1
|
Wang C, Lv J, Yang M, Fu Y, Wang W, Li X, Yang Z, Lu J. Recent advances in surface functionalization of cardiovascular stents. Bioact Mater 2025; 44:389-410. [PMID: 39539518 PMCID: PMC11558551 DOI: 10.1016/j.bioactmat.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading global threat to human health. The clinical application of vascular stents improved the survival rates and quality of life for patients with cardiovascular diseases. However, despite the benefits stents bring to patients, there are still notable complications such as thrombosis and in-stent restenosis (ISR). Surface modification techniques represent an effective strategy to enhance the clinical efficacy of vascular stents and reduce complications. This paper reviews the development strategies of vascular stents based on surface functional coating technologies aimed at addressing the limitations in clinical application, including the inhibition of intimal hyperplasia, promotion of re-endothelialization. These strategies have improved endothelial repair and inhibited vascular remodeling, thereby promoting vascular healing post-stent implantation. However, the pathological microenvironment of target vessels and the lipid plaques are key pathological factors in the development of atherosclerosis (AS) and impaired vascular repair after percutaneous coronary intervention (PCI). Therefore, restoring normal physiological environment and removing the plaques are also treatment focuses after PCI for promoting vascular repair. Unfortunately, research in this area is limited. This paper reviews the advancements in vascular stents based on surface engineering technologies over the past decade, providing guidance for the development of stents.
Collapse
Affiliation(s)
- Chuanzhe Wang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, 523059, Dongguan, Guangdong, China
| | - Jie Lv
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Mengyi Yang
- School of Materials Science and Engineering, Key Lab of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yan Fu
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, 523059, Dongguan, Guangdong, China
| | - Wenxuan Wang
- School of Materials Science and Engineering, Key Lab of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, 610031, Chengdu, China
| | - Xin Li
- Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, 610072, Chengdu, Sichuan, China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, 523059, Dongguan, Guangdong, China
| | - Jing Lu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wen Y, Li Y, Yang R, Chen Y, Shen Y, Liu Y, Liu X, Zhang B, Li H. Biofunctional coatings and drug-coated stents for restenosis therapy. Mater Today Bio 2024; 29:101259. [PMID: 39391793 PMCID: PMC11465131 DOI: 10.1016/j.mtbio.2024.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Palliative therapy utilizing interventional stents, such as vascular stents, biliary stents, esophageal stents, and other stents, has been a prevalent clinical strategy for treating duct narrowing and partial blockage. However, stent restenosis after implantation usually significantly compromises therapeutic efficacy and patient safety. Clinically, vascular stent restenosis is primarily attributed to endothelial hyperplasia and coagulation, while the risk of biliary stent occlusion is heightened by bacterial adhesion and bile sludge accumulation. Similarly, granulation tissue hyperplasia leads to tracheal stent restenosis. To address these issues, surface modifications of stents are extensively adopted as effective strategies to reduce the probability of restenosis and extend their functional lifespan. Applying coatings is one of the technical routes involving a complex selection of materials, drug loading capacities, release rates, and other factors. This paper provides an extensive overview of state of the art drug-coated stents, addressing both challenges and future prospects in this domain. We aim to contribute positively to the ongoing development and potential clinical applications of drug-coated stents in interventional therapy.
Collapse
Affiliation(s)
- Yanghui Wen
- Departments of General Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Yihuan Li
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Rui Yang
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yunjie Chen
- Departments of General Surgery, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Yan Shen
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yi Liu
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaomei Liu
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Botao Zhang
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Hua Li
- Zhejiang Engineering Research Center for Biomedical Materials, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
3
|
Jan N, Bostanudin MF, Moutraji SA, Kremesh S, Kamal Z, Hanif MF. Unleashing the biomimetic targeting potential of platelet-derived nanocarriers on atherosclerosis. Colloids Surf B Biointerfaces 2024; 240:113979. [PMID: 38823339 DOI: 10.1016/j.colsurfb.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
Atherosclerosis, the primary mechanism underlying the development of many cardiovascular illnesses, continues to be one of the leading causes of mortality worldwide. Platelet (PLT), which are essential for maintaining body homeostasis, have been strongly linked to the onset of atherosclerosis at various stages due to their inherent tendency to bind to atherosclerotic lesions and show an affinity for plaques. Therefore, mimicking PLT's innate adhesive features may be necessary to effectively target plaques. PLT-derived nanocarriers have emerged as a promising biomimetic targeting strategy for treating atherosclerosis due to their numerous advantages. These advantages include excellent biocompatibility, minimal macrophage phagocytosis, prolonged circulation time, targeting capability for impaired vascular sites, and suitability as carriers for anti-atherosclerotic drugs. Herein, we discuss the role of PLT in atherogenesis and propose the design of nanocarriers based on PLT-membrane coating and PLT-derived vesicles. These nanocarriers can target multiple biological elements relevant to plaque development. The review also emphasizes the current challenges and future research directions for the effective utilization of PLT-derived nanocarriers in treating atherosclerosis.
Collapse
Affiliation(s)
- Nasrullah Jan
- Department of Pharmacy, The University of Chenab, Gujrat 50700, Punjab, Pakistan.
| | - Mohammad F Bostanudin
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Sedq A Moutraji
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Zul Kamal
- Department of Pharmacy, Shaheed Benazir Bhutto University, Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Farhan Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; Bahawalpur College of Pharmacy, BMDC Complex Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
4
|
Salehi A, Sprejz S, Ruehl H, Olayioye M, Cattaneo G. An imprint-based approach to replicate nano- to microscale roughness on gelatin hydrogel scaffolds: surface characterization and effect on endothelialization. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1214-1235. [PMID: 38431849 DOI: 10.1080/09205063.2024.2322771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Biologization of biomaterials with endothelial cells (ECs) is an important step in vascular tissue engineering, aiming at improving hemocompatibility and diminishing the thrombo-inflammatory response of implants. Since subcellular topography in the scale of nano to micrometers can influence cellular adhesion, proliferation, and differentiation, we here investigate the effect of surface roughness on the endothelialization of gelatin hydrogel scaffolds. Considering the micron and sub-micron features of the different native tissues underlying the endothelium in the body, we carried out a biomimetic approach to replicate the surface roughness of tissues and analyzed how this impacted the adhesion and proliferation of human umbilical endothelial cells (HUVECs). Using an imprinting technique, nano and micro-roughness ranging from Sa= 402 nm to Sa= 8 μm were replicated on the surface of gelatin hydrogels. Fluorescent imaging of HUVECs on consecutive days after seeding revealed that microscale topographies negatively affect cell spreading and proliferation. By contrast, nanoscale roughnesses of Sa= 402 and Sa= 538 nm promoted endothelialization as evidenced by the formation of confluent cell monolayers with prominent VE-cadherin surface expression. Collectively, we present an affordable and flexible imprinting method to replicate surface characteristics of tissues on hydrogels and demonstrate how nanoscale roughness positively supports their endothelialization.
