the ceramic fillers and polymer matrix, along with the stabilization and homogenization of the composite, is facilitated by specific additives, notably surface-active agents, dispersants, and adhesion promoters. Although these additives constitute a minor fraction in terms of volume, their influence on the final properties of the material is substantial. Consequently, their meticulous selection and integration are crucial, subtly guiding the performance and characteristics of the resultant ceramic matrix composites toward enhancement. This review delves into the array of dispersants and coupling agents utilized in the additive manufacturing of ceramic components. It elucidates the interaction mechanisms between these additives and ceramic fillers and examines how these interactions affect the additive manufacturing process. Furthermore, this review investigates the impact of various additives on the rheological behavior of ceramic slurries and their subsequent effects on the post-manufacturing stages, such as debinding and sintering. It also addresses the challenges and prospects in the optimization of dispersants and coupling agents for advanced ceramic additive manufacturing applications.
Collapse
Affiliation(s)
- Klaudia Trembecka-Wójciga
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Cracow, Poland; Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland.
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland; Photo4Chem Lea 114, 30-133 Cracow, Poland; Photo HiTech Ltd., Bobrzynskiego 14, 30-348 Cracow, Poland.
| |
Collapse
|
2
|
Wang X, Mu M, Yan J, Han B, Ye R, Guo G. 3D printing materials and 3D printed surgical devices in oral and maxillofacial surgery: design, workflow and effectiveness. Regen Biomater 2024; 11:rbae066. [PMID: 39169972 PMCID: PMC11338467 DOI: 10.1093/rb/rbae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 08/23/2024] Open
Abstract
Oral and maxillofacial surgery is a specialized surgical field devoted to diagnosing and managing conditions affecting the oral cavity, jaws, face and related structures. In recent years, the integration of 3D printing technology has revolutionized this field, offering a range of innovative surgical devices such as patient-specific implants, surgical guides, splints, bone models and regenerative scaffolds. In this comprehensive review, we primarily focus on examining the utility of 3D-printed surgical devices in the context of oral and maxillofacial surgery and evaluating their efficiency. Initially, we provide an insightful overview of commonly utilized 3D-printed surgical devices, discussing their innovations and clinical applications. Recognizing the pivotal role of materials, we give consideration to suitable biomaterials and printing technology of each device, while also introducing the emerging fields of regenerative scaffolds and bioprinting. Furthermore, we delve into the transformative impact of 3D-printed surgical devices within specific subdivisions of oral and maxillofacial surgery, placing particular emphasis on their rejuvenating effects in bone reconstruction, orthognathic surgery, temporomandibular joint treatment and other applications. Additionally, we elucidate how the integration of 3D printing technology has reshaped clinical workflows and influenced treatment outcomes in oral and maxillofacial surgery, providing updates on advancements in ensuring accuracy and cost-effectiveness in 3D printing-based procedures.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Mu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiazhen Yan
- School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bo Han
- School of Pharmacy, Shihezi University, and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, China, Shihezi 832002, China
| | - Rui Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Gang Guo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Zhang J, Ma T, Liu X, Zhang X, Meng W, Wu J. Multifunctional surface of the nano-morphic PEEK implant with enhanced angiogenic, osteogenic and antibacterial properties. Regen Biomater 2024; 11:rbae067. [PMID: 38974666 PMCID: PMC11226884 DOI: 10.1093/rb/rbae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 07/09/2024] Open
Abstract
