1
|
Wu C, Zhong J, Li J, Luo Y, Wang J, Zeng X, Mao J, Lu J, Xu J, Wu C, Wang Z. Facile construction of manganese-based contrast agent with high T 1 relaxivity for magnetic resonance imaging via flash technology-based self-assembly. Regen Biomater 2025; 12:rbaf009. [PMID: 40270577 PMCID: PMC12017619 DOI: 10.1093/rb/rbaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 02/21/2025] [Indexed: 04/25/2025] Open
Abstract
To address the limitations of low relaxivity and physiological toxicity in commercial gadolinium-based contrast agents for magnetic resonance imaging (MRI), a novel manganese chelate macromolecular system was developed using a flash nanopreparation technique. Herein, the approach applying an instantaneous fluid device incorporated gallic acid, dopamine and Mn2+ to perform in situ polymerization of dopamine and covalent binding with albumin in a nanoconfined environment. This controllable self-assembly process characterized by its scalability and reproducibility was suitable for industrial-scale production. Under optimized flow rates and material ratios, the synthesized ultrasmall protein-based system, Mn-GA@BSA@DA, exhibited excellent aqueous dispersion with an average size of approximately 18 nm, allowing for long-term lyophilized powder storage. More importantly, the nanosystem demonstrated superior MRI-T 1 relaxivity, significantly surpassing that of clinical gadopentetate dimeglumine, with a high value around 18.5 mM-1 s-1 and a low r 2/r 1 ratio (<5 at 3.0 T). Furthermore, this Mn-GA@BSA@DA contrast agent was endowed with tumor-targeting effects and a long MRI monitoring window period for the liver, gallbladder and renal tubules. The metal chelation within the nanoagent minimizes Mn2+ release; importantly, the antioxidant components, gallic acid and dopamine, significantly inhibit the Fenton reaction-induced toxicity, enhancing biocompatibility. Therefore, this study presents a simple and scalable production technique for a kind of MRI-T 1-weighted contrast agent with high relaxivity and biocompatibility, offering a promising alternative to commercial Gd chelates.
Collapse
Affiliation(s)
- Chunwei Wu
- School of Materials Science and Engineering, Center for Functional Biomaterials, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jie Zhong
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jianing Li
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Yande Luo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511495, P. R. China
| | - Junyao Wang
- School of Materials Science and Engineering, Center for Functional Biomaterials, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xiaodie Zeng
- School of Materials Science and Engineering, Center for Functional Biomaterials, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jiaji Mao
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Jianping Lu
- School of Materials Science and Engineering, Center for Functional Biomaterials, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Junyao Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, P. R. China
| | - Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Zhiyong Wang
- School of Materials Science and Engineering, Center for Functional Biomaterials, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
2
|
Reddy Baddam S, Ganta S, Nalla S, Banoth C, Vudari B, Akkiraju PC, Srinivas E, Tade RS. Polymeric nanomaterials-based theranostic platforms for triple-negative breast cancer (TNBC) treatment. Int J Pharm 2024; 660:124346. [PMID: 38889853 DOI: 10.1016/j.ijpharm.2024.124346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Breast cancer, the second leading global cause of death, affects 2.1 million women annually, with an alarming 15 percent mortality rate. Among its diverse forms, Triple-negative breast cancer (TNBC) emerges as the deadliest, characterized by the absence of hormone receptors. This article underscores the urgent need for innovative treatment approaches in tackling TNBC, emphasizing the transformative potential of polymeric nanomaterials (PNMs). Evolved through nanotechnology, PNMs offer versatile biomedical applications, particularly in addressing the intricate challenges of TNBC. The synthesis methods of PNMs, explored within the tumor microenvironment using cellular models, showcase their dynamic nature in cancer treatment. The article anticipates the future of TNBC therapeutics through the optimization of PNMs-based strategies, integrating them into photothermal (PT), photodynamic (PT), and hyperthermia therapy (HTT), drug delivery, and active tumor targeting strategies. Advancements in synthetic methods, coupled with a nuanced understanding of the tumor microenvironment, hold promise for personalized interventions. Comparative investigations of therapeutic models and a thorough exploration of polymeric nanoplatforms toxicological perspectives become imperative for ensuring efficacy and safety. We have explored the interdisciplinary collaboration between nanotechnology, oncology, and molecular biology as pivotal in translating PNMs innovations into tangible benefits for TNBC patients.
Collapse
Affiliation(s)
- Sudhakar Reddy Baddam
- University of Massachusetts, Chan Medical School, RNA Therapeutic Institute, Worcester, MA 01655, USA
| | | | | | - Chandrasekhar Banoth
- Department of Microbiology, Army College of Dental Sciences, Chennapur, Secunderabad 500087, India
| | - Balaraju Vudari
- Sreenidhi Institute of Science and Technology, Hyderabad, Telangana 501301, India
| | - Pavan C Akkiraju
- Department of Medical Biotechnology, School of Allied Healthcare Sciences, Malla Reddy University, Hyderabad 500014, India
| | - Enaganti Srinivas
- Averinbiotech Laboratories, Windsor Plaza, Nallakunta, Hyderabad 500044, India
| | - Rahul S Tade
- Department of Pharmaceutics, H.R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India.