Collapse
Affiliation(s)
- Ali Salehi
- Institute of Biomedical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Stefanie Sprejz
- Institute of Biomedical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Holger Ruehl
- Institute for Micro Integration, University of Stuttgart, Stuttgart, Germany
| | - Monilola Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Giorgio Cattaneo
- Institute of Biomedical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
5
|
Li L, Yu Y, Sun X, Wang X, Yang X, Yu Q, Kang K, Wu Y, Yi Q. Pro-endothelialization of nitinol alloy cardiovascular stents enhanced by the programmed assembly of exosomes and endothelial affinity peptide. J Mater Chem B 2024; 12:4184-4196. [PMID: 38592788 DOI: 10.1039/d4tb00363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Stent implantation is one of the most effective methods for the treatment of atherosclerosis. Nitinol stent is a type of stent with good biocompatibility and relatively mature development; however, it cannot effectively achieve long-term anticoagulation and early endothelialization. In this study, nitinol surfaces with the programmed assembly of heparin, exosomes from endothelial cells, and endothelial affinity peptide (REDV) were fabricated through layer-by-layer assembly technology and click-chemistry, and then exosomes/REDV-modified nitinol interface (ACC-Exo-REDV) was prepared. ACC-Exo-REDV could promote the rapid proliferation and adhesion of endothelial cells and achieve anticoagulant function in the blood. Besides, ACC-Exo-REDV had excellent anti-inflammatory properties and played a positive role in the transformation of macrophage from the pro-inflammatory to anti-inflammatory phenotype. Ex vivo and in vivo experiments demonstrated the effectiveness of ACC-Exo-REDV in preventing thrombosis and hyperplasia formation. Hence, the programmed assembly of exosome interface could contribute to endothelialization and have potential application on the cardiovascular surface modification to prevent stent thrombosis and restenosis.
Collapse
Affiliation(s)
- Linsen Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Yue Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiaoqing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Xingyou Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiayan Yang
- Chengdu NewMed Biotechnology Co., Ltd, Chengdu 611139, P. R. China
| | - Qifeng Yu
- Chengdu NewMed Biotechnology Co., Ltd, Chengdu 611139, P. R. China
| | - Ke Kang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
- Institute of Regulatory Science for Medical Device, Sichuan University, Chengdu, Sichuan Province, 610065, P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
6
|
Jia Q, Jia Q, Zhu S, Zheng Y, Guan S. A Cu(Ⅱ)-eluting coating through silk fibroin film on ZE21B alloy designed for in situ endotheliazation biofunction. Colloids Surf B Biointerfaces 2024; 236:113808. [PMID: 38422669 DOI: 10.1016/j.colsurfb.2024.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/23/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
In the cardiovascular field, coating containing copper used to catalyze NO (nitric oxide) production on non-degradable metal surfaces have shown unparalleled expected performance, but there are few studies on biodegradable metal surfaces. Magnesium-based biodegradable metals have been applied in cardiovascular field in large-scale because of their excellent properties. In this study, the coating of copper loaded in silk fibroin is fabricated on biodegradable ZE21B alloy. Importantly, the different content of copper is set to investigate the effects of on the degradation performance and cell behavior of magnesium alloy. Through electrochemical and immersion experiments, it is found that high content of copper will accelerate the corrosion of magnesium alloy. The reason is the spontaneous micro-batteries between copper and magnesium with the different standard electrode potentials, that is, the galvanic corrosion accelerates the corrosion of magnesium alloy. Moreover, the coating formed through silk fibroin by the right amount copper not only have a protective effect on the ZE21B alloy substrate, but also promotes the adhesion and proliferation of endothelial cells in blood vessel micro-environment. The production of NO catalyzed by copper ions makes this trend more significant, and inhibits the excessive proliferation of smooth muscle cells. These findings can provide guidance for the amount of copper in the coating on the surface of biodegradable magnesium alloy used for cardiovascular stent purpose.
Collapse
Affiliation(s)
- Qianying Jia
- School of Materials Science and Engineering & Henan Key Laboratory of Advance Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Qinggong Jia
- School of Materials Science and Engineering & Henan Key Laboratory of Advance Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Shijie Zhu
- School of Materials Science and Engineering & Henan Key Laboratory of Advance Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Yufeng Zheng
- School of Materials Science and Engineering & Henan Key Laboratory of Advance Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China; Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Shaokang Guan
- School of Materials Science and Engineering & Henan Key Laboratory of Advance Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Kong P, Liu X, Li Z, Wang J, Gao R, Feng S, Li H, Zhang F, Feng Z, Huang P, Wang S, Zhuang D, Ouyang W, Wang W, Pan X. Biodegradable Cardiac Occluder with Surface Modification by Gelatin-Peptide Conjugate to Promote Endogenous Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305967. [PMID: 37984880 PMCID: PMC10787076 DOI: 10.1002/advs.202305967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Indexed: 11/22/2023]
Abstract
Transcatheter intervention has been the preferred treatment for congenital structural heart diseases by implanting occluders into the heart defect site through minimally invasive access. Biodegradable polymers provide a promising alternative for cardiovascular implants by conferring therapeutic function and eliminating long-term complications, but inducing in situ cardiac tissue regeneration remains a substantial clinical challenge. PGAG (polydioxanone/poly (l-lactic acid)-gelatin-A5G81) occluders are prepared by covalently conjugating biomolecules composed of gelatin and layer adhesive protein-derived peptides (A5G81) to the surface of polydioxanone and poly (l-lactic acid) fibers. The polymer microfiber-biomacromolecule-peptide frame with biophysical and biochemical cues could orchestrate the biomaterial-host cell interactions, by recruiting endogenous endothelial cells, promoting their adhesion and proliferation, and polarizing immune cells into anti-inflammatory phenotypes and augmenting the release of reparative cytokines. In a porcine atrial septal defect (ASD) model, PGAG occluders promote in situ tissue regeneration by accelerating surface endothelialization and regulating immune response, which mitigate inflammation and fibrosis formation, and facilitate the fusion of occluder with surrounding heart tissue. Collectively, this work highlights the modulation of cell-biomaterial interactions for tissue regeneration in cardiac defect models, ensuring endothelialization and extracellular matrix remodeling on polymeric scaffolds. Bioinspired cell-material interface offers a highly efficient and generalized approach for constructing bioactive coatings on medical devices.