Polyetheretherketone (PEEK) is a high-performance polymer suitable for use in biomedical coatings. The implants based on PEEK have been extensively studied in dental and orthopedic fields. However, their inherent inert surfaces and poor osteogenic properties limit their broader clinical applications. Thus, there is a pressing need to produce a multifunctional PEEK implant to address this issue. In response, we developed sulfonated PEEK (sPEEK)-Cobalt-parathyroid hormone (PTH) materials featuring multifunctional nanostructures. This involved loading cobalt (Co) ions and PTH (1-34) protein onto the PEEK implant to tackle this challenge. The findings revealed that the controlled release of Co2+ notably enhanced the vascular formation and the expression of angiogenic-related genes, and offered antimicrobial capabilities for sPEEK-Co-PTH materials. Additionally, the sPEEK-Co-PTH group exhibited improved cell compatibility and bone regeneration capacity in terms of cell activity, alkaline phosphatase (ALP) staining, matrix mineralization and osteogenic gene expression. It surpassed solely sulfonated and other functionalized sPEEK groups, demonstrating comparable efficacy even when compared to the titanium (Ti) group. Crucially, animal experiments also corroborated the significant enhancement of osteogenesis due to the dual loading of cobalt ions and PTH (1-34). This study demonstrated the potential of bioactive Co2+ and PTH (1-34) for bone replacement, optimizing the bone integration of PEEK implants in clinical applications.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Tongtong Ma
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Xueye Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Xiaoran Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Wenqing Meng
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Junling Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| |
Collapse
|
4
|
Bonato P, Bagno A. Replace or Regenerate? Diverse Approaches to Biomaterials for Treating Corneal Lesions. Biomimetics (Basel) 2024; 9:202. [PMID: 38667213 PMCID: PMC11047895 DOI: 10.3390/biomimetics9040202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The inner structures of the eye are protected by the cornea, which is a transparent membrane exposed to the external environment and subjected to the risk of lesions and diseases, sometimes resulting in impaired vision and blindness. Several eye pathologies can be treated with a keratoplasty, a surgical procedure aimed at replacing the cornea with tissues from human donors. Even though the success rate is high (up to 90% for the first graft in low-risk patients at 5-year follow-up), this approach is limited by the insufficient number of donors and several clinically relevant drawbacks. Alternatively, keratoprosthesis can be applied in an attempt to restore minimal functions of the cornea: For this reason, it is used only for high-risk patients. Recently, many biomaterials of both natural and synthetic origin have been developed as corneal substitutes to restore and replace diseased or injured corneas in low-risk patients. After illustrating the traditional clinical approaches, the present paper aims to review the most innovative solutions that have been recently proposed to regenerate the cornea, avoiding the use of donor tissues. Finally, innovative approaches to biological tissue 3D printing and xenotransplantation will be mentioned.
Collapse
Affiliation(s)
| | - Andrea Bagno
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy
| |
Collapse
|
5
|
Wang W, Liu P, Zhang B, Gui X, Pei X, Song P, Yu X, Zhang Z, Zhou C. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function. Int J Nanomedicine 2023; 18:5815-5830. [PMID: 37869064 PMCID: PMC10590137 DOI: 10.2147/ijn.s416098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Large bone defects caused by congenital defects, infections, degenerative diseases, trauma, and tumors often require personalized shapes and rapid reconstruction of the bone tissue. Three-dimensional (3D)-printed bone tissue engineering scaffolds exhibit promising application potential. Fused deposition modeling (FDM) technology can flexibly select and prepare printed biomaterials and design and fabricate bionic microstructures to promote personalized large bone defect repair. FDM-3D printing technology was used to prepare polylactic acid (PLA)/nano β-tricalcium phosphate (TCP) composite bone tissue engineering scaffolds in this study. The ability of the bone-tissue-engineered scaffold to repair bone defects was evaluated in vivo and in vitro. Methods PLA/nano-TCP composite bone tissue engineering scaffolds were prepared using FDM-3D printing technology. The characterization data of the scaffolds were obtained using relevant detection methods. The physical and chemical properties, biocompatibility, and in vitro osteogenic capacity of the scaffolds were investigated, and their bone repair capacity was evaluated using an in vivo animal model of rabbit femur bone defects. Results The FDM-printed PLA/nano β-TCP composite scaffolds exhibited good personalized porosity and shape, and their osteogenic ability, biocompatibility, and bone repair ability in vivo were superior to those of pure PLA. The merits of biodegradable PLA and bioactive nano β-TCP ceramics were combined to improve the overall biological performance of the composites. Conclusion The FDM-printed PLA/nano-β-TCP composite scaffold with a ratio of 7:3 exhibited good personalized porosity and shape, as well as good osteogenic ability, biocompatibility, and bone repair ability. This study provides a promising strategy for treating large bone defects.