| |
Collapse
|
3
|
Zhang N, Sun Q, Li J, Li J, Tang L, Zhao Q, Pu Y, Liang G, He B, Gao W, Chen J. A lipid/PLGA nanocomplex to reshape tumor immune microenvironment for colon cancer therapy. Regen Biomater 2024; 11:rbae036. [PMID: 38628547 PMCID: PMC11018539 DOI: 10.1093/rb/rbae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024] Open
Abstract
Immune checkpoint blockade therapy provides a new strategy for tumor treatment; however, the insufficient infiltration of cytotoxic T cells and immunosuppression in tumor microenvironment lead to unsatisfied effects. Herein, we reported a lipid/PLGA nanocomplex (RDCM) co-loaded with the photosensitizer Ce6 and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1MT to improve immunotherapy of colon cancer. Arginine-glycine-aspartic acid (RGD) as the targeting moiety was conjugated on 1,2-distearoyl-snglycero-3-phosphoethanolamine lipid via polyethylene glycol (PEG), and programmed cell death-ligand 1 (PD-L1) peptide inhibitor DPPA (sequence: CPLGVRGK-GGG-d(NYSKPTDRQYHF)) was immobilized on the terminal group of PEG via matrix metalloproteinase 2 sensitive peptide linker. The Ce6 and 1MT were encapsulated in PLGA nanoparticles. The drug loaded nanoparticles were composited with RGD and DPPA modified lipid and lecithin to form lipid/PLGA nanocomplexes. When the nanocomplexes were delivered to tumor, DPPA was released by the cleavage of a matrix metalloproteinase 2-sensitive peptide linker for PD-L1 binding. RGD facilitated the cellular internalization of nanocomplexes via avβ3 integrin. Strong immunogenic cell death was induced by 1O2 generated from Ce6 irradiation under 660 nm laser. 1MT inhibited the activity of IDO and reduced the inhibition of cytotoxic T cells caused by kynurenine accumulation in the tumor microenvironment. The RDCM facilitated the maturation of dendritic cells, inhibited the activity of IDO, and markedly recruited the proportion of tumor-infiltrating cytotoxic T cells in CT26 tumor-bearing mice, triggering a robust immunological memory effect, thus effectively preventing tumor metastasis. The results indicated that the RDCM with dual IDO and PD-L1 inhibition effects is a promising platform for targeted photoimmunotherapy of colon cancer.
Collapse
Affiliation(s)
- Nan Zhang
- Henan Academy of Sciences, Zhengzhou 450046, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qiqi Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Junhua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lei Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Quan Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | | | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jianlin Chen
- School of Laboratory Medicine, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
4
|
Shen G, Wang J, Bai P, Wang Z. Lanthanide-Assisted Nanozyme Performs Optical and Magnetic Resonance Dual-Modality Logical Signal for In Vitro Diagnosis. Anal Chem 2024; 96:4612-4622. [PMID: 38462905 DOI: 10.1021/acs.analchem.3c05624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The iron nanozyme-based colorimetric method, which is widely applied for biosubstrate detection in in vitro diagnosis (IVD), faces some limitations. The optimal catalytic conditions of iron nanozymes necessitate a strong acidic environment, high temperature, and other restrictive factors; additionally, the colorimetric results are highly influenced by optical interferences. To address these challenges, iron nanozymes doped with various transition elements were efficiently prepared in this study, and notably, the manganese-modified one displayed a high catalytic activity owing to its electron transfer property. Furthermore, the introduction of lanthanide ions into the catalytic reactions, specifically the neodymium ion, significantly boosted the generation efficiency of hydroxyl radicals; importantly, this enhancement extended to a wide range of pH levels and temperatures, amplifying the detection signal. Moreover, the nanozyme's superparamagnetic characteristic was also employed to perform a logical optical and magnetic resonance dual-modality detection for substrates, effectively eliminating background optical interference and ensuring a reliable verification of the signal's authenticity. Based on this magnetic signal, the integration of natural glucose oxidase with the nanozyme resulted in a notable 61.5% increase in detection sensitivity, surpassing the capabilities of the traditional colorimetric approach. Consequently, the incorporation of lanthanide ions into the magnetic nanozyme enables the effective identification of physiological biomarkers through the dual-modality signal. This not only guarantees enhanced sensitivity but also demonstrates significant potential for future applications.
Collapse
Affiliation(s)
- Guixian Shen
- School of Materials Science and Engineering, Center for Functional Biomaterials, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Junyao Wang
- School of Materials Science and Engineering, Center for Functional Biomaterials, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Pengli Bai
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
| | - Zhiyong Wang
- School of Materials Science and Engineering, Center for Functional Biomaterials, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
5
|
Shu J, Deng H, Zhang Y, Wu F, He J. Cancer cell response to extrinsic and intrinsic mechanical cue: opportunities for tumor apoptosis strategies. Regen Biomater 2024; 11:rbae016. [PMID: 38476678 PMCID: PMC10932484 DOI: 10.1093/rb/rbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Increasing studies have revealed the importance of mechanical cues in tumor progression, invasiveness and drug resistance. During malignant transformation, changes manifest in either the mechanical properties of the tissue or the cellular ability to sense and respond to mechanical signals. The major focus of the review is the subtle correlation between mechanical cues and apoptosis in tumor cells from a mechanobiology perspective. To begin, we focus on the intracellular force, examining the mechanical properties of the cell interior, and outlining the role that the cytoskeleton and intracellular organelle-mediated intracellular forces play in tumor cell apoptosis. This article also elucidates the mechanisms by which extracellular forces guide tumor cell mechanosensing, ultimately triggering the activation of the mechanotransduction pathway and impacting tumor cell apoptosis. Finally, a comprehensive examination of the present status of the design and development of anti-cancer materials targeting mechanotransduction is presented, emphasizing the underlying design principles. Furthermore, the article underscores the need to address several unresolved inquiries to enhance our comprehension of cancer therapeutics that target mechanotransduction.
Collapse
Affiliation(s)
- Jun Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Huan Deng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yu Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|