Collapse
Affiliation(s)
- Pengxu Kong
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
| | - Xiang Liu
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Zefu Li
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
| | - Jingrong Wang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Rui Gao
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Shuyi Feng
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
| | - Hang Li
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
| | - Fengwen Zhang
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Shouzheng Wang
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
- Key Laboratory of Innovative Cardiovascular DevicesChinese Academy of Medical SciencesBeijing100037China
| | - Donglin Zhuang
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
| | - Wenbin Ouyang
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
- Key Laboratory of Innovative Cardiovascular DevicesChinese Academy of Medical SciencesBeijing100037China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
- Key Laboratory of Innovative Cardiovascular DevicesChinese Academy of Medical SciencesBeijing100037China
| | - Xiangbin Pan
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseaseChina & State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeNational Health Commission Key Laboratory of Cardiovascular Regeneration MedicineNational Clinical Research Center for Cardiovascular DiseasesBeijing100037China
- Key Laboratory of Innovative Cardiovascular DevicesChinese Academy of Medical SciencesBeijing100037China
| |
Collapse
|
8
|
Das A, Mehrotra S, Kumar A. Advances in Fabrication Technologies for the Development of Next-Generation Cardiovascular Stents. J Funct Biomater 2023; 14:544. [PMID: 37998113 PMCID: PMC10672426 DOI: 10.3390/jfb14110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Coronary artery disease is the most prevalent cardiovascular disease, claiming millions of lives annually around the world. The current treatment includes surgically inserting a tubular construct, called a stent, inside arteries to restore blood flow. However, due to lack of patient-specific design, the commercial products cannot be used with different vessel anatomies. In this review, we have summarized the drawbacks in existing commercial metal stents which face problems of restenosis and inflammatory responses, owing to the development of neointimal hyperplasia. Further, we have highlighted the fabrication of stents using biodegradable polymers, which can circumvent most of the existing limitations. In this regard, we elaborated on the utilization of new fabrication methodologies based on additive manufacturing such as three-dimensional printing to design patient-specific stents. Finally, we have discussed the functionalization of these stent surfaces with suitable bioactive molecules which can prove to enhance their properties in preventing thrombosis and better healing of injured blood vessel lining.
Collapse
Affiliation(s)
- Ankita Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre of Excellence for Orthopaedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
9
|
Bioaffinity-based surface immobilization of antibodies to capture endothelial colony-forming cells. PLoS One 2022; 17:e0269316. [PMID: 36040884 PMCID: PMC9426933 DOI: 10.1371/journal.pone.0269316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/18/2022] [Indexed: 11/19/2022] Open
Abstract
Maximizing the re-endothelialization of vascular implants such as prostheses or stents has the potential to significantly improve their long-term performance. Endothelial progenitor cell capture stents with surface-immobilized antibodies show significantly improved endothelialization in the clinic. However, most current antibody-based stent surface modification strategies rely on antibody adsorption or direct conjugation via amino or carboxyl groups which leads to poor control over antibody surface concentration and/or molecular orientation, and ultimately bioavailability for cell capture. Here, we assess the utility of a bioaffinity-based surface modification strategy to immobilize antibodies targeting endothelial cell surface antigens. A cysteine-tagged truncated protein G polypeptide containing three Fc-binding domains was conjugated onto aminated polystyrene substrates via a bi-functional linking arm, followed by antibody immobilization. Different IgG antibodies were successfully immobilized on the protein G-modified surfaces. Covalent grafting of the protein G polypeptide was more effective than surface adsorption in immobilizing antibodies at high density based on fluorophore-labeled secondary antibody detection, as well as endothelial colony-forming cell capture through anti-CD144 antibodies. This work presents a potential avenue for enhancing the performance of cell capture strategies by using covalent grafting of protein G polypeptides to immobilize IgG antibodies.
Collapse
|
10
|
Laser Additive Manufacturing of Anti-Tetrachiral Endovascular Stents with Negative Poisson’s Ratio and Favorable Cytocompatibility. MICROMACHINES 2022; 13:mi13071135. [PMID: 35888952 PMCID: PMC9315478 DOI: 10.3390/mi13071135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
Laser additive manufacturing (LAM) of complex-shaped metallic components offers great potential for fabricating customized endovascular stents. In this study, anti-tetrachiral auxetic stents with negative Poisson ratios (NPR) were designed and fabricated via LAM. Poisson’s ratios of models with different diameters of circular node (DCN) were calculated using finite element analysis (FEA). The experimental method was conducted with the LAM-fabricated anti-tetrachiral stents to validate their NPR effect and the simulation results. The results show that, with the increase in DCN from 0.6 to 1.5 mm, the Poisson ratios of anti-tetrachiral stents varied from −1.03 to −1.12, which is in line with the simulation results. The interrelationship between structural parameters of anti-tetrachiral stents, their mechanical properties and biocompatibility was demonstrated. The anti-tetrachiral stents with a DCN of 0.9 mm showed the highest absolute value of negative Poisson’s ratio, combined with good cytocompatibility. The cytocompatibility tests indicate the envisaged cell viability and adhesion of the vascular endothelial cell on the LAM-fabricated anti-tetrachiral auxetic stents. The manufactured stents exhibit great superiority in the application of endovascular stent implantation due to their high flexibility for easy maneuverability during deployment and enough strength for arterial support.
Collapse
|
11
|
Shah P, Chandra S. Review on emergence of nanomaterial coatings in bio-engineered cardiovascular stents. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Selvakumar PP, Rafuse MS, Johnson R, Tan W. Applying Principles of Regenerative Medicine to Vascular Stent Development. Front Bioeng Biotechnol 2022; 10:826807. [PMID: 35321023 PMCID: PMC8936177 DOI: 10.3389/fbioe.2022.826807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Stents are a widely-used device to treat a variety of cardiovascular diseases. The purpose of this review is to explore the application of regenerative medicine principles into current and future stent designs. This review will cover regeneration-relevant approaches emerging in the current research landscape of stent technology. Regenerative stent technologies include surface engineering of stents with cell secretomes, cell-capture coatings, mimics of endothelial products, surface topography, endothelial growth factors or cell-adhesive peptides, as well as design of bioresorable materials for temporary stent support. These technologies are comparatively analyzed in terms of their regenerative effects, therapeutic effects and challenges faced; their benefits and risks are weighed up for suggestions about future stent developments. This review highlights two unique regenerative features of stent technologies: selective regeneration, which is to selectively grow endothelial cells on a stent but inhibit the proliferation and migration of smooth muscle cells, and stent-assisted regeneration of ischemic tissue injury.
Collapse
Affiliation(s)
| | | | | | - Wei Tan
- University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
13
|
Xiao ST, Kuang CY. Endothelial progenitor cells and coronary artery disease: Current concepts and future research directions. World J Clin Cases 2021; 9:8953-8966. [PMID: 34786379 PMCID: PMC8567528 DOI: 10.12998/wjcc.v9.i30.8953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular injury is a frequent pathology in coronary artery disease. To repair the vasculature, scientists have found that endothelial progenitor cells (EPCs) have excellent properties associated with angiogenesis. Over time, research on EPCs has made encouraging progress regardless of pathology or clinical technology. This review focuses on the origins and cell markers of EPCs, and the connection between EPCs and coronary artery disease. In addition, we summarized various studies of EPC-capturing stents and EPC infusion therapy, and aim to learn from past technology to predict the future.
Collapse
Affiliation(s)
- Sen-Tong Xiao
- Department of Cardiovascular Diseases, People’s Hospital Affiliated to Guizhou Medical University, Guiyang 550003, Guizhou Province, China
| | - Chun-Yan Kuang
- Department of Cardiovascular Diseases, Guizhou Provincial People's Hospital, Guiyang 550003, Guizhou Province, China
| |
Collapse
|
14
|
Aschacher T, Schmidt K, Aschacher O, Eichmair E, Baranyi U, Winkler B, Grabenwoeger M, Spittler A, Enzmann F, Messner B, Riebandt J, Laufer G, Bergmann M, Ehrlich M. Telocytes in the human ascending aorta: Characterization and exosome-related KLF-4/VEGF-A expression. J Cell Mol Med 2021; 25:9697-9709. [PMID: 34562312 PMCID: PMC8505852 DOI: 10.1111/jcmm.16919] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Telocytes (TCs), a novel interstitial cell entity promoting tissue regeneration, have been described in various tissues. Their role in inter‐cellular signalling and tissue remodelling has been reported in almost all human tissues. This study hypothesizes that TC also contributes to tissue remodelling and regeneration of the human thoracic aorta (HTA). The understanding of tissue homeostasis and regenerative potential of the HTA is of high clinical interest as it plays a crucial role in pathogenesis from aortic dilatation to lethal dissection. Therefore, we obtained twenty‐five aortic specimens of heart donors during transplantation. The presence of TCs was detected in different layers of aortic tissue and characterized by immunofluorescence and transmission electron microscopy. Further, we cultivated and isolated TCs in highly differentiated form identified by positive staining for CD34 and c‐kit. Aortic‐derived TC was characterized by the expression of PDGFR‐α, PDGFR‐β, CD29/integrin β‐1 and αSMA and the stem cell markers Nanog and KLF‐4. Moreover, TC exosomes were isolated and characterized for soluble angiogenic factors by Western blot. CD34+/c‐kit+ TCs shed exosomes containing the soluble factors VEGF‐A, KLF‐4 and PDGF‐A. In summary, TC occurs in the aortic wall. Correspondingly, exosomes, derived from aortic TCs, contain vasculogenesis‐relevant proteins. Understanding the regulation of TC‐mediated aortic remodelling may be a crucial step towards designing strategies to promote aortic repair and prevent adverse remodelling.
Collapse
Affiliation(s)
- Thomas Aschacher
- Department of Cardio-Vascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, Vienna, Austria
| | - Katy Schmidt
- Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Olivia Aschacher
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Eva Eichmair
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Bernhard Winkler
- Department of Cardio-Vascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, Vienna, Austria
| | - Martin Grabenwoeger
- Department of Cardio-Vascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, Vienna, Austria
| | - Andreas Spittler
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian Enzmann
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Riebandt
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Guenther Laufer
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Marek Ehrlich
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
A Recombinant Fusion Construct between Human Serum Albumin and NTPDase CD39 Allows Anti-Inflammatory and Anti-Thrombotic Coating of Medical Devices. Pharmaceutics 2021; 13:pharmaceutics13091504. [PMID: 34575580 PMCID: PMC8466136 DOI: 10.3390/pharmaceutics13091504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Medical devices directly exposed to blood are commonly used to treat cardiovascular diseases. However, these devices are associated with inflammatory reactions leading to delayed healing, rejection of foreign material or device-associated thrombus formation. We developed a novel recombinant fusion protein as a new biocompatible coating strategy for medical devices with direct blood contact. We genetically fused human serum albumin (HSA) with ectonucleoside triphosphate diphosphohydrolase-1 (CD39), a promising anti-thrombotic and anti-inflammatory drug candidate. The HSA-CD39 fusion protein is highly functional in degrading ATP and ADP, major pro-inflammatory reagents and platelet agonists. Their enzymatic properties result in the generation of AMP, which is further degraded by CD73 to adenosine, an anti-inflammatory and anti-platelet reagent. HSA-CD39 is functional after lyophilisation, coating and storage of coated materials for up to 8 weeks. HSA-CD39 coating shows promising and stable functionality even after sterilisation and does not hinder endothelialisation of primary human endothelial cells. It shows a high level of haemocompatibility and diminished blood cell adhesion when coated on nitinol stents or polyvinylchloride tubes. In conclusion, we developed a new recombinant fusion protein combining HSA and CD39, and demonstrated that it has potential to reduce thrombotic and inflammatory complications often associated with medical devices directly exposed to blood.
Collapse
|
16
|
Kimura T, Tokunaga R, Hashimoto Y, Nakamura N, Kishida A. Tumor growth suppression by implantation of an anti-CD25 antibody-immobilized material near the tumor via regulatory T cell capture. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:607-615. [PMID: 34377087 PMCID: PMC8344258 DOI: 10.1080/14686996.2021.1944782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
In this study, we designed and synthesized an implantable anti-CD25 antibody-immobilized polyethylene (CD25-PE) mesh to suppress tumor growth by removing regulatory T cells (Tregs). The PE mesh was graft-polymerized with poly(acrylic acid), and the anti-mouse CD25 antibody was then immobilized using the 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide reaction. Immobilization of the antibody on the PE mesh was confirmed by immunostaining. The CD25-PE mesh could effectively and selectively capture CD25-positive cells through antigen-antibody interactions when the CD25-PE mesh was incubated with a suspension of mouse spleen cells, including CD25-positive cells. In addition, implantation of the CD25-PE mesh into mice subcutaneously demonstrated the Treg-capturing ability of the CD25-PE mesh with only a weak inflammatory reaction. In tumor-bearing mice, tumor growth was suppressed by subcutaneous implantation of the CD25-PE mesh near the tumor for 1 week. These results suggested that the anti-CD25 antibody-immobilized material could capture Tregs in vivo and inhibit tumor proliferation in a limited tumor-bearing mouse model. Further research is needed to facilitate cancer immunotherapy using implantable anti-CD25 antibody-immobilized material as a Treg-capturing device.
Collapse
Affiliation(s)
- Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rino Tokunaga
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoko Nakamura
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Tokyo, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
17
|
Blessing R, Ahoopai M, Geyer M, Brandt M, Zeiher AM, Münzel T, Wenzel P, Gori T, Dimitriadis Z. The Bioengineered Combo Dual-Therapy CD34 Antibody-Covered Sirolimus-Eluting Coronary Stent in Patients with Chronic Total Occlusion Evaluated by Clinical Outcome and Optical Coherence Tomography Imaging Analysis. J Clin Med 2020; 10:jcm10010080. [PMID: 33379321 PMCID: PMC7794972 DOI: 10.3390/jcm10010080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023] Open
Abstract
We sought to determine the effects of the use of a Bioengineered Combo Dual-Therapy CD34 Antibody-Covered Sirolimus-Eluting Coronary Stent (Combo® DTS) in patients with chronic total occlusion (CTO) by evaluating clinical outcomes and by performing an optical coherence tomography (OCT) analysis. We retrospectively analyzed data from 39 patients who had successfully undergone OCT-guided revascularization of a CTO being treated with a Combo® DTS. Clinical assessment, angiography (with quantitative coronary angiography analysis) and OCT examination were performed at baseline and at follow-up. The median follow-up period was 189 days, ranging from 157 to 615 days. At follow-up, revascularization was required due to angiographic restenosis in 40% (14 of 35) of patients. OCT analysis detected neointima proliferation in 23 (76.6%) patients. Neointima formation was often associated with microvessels in 18 patients (60%). Neoatheroslcerosis was observed in 2 (6.6%) patients. Malapposition was found in 4 patients (13.3%), and stent fractures were found in 11 patients (36.6%). Rate of strut coverage was 96.3% at follow-up. In conclusion, the implantation of a Combo® DTS after successful CTO recanalization was associated with a restenosis rate of 40% despite good stent implantation at baseline, proven by OCT. Neointima formation was found as a main contributor to restenosis. Nevertheless, we observed a low rate of major cardiovascular events in our follow-up.
Collapse
Affiliation(s)
- Recha Blessing
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (R.B.); (M.A.); (M.G.); (M.B.); (T.M.); (P.W.); (T.G.)
| | - Majid Ahoopai
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (R.B.); (M.A.); (M.G.); (M.B.); (T.M.); (P.W.); (T.G.)
| | - Martin Geyer
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (R.B.); (M.A.); (M.G.); (M.B.); (T.M.); (P.W.); (T.G.)
| | - Moritz Brandt
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (R.B.); (M.A.); (M.G.); (M.B.); (T.M.); (P.W.); (T.G.)
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University, 55131 Mainz, Germany
| | - Andreas M. Zeiher
- Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany;
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (R.B.); (M.A.); (M.G.); (M.B.); (T.M.); (P.W.); (T.G.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (R.B.); (M.A.); (M.G.); (M.B.); (T.M.); (P.W.); (T.G.)
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Tommaso Gori
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (R.B.); (M.A.); (M.G.); (M.B.); (T.M.); (P.W.); (T.G.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Zisis Dimitriadis
- Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany;
- Correspondence: ; Tel.: +49-69-6301-7387; Fax: +49-69-6301
| |
Collapse
|
18
|
Sukovatykh BS, Sukovatykh MB, Polianskiĭ DV. [Effect of the type of a coronary stent on dynamics of quality of life in patients with ischaemic heart disease]. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2020; 26:43-48. [PMID: 33332305 DOI: 10.33529/angio2020426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The purpose of the present study was to investigate the dynamics of quality of life in patients with ischaemic heart disease before and after implantation of a coronary stent depending on the stent's type and patient's gender. The authors analysed the dynamics of quality of life in a total of 120 patients with ischaemic heart disease. The patients were subdivided into two equal groups of 60 each. Group One patients were subjected to implantation of bare-metal stents, whereas Group Two patients received stents coated with zotarolimus as an antiproliferative agent. The control group was composed of 60 people who did not suffer from ischaemic heart disease and were comparable by the age and gender. Quality of life was investigated prior to stent implantation and 6, 12 and 24 months thereafter with the use of the SF-36 questionnaire. It was determined that the indices of quality of life before stenting of coronary arteries was higher in men than in women. However, no gender-related differences were revealed after stent implantation. The dynamics of the parameters of quality of life of patients following implantation of uncoated metal stents within 6 months turned out to have a positive and then rapidly progressing negative course, whereas implantation of stents coated with antiproliferative drug zotarolimus was within 12 months followed and accompanied by a positive and then slowly progressing negative course.
Collapse
Affiliation(s)
- B S Sukovatykh
- Kursk State Medical University of the RF Ministry of Public Health, Kursk, Russia
| | - M B Sukovatykh
- Kursk State Medical University of the RF Ministry of Public Health, Kursk, Russia
| | - D V Polianskiĭ
- Kursk State Medical University of the RF Ministry of Public Health, Kursk, Russia
| |
Collapse
|
19
|
The self-organized differentiation from MSCs into SMCs with manipulated micro/Nano two-scale arrays on TiO2 surfaces for biomimetic construction of vascular endothelial substratum. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111179. [DOI: 10.1016/j.msec.2020.111179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 01/26/2023]
|
20
|
Quaglino E, Cavallo F, Conti L. Cancer stem cell antigens as targets for new combined anti-cancer therapies. Int J Biochem Cell Biol 2020; 129:105861. [PMID: 33031926 DOI: 10.1016/j.biocel.2020.105861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
The introduction of immune checkpoint inhibitors (ICI) has ushered in a new, golden age for cancer immunotherapy. However, their clinical success remains limited in several solid cancer types because of the low intrinsic immunogenicity of tumors and the development of immune escape mechanisms. Cancer stem cells (CSC), a small population of cancer cells that are responsible for tumor onset, metastatic spread and relapse after treatment, play a pivotal role in resistance to ICIs. The development of novel therapies that can target CSCs would thus improve the outcomes of current immunotherapy regimens. In this light, vaccines that target CSCs are a promising strategy. This paper briefly describes the immunologic properties of CSCs and their antigenic profile, and reviews current preclinical and clinical approaches that combine CSC-targeting vaccines with different synergistic therapies for the development of more effective antineoplastic treatments.
Collapse
Affiliation(s)
- Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
21
|
Quaglino E, Conti L, Cavallo F. Breast cancer stem cell antigens as targets for immunotherapy. Semin Immunol 2020; 47:101386. [PMID: 31932198 DOI: 10.1016/j.smim.2020.101386] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022]
Abstract
The great success of immunotherapy is paving the way for a new era in cancer treatment and is driving major improvements in the therapy of patients suffering from a range of solid tumors. However, the choice of the appropriate tumor antigens to be targeted with cancer vaccines and T-cell therapies is still a challenge. Most antigens targeted so far have been identified on the tumor bulk and are expressed on differentiated cancer cells. The discovery of a small population of cancer stem cells (CSC), which is refractory to most current therapies and responsible for the development of metastasis and recurrence, has made it clear that the ideal targets for immunotherapies are the antigens that are expressed in CSC and play a key role in their function. Indeed, their immunotargeting would enable the eradication of CSC to be performed, thus eliminating the tumor source. We call these antigens "CSC oncoantigens". Herein, we summarize the controversial nature of breast CSC, discuss why they represent good candidates for cancer immunotherapy, and review the CSC antigens that have been used as targets for CSC immunotargeting this far. Moreover, we describe the pipeline that we have developed for the identification of fresh CSC oncoantigens, and present the pre-clinical results obtained with vaccines that target some of these antigens.
Collapse
Affiliation(s)
- Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
22
|
Nurhidayah D, Maruf A, Zhang X, Liao X, Wu W, Wang G. Advanced drug-delivery systems: mechanoresponsive nanoplatforms applicable in atherosclerosis management. Nanomedicine (Lond) 2019; 14:3105-3122. [PMID: 31823682 DOI: 10.2217/nnm-2019-0172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nanoplatforms have been used extensively as advanced carriers to enhance the effectiveness of drug delivery, mostly through passive aggregation provided by the enhanced permeability and retention effect. Mechanical stimuli provide a robust strategy to bolster drug delivery performance by increasing the accumulation of nanoplatforms at the lesion sites, facilitating on-demand cargo release and providing theranostic aims. In this review, we focus on recent advances of mechanoresponsive nanoplatforms that can accomplish targeted drug delivery, and subsequent drug release, under specific stimuli, either endogenous (shear stress) or exogenous (magnetic field and ultrasound), to synergistically combat atherosclerosis at the molecular level.
Collapse
Affiliation(s)
- Deti Nurhidayah
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Ali Maruf
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaojuan Zhang
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Wei Wu
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
23
|
Jana S. Endothelialization of cardiovascular devices. Acta Biomater 2019; 99:53-71. [PMID: 31454565 DOI: 10.1016/j.actbio.2019.08.042] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
24
|
Wang Y, Lan H, Yin T, Zhang X, Huang J, Fu H, Huang J, McGinty S, Gao H, Wang G, Wang Z. Covalent immobilization of biomolecules on stent materials through mussel adhesive protein coating to form biofunctional films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110187. [PMID: 31753395 DOI: 10.1016/j.msec.2019.110187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 10/22/2018] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
Abstract
It is widely accepted that surface biofunctional modification may be an effective approach to improve biocompatibility and confer new bioactive properties on biomaterials. In this work, mussel adhesive protein (MAP) was applied as a coating on 316 L stainless steel substrates (316 L SS) and stents, and then either immobilized VEGF or CD34 antibody were added to create biofunctional films. The properties of the MAP coating were characterized by scanning electron microscope (SEM), atomic force microscope (AFM) and a water contact angle test. Universal tensile testing showed that the MAP coating has adequate adhesion strength on a 316 L stainless steel material surface. Subsequent cytotoxicity and hemolysis rate tests showed that the MAP coatings have good biocompatibility. Moreover, using N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysulfosussinimide (EDC/NHS) chemistry, VEGF and CD34 antibody were immobilized on the MAP coatings. The amount and immobilized yield of VEGF on the MAP coatings were analyzed by enzyme-linked immuno-assays (ELISA). Finally, an endothelial cells culture showed that the VEGF biofunctional film can promote the viability and proliferation of endothelial cells. An in vitro CD34+ cells capturing test also verified the bioactive properties of the CD34 antibody coated stents. These results showed that the MAP coatings allowed effective biomolecule immobilization, providing a promising platform for vascular device modification.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering at Chongqing University, Chongqing, China
| | - Hualin Lan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering at Chongqing University, Chongqing, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering at Chongqing University, Chongqing, China.
| | - Xiaojuan Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering at Chongqing University, Chongqing, China
| | - Junyang Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering at Chongqing University, Chongqing, China
| | - Haiyang Fu
- Laboratory of Biomaterials and Tissues Engineering, National Institutes for Food and Drug Control, Beijing, China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering at Chongqing University, Chongqing, China
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering at Chongqing University, Chongqing, China.
| | - Zhaoxu Wang
- Laboratory of Biomaterials and Tissues Engineering, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
25
|
Maruf A, Wang Y, Yin T, Huang J, Wang N, Durkan C, Tan Y, Wu W, Wang G. Atherosclerosis Treatment with Stimuli-Responsive Nanoagents: Recent Advances and Future Perspectives. Adv Healthc Mater 2019; 8:e1900036. [PMID: 30945462 DOI: 10.1002/adhm.201900036] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/06/2019] [Indexed: 01/04/2023]
Abstract
Atherosclerosis is the root of approximately one-third of global mortalities. Nanotechnology exhibits splendid prospects to combat atherosclerosis at the molecular level by engineering smart nanoagents with versatile functionalizations. Significant advances in nanoengineering enable nanoagents to autonomously navigate in the bloodstream, escape from biological barriers, and assemble with their nanocohort at the targeted lesion. The assembly of nanoagents with endogenous and exogenous stimuli breaks down their shells, facilitates intracellular delivery, releases their cargo to kill the corrupt cells, and gives imaging reports. All these improvements pave the way toward personalized medicine for atherosclerosis. This review systematically summarizes the recent advances in stimuli-responsive nanoagents for atherosclerosis management and its progress in clinical trials.
Collapse
Affiliation(s)
- Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Tieyin Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Nan Wang
- The Nanoscience CentreUniversity of Cambridge Cambridge CB3 0FF UK
| | - Colm Durkan
- The Nanoscience CentreUniversity of Cambridge Cambridge CB3 0FF UK
| | - Youhua Tan
- Department of Biomedical EngineeringThe Hong Kong Polytechnic University Hong Kong SAR 999077 China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| |
Collapse
|
26
|
das Neves RC, Mortari MR, Schwartz EF, Kipnis A, Junqueira-Kipnis AP. Antimicrobial and Antibiofilm Effects of Peptides from Venom of Social Wasp and Scorpion on Multidrug-Resistant Acinetobacter baumannii. Toxins (Basel) 2019; 11:E216. [PMID: 30974767 PMCID: PMC6520840 DOI: 10.3390/toxins11040216] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023] Open
Abstract
Intravascular stent infection is a rare complication with a high morbidity and high mortality; bacteria from the hospital environment form biofilms and are often multidrug-resistant (MDR). Antimicrobial peptides (AMPs) have been considered as alternatives to bacterial infection treatment. We analyzed the formation of the bacterial biofilm on the vascular stents and also tested the inhibition of this biofilm by AMPs to be used as treatment or coating. Antimicrobial activity and antibiofilm were tested with wasp (Agelaia-MPI, Polybia-MPII, Polydim-I) and scorpion (Con10 and NDBP5.8) AMPs against Acinetobacter baumannii clinical strains. A. baumannii formed a biofilm on the vascular stent. Agelaia-MPI and Polybia-MPII inhibited biofilm formation with bacterial cell wall degradation. Coating biofilms with polyethylene glycol (PEG 400) and Agelaia-MPI reduced 90% of A. baumannii adhesion on stents. The wasp AMPs Agelaia-MPI and Polybia-MPII had better action against MDR A. baumannii adherence and biofilm formation on vascular stents, preventing its formation and treating mature biofilm when compared to the other tested peptides.
Collapse
Affiliation(s)
- Rogério Coutinho das Neves
- Laboratory of Immunopathology of infectious diseases, Department of Immunology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Goiania, 74605-050 Goiás, Brazil.