Collapse
Affiliation(s)
- Wenzhao Wang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xuan Pei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ping Song
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xia Yu
- Department of Clinical Laboratory, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, People’s Republic of China
- Department of Orthopedics, the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People’s Republic of China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
6
|
Tan X, Wang Z, Yang X, Yu P, Sun M, Zhao Y, Yu H. Enhancing cell adhesive and antibacterial activities of glass-fibre-reinforced polyetherketoneketone through Mg and Ag PIII. Regen Biomater 2023; 10:rbad066. [PMID: 37489146 PMCID: PMC10363026 DOI: 10.1093/rb/rbad066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Glass-fibre-reinforced polyetherketoneketone (PEKK-GF) shows great potential for application as a dental implant restoration material; however, its surface bioinertness and poor antibacterial properties limit its integration with peri-implant soft tissue, which is critical in the long-term success of implant restoration. Herein, functional magnesium (Mg) and silver (Ag) ions were introduced into PEKK-GF by plasma immersion ion implantation (PIII). Surface characterization confirmed that the surface morphology of PEKK-GF was not visibly affected by PIII treatment. Further tests revealed that PIII changed the wettability and electrochemical environment of the PEKK-GF surface and enabled the release of Mg2+ and Ag+ modulated by Giavanni effect. In vitro experiments showed that Mg/Ag PIII-treated PEKK-GF promoted the proliferation and adhesion of human gingival fibroblasts and upregulated the expression of adhesion-related genes and proteins. In addition, the treated samples inhibited the metabolic viability and adhesion of Streptococcus mutans and Porphyromonas gingivalis on their surfaces, distorting bacterial morphology. Mg/Ag PIII surface treatment improved the soft tissue integration and antibacterial activities of PEKK-GF, which will further support and broaden its adoption in dentistry.
Collapse
Affiliation(s)
| | | | - Xin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Yu
- Department of Stomatology, Chengdu Second People’s Hospital, Chengdu, China
| | - Manlin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyang Yu
- Correspondence address. Tel: +86 0 18980685999, E-mail:
| |
Collapse
|
7
|
Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Superiority of Triply Periodic Minimal Surface Gyroid Structure to Strut-Based Grid Structure in Both Strength and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37433180 DOI: 10.1021/acsami.3c06263] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The aging population has rapidly driven the demand for bone regeneration. The pore structure of a scaffold is a critical factor that affects its mechanical strength and bone regeneration. Triply periodic minimal surface gyroid structures similar to the trabecular bone structure are considered superior to strut-based lattice structures (e.g., grids) in terms of bone regeneration. However, at this stage, this is only a hypothesis and is not supported by evidence. In this study, we experimentally validated this hypothesis by comparing gyroid and grid scaffolds composed of carbonate apatite. The gyroid scaffolds possessed compressive strength approximately 1.6-fold higher than that of the grid scaffolds because the gyroid structure prevented stress concentration, whereas the grid structure could not. The porosity of gyroid scaffolds was higher than that of the grid scaffolds; however, porosity and compressive strength generally have a trade-off relationship. Moreover, the gyroid scaffolds formed more than twice the amount of bone as grid scaffolds in a critical-sized bone defect in rabbit femur condyles. This favorable bone regeneration using gyroid scaffolds was attributed to the high permeability (i.e., larger volume of macropores or porosity) and curvature profile of the gyroid structure. Thus, this study validated the conventional hypothesis using in vivo experiments and revealed factors that led to this hypothetical outcome. The findings of this study are expected to contribute to the development of scaffolds that can achieve early bone regeneration without sacrificing the mechanical strength.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|