1
|
Soliman BG, Nguyen AK, Gooding JJ, Kilian KA. Advancing Synthetic Hydrogels through Nature-Inspired Materials Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404235. [PMID: 38896849 PMCID: PMC11486603 DOI: 10.1002/adma.202404235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Indexed: 06/21/2024]
Abstract
Synthetic extracellular matrix (ECM) mimics that can recapitulate the complex biochemical and mechanical nature of native tissues are needed for advanced models of development and disease. Biomedical research has heavily relied on the use of animal-derived biomaterials, which is now impeding their translational potential and convoluting the biological insights gleaned from in vitro tissue models. Natural hydrogels have long served as a convenient and effective cell culture tool, but advances in materials chemistry and fabrication techniques now present promising new avenues for creating xenogenic-free ECM substitutes appropriate for organotypic models and microphysiological systems. However, significant challenges remain in creating synthetic matrices that can approximate the structural sophistication, biochemical complexity, and dynamic functionality of native tissues. This review summarizes key properties of the native ECM, and discusses recent approaches used to systematically decouple and tune these properties in synthetic matrices. The importance of dynamic ECM mechanics, such as viscoelasticity and matrix plasticity, is also discussed, particularly within the context of organoid and engineered tissue matrices. Emerging design strategies to mimic these dynamic mechanical properties are reviewed, such as multi-network hydrogels, supramolecular chemistry, and hydrogels assembled from biological monomers.
Collapse
Affiliation(s)
- Bram G Soliman
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Ashley K Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Kristopher A Kilian
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Zhang H, Li X, Qu Z, Zhang W, Wang Q, Cao D, Wang Y, Wang X, Wang Y, Yu L, Ding J. Effects of serum proteins on corrosion rates and product bioabsorbability of biodegradable metals. Regen Biomater 2023; 11:rbad112. [PMID: 38173765 PMCID: PMC10761199 DOI: 10.1093/rb/rbad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Corrodible metals are the newest kind of biodegradable materials and raise a new problem of the corrosion products. However, the removal of the precipitated products has been unclear and even largely ignored in publications. Herein, we find that albumin, an abundant macromolecule in serum, enhances the solubility of corrosion products of iron in blood mimetic Hank's solution significantly. This is universal for other main biodegradable metals such as magnesium, zinc and polyester-coated iron. Albumin also influences corrosion rates in diverse trends in Hank's solution and normal saline. Based on quantitative study theoretically and experimentally, both the effects on corrosion rates and soluble fractions are interpreted by a unified mechanism, and the key factor leading to different corrosion behaviors in corrosion media is the interference of albumin to the Ca/P passivation layer on the metal surface. This work has illustrated that the interactions between metals and media macromolecules should be taken into consideration in the design of the next-generation metal-based biodegradable medical devices in the formulism of precision medicine. The improved Hank's solution in the presence of albumin and with a higher content of initial calcium salt is suggested to access biodegradable metals potentially for cardiovascular medical devices, where the content of calcium salt is calculated after consideration of chelating of calcium ions by albumin, resulting in the physiological concentration of free calcium ions.
Collapse
Affiliation(s)
- Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zehua Qu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Dinglingge Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yaoben Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xin Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|