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, 70910-900 Brasilia, Brazil.
| | - Elisabeth Ferroni Schwartz
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, 70910-900 Brasilia, Brazil.
| | - André Kipnis
- Laboratory of Immunopathology of infectious diseases, Department of Immunology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Goiania, 74605-050 Goiás, Brazil.
| | - Ana Paula Junqueira-Kipnis
- Laboratory of Immunopathology of infectious diseases, Department of Immunology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Goiania, 74605-050 Goiás, Brazil.
| |
Collapse
|
27
|
Wawrzyńska M, Kraskiewicz H, Paprocka M, Krawczenko A, Bielawska‐Pohl A, Biały D, Roleder T, Wojakowski W, O'Connor IB, Duda M, Michal R, Wasyluk Ł, Plesch G, Podbielska H, Kopaczyńska M, Wall JG. Functionalization with a VEGFR2‐binding antibody fragment leads to enhanced endothelialization of a cardiovascular stent
in vitro
and
in vivo. J Biomed Mater Res B Appl Biomater 2019; 108:213-224. [DOI: 10.1002/jbm.b.34380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Magdalena Wawrzyńska
- Department of Emergency Medical ServiceWroclaw Medical University Wrocław Poland
| | - Honorata Kraskiewicz
- Balton Ltd Warsaw Poland
- Centre for Research in Medical Devices (CÚRAM)NUI Galway Galway Ireland
| | - Maria Paprocka
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of Sciences Wrocław Poland
| | - Agnieszka Krawczenko
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of Sciences Wrocław Poland
| | | | - Dariusz Biały
- Clinic of CardiologyWroclaw Medical University Wrocław Poland
| | - Tomasz Roleder
- Department of CardiologySchool of Health Sciences, Medical University of Silesia Katowice Poland
| | | | - Iain B. O'Connor
- Centre for Research in Medical Devices (CÚRAM)NUI Galway Galway Ireland
- MicrobiologyNUI Galway Galway Ireland
| | - Maciej Duda
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Technology and Science Wrocław Poland
| | - Robert Michal
- Department of Inorganic Chemistry, Faculty of Natural SciencesComenius University Bratislava Slovakia
| | | | - Gustav Plesch
- Department of Inorganic Chemistry, Faculty of Natural SciencesComenius University Bratislava Slovakia
| | - Halina Podbielska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Technology and Science Wrocław Poland
| | - Marta Kopaczyńska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Technology and Science Wrocław Poland
| | - J. Gerard Wall
- Centre for Research in Medical Devices (CÚRAM)NUI Galway Galway Ireland
- MicrobiologyNUI Galway Galway Ireland
| |
Collapse
|
28
|
Wawrzyńska M, Duda M, Wysokińska E, Strządała L, Biały D, Ulatowska-Jarża A, Kałas W, Kraszewski S, Pasławski R, Biernat P, Pasławska U, Zielonka A, Podbielska H, Kopaczyńska M. Functionalized CD133 antibody coated stent surface simultaneously promotes EPCs adhesion and inhibits smooth muscle cell proliferation–A novel approach to prevent in-stent restenosis. Colloids Surf B Biointerfaces 2019; 174:587-597. [DOI: 10.1016/j.colsurfb.2018.11.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/09/2018] [Accepted: 11/24/2018] [Indexed: 01/12/2023]
|
29
|
Wu T, Zhang J, Wang Y, Sun B, Yin M, Bowlin GL, Mo X. Design and Fabrication of a Biomimetic Vascular Scaffold Promoting in Situ Endothelialization and Tunica Media Regeneration. ACS APPLIED BIO MATERIALS 2018; 1:833-844. [DOI: 10.1021/acsabm.8b00269] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tong Wu
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jialing Zhang
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Yuanfei Wang
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Binbin Sun
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Gary L. Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee 38017, United States
| | - Xiumei Mo
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
30
|
Wang J, Jin X, Huang Y, Ran X, Luo D, Yang D, Jia D, Zhang K, Tong J, Deng X, Wang G. Endovascular stent-induced alterations in host artery mechanical environments and their roles in stent restenosis and late thrombosis. Regen Biomater 2018; 5:177-187. [PMID: 29942650 PMCID: PMC6007795 DOI: 10.1093/rb/rby006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/11/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular stent restenosis remains a major challenge in interventional treatment of cardiovascular occlusive disease. Although the changes in arterial mechanical environment due to stent implantation are the main causes of the initiation of restenosis and thrombosis, the mechanisms that cause this initiation are still not fully understood. In this article, we reviewed the studies on the issue of stent-induced alterations in arterial mechanical environment and discussed their roles in stent restenosis and late thrombosis from three aspects: (i) the interaction of the stent with host blood vessel, involve the response of vascular wall, the mechanism of mechanical signal transmission, the process of re-endothelialization and late thrombosis; (ii) the changes of hemodynamics in the lumen of the vascular segment and (iii) the changes of mechanical microenvironment within the vascular segment wall due to stent implantation. This review has summarized and analyzed current work in order to better solve the two main problems after stent implantation, namely in stent restenosis and late thrombosis, meanwhile propose the deficiencies of current work for future reference.
Collapse
Affiliation(s)
- Jinxuan Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Xuepu Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Yuhua Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Xiaolin Ran
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Desha Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Dongchuan Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Dongyu Jia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Kang Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Jianhua Tong
- Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
31
|
Hu T, Lin S, Du R, Fu M, Rao Q, Yin T, Huang Y, Wang G. Design, preparation and performance of a novel drug-eluting stent with multiple layer coatings. Biomater Sci 2018; 5:1845-1857. [PMID: 28676873 DOI: 10.1039/c7bm00417f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drug-eluting stents (DESs) can effectively control the harmful effects of coronary artery disease, because of their excellent ability to reduce in-stent restenosis. However, delayed re-endothelialization and late stent thrombosis have caused concern over the safety of DESs. In this study, according to time-ordered pathological responses after stent implantation, a hierarchical multiple drug-eluting stent was designed and prepared to overcome the existing DES limitations. A platelet membrane glycoprotein IIIa monoclonal antibody (SZ-21) and a vascular endothelial growth factor (VEGF121) were loaded into the inner coating of 316L stainless steel (316L SS) stents to inhibit thrombosis and promote re-endothelialization; rapamycin (RAPA) was loaded into the third layer to inhibit intima hyperplasia; a drug-free poly-l-lactic acid coating was located on the second and fourth layers and used as sustained release layers. The results showed that the three drugs exhibited sequential release kinetics without significant burst release. RAPA released quickly at the early stage, while SZ-21 and VEGF121 achieved a slow and prolonged release. In vitro experiments showed that the stents had excellent hemocompatibility and anti-inflammatory properties, and promoted the proliferation and migration of endothelial cells while inhibiting the proliferation and migration of smooth muscle cells. Finally the stents were implanted in the carotid arteries of New Zealand white rabbits. In vivo results showed that compared to 316L SS stents, the multiple drug-eluting stents could accelerate re-endothelialization and inhibit thrombosis, inflammation and in-stent restenosis after 4 weeks (12.79 ± 2.45% vs. 25.27 ± 4.81%) and 12 weeks (15.87 ± 3.62% vs. 58.84 ± 6.87%). These results indicate that the novel drug-eluting stent with multiple layer coatings will have a highly potential clinical application.
Collapse
Affiliation(s)
- Tingzhang Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400044, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Shear stress: An essential driver of endothelial progenitor cells. J Mol Cell Cardiol 2018; 118:46-69. [PMID: 29549046 DOI: 10.1016/j.yjmcc.2018.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
The blood flow through vessels produces a tangential, or shear, stress sensed by their innermost layer (i.e., endothelium) and representing a major hemodynamic force. In humans, endothelial repair and blood vessel formation are mainly performed by circulating endothelial progenitor cells (EPCs) characterized by a considerable expression of vascular endothelial growth factor receptor 2 (VEGFR2), CD34, and CD133, pronounced tube formation activity in vitro, and strong reendothelialization or neovascularization capacity in vivo. EPCs have been proposed as a promising agent to induce reendothelialization of injured arteries, neovascularization of ischemic tissues, and endothelialization or vascularization of bioartificial constructs. A number of preconditioning approaches have been suggested to improve the regenerative potential of EPCs, including the use of biophysical stimuli such as shear stress. However, in spite of well-defined influence of shear stress on mature endothelial cells (ECs), articles summarizing how it affects EPCs are lacking. Here we discuss the impact of shear stress on homing, paracrine effects, and differentiation of EPCs. Unidirectional laminar shear stress significantly promotes homing of circulating EPCs to endothelial injury sites, induces anti-thrombotic and anti-atherosclerotic phenotype of EPCs, increases their capability to form capillary-like tubes in vitro, and enhances differentiation of EPCs into mature ECs in a dose-dependent manner. These effects are mediated by VEGFR2, Tie2, Notch, and β1/3 integrin signaling and can be abrogated by means of complementary siRNA/shRNA or selective pharmacological inhibitors of the respective proteins. Although the testing of sheared EPCs for vascular tissue engineering or regenerative medicine applications is still an unaccomplished task, favorable effects of unidirectional laminar shear stress on EPCs suggest its usefulness for their preconditioning.
Collapse
|
33
|
Pacelli S, Basu S, Whitlow J, Chakravarti A, Acosta F, Varshney A, Modaresi S, Berkland C, Paul A. Strategies to develop endogenous stem cell-recruiting bioactive materials for tissue repair and regeneration. Adv Drug Deliv Rev 2017; 120:50-70. [PMID: 28734899 PMCID: PMC5705585 DOI: 10.1016/j.addr.2017.07.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/05/2017] [Accepted: 07/16/2017] [Indexed: 02/07/2023]
Abstract
A leading strategy in tissue engineering is the design of biomimetic scaffolds that stimulate the body's repair mechanisms through the recruitment of endogenous stem cells to sites of injury. Approaches that employ the use of chemoattractant gradients to guide tissue regeneration without external cell sources are favored over traditional cell-based therapies that have limited potential for clinical translation. Following this concept, bioactive scaffolds can be engineered to provide a temporally and spatially controlled release of biological cues, with the possibility to mimic the complex signaling patterns of endogenous tissue regeneration. Another effective way to regulate stem cell activity is to leverage the inherent chemotactic properties of extracellular matrix (ECM)-based materials to build versatile cell-instructive platforms. This review introduces the concept of endogenous stem cell recruitment, and provides a comprehensive overview of the strategies available to achieve effective cardiovascular and bone tissue regeneration.
Collapse
Affiliation(s)
- Settimio Pacelli
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Sayantani Basu
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Jonathan Whitlow
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Aparna Chakravarti
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Francisca Acosta
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Arushi Varshney
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| | - Saman Modaresi
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| | - Cory Berkland
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA.
| | - Arghya Paul
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
34
|
Qiu J, Lei D, Hu J, Yin T, Zhang K, Yu D, Wang G. Effect of intraplaque angiogenesis to atherosclerotic rupture-prone plaque induced by high shear stress in rabbit model. Regen Biomater 2017; 4:215-222. [PMID: 28798867 PMCID: PMC5544912 DOI: 10.1093/rb/rbx007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
Atherosclerotic prone-rupture plaque is mainly localized in the region of the entrance to the stenosis with high shear stress and the reasons are largely unknown. Our hypothesis is that such a distribution of cells in atherosclerotic plaque may depend on the angiogenesis. Silastic collars induced regions of high shear stress (20.68 ± 5.27 dynes/cm2) in the upstream flow and low shear stress (12.25 ± 1.28 dynes/cm2) in the downstream flow in carotid arteries. Compared with the low shear stress region, plaques in the high shear stress region showed more intraplaque haemorrhaging, less collagen and higher apoptotic rates of vascular smooth muscle cells; endothelial cells (ECs) in the high shear stress region were characterized with integrity and high endothelial nitric oxide synthase (eNOS) expression (1570.3 ± 345.5% vs 172.9 ± 49.9%). The number of intraplaque microvessels is very high in the high shear stress region (15 ± 1.8 n/mm2 vs 3.5 ± 0.4 n/mm2), and the microvessels in the plaque show ECs were abnormal, with membrane blebs, intracytoplasmic vacuoles and leukocyte infiltration. Our current study reveals that the integrity of the endothelium and the vulnerability of atherosclerotic plaques are simultaneously localized in high shear stress regions, and we provide evidence for the first time that microvessels in the intraplaque maybe responsible for rupture-prone plaque formation in the high shear stress region.
Collapse
Affiliation(s)
- Juhui Qiu
- Department of Bio-engineering, Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Daoxi Lei
- Department of Bio-engineering, Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Jianjun Hu
- Department of Bio-engineering, Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Tieying Yin
- Department of Bio-engineering, Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Kang Zhang
- Department of Bio-engineering, Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Donghong Yu
- Department of Bio-engineering, Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Guixue Wang
- Department of Bio-engineering, Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| |
Collapse
|
35
|
Yildiz M, Oksen D, Akin I. Cardiogenic Shock Due to Coronary Artery Stent Thrombosis. Interv Cardiol 2017. [DOI: 10.5772/intechopen.68362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
36
|
Hu T, Yang C, Fu M, Yang J, Du R, Ran X, Yin T, Wang G. Cytotoxic effects of docetaxel as a candidate drug of drug-eluting stent on human umbilical vein endothelial cells and the signaling pathway of cell migration inhibition, adhesion delay and shape change. Regen Biomater 2017; 4:167-178. [PMID: 28596914 PMCID: PMC5458539 DOI: 10.1093/rb/rbx010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 01/03/2023] Open
Abstract
Docetaxel (DTX), a paclitaxel analogue, can efficiently inhibit proliferation of vascular smooth muscle cells and has broadly been used as an antiangiogenesis drug. However, as a candidate drug of drug-eluting stent, the effects of DTX on human umbilical vein endothelial cells (HUVECs) are still not well understood. Herein, we investigated the effects of DTX on proliferation, apoptosis, adhesion, migration and morphology of HUVECs in vitro. We found that DTX had the cytostatic and cytotoxic effects at low and high concentrations, respectively. DTX could inhibit the proliferation and migration of HUVECs, induce HUVECs apoptosis, delay HUVECs adhesion and decrease spreading area and aspect ratio of individual cells. The signaling pathway that DTX led to the migration inhibition, adhesion delay and shape change of HUVECs is the VE-cadherin mediated integrin β1/FAK/ROCK signaling pathway. The study will provide a theoretical basis for the clinical application of DTX.
Collapse
Affiliation(s)
- Tingzhang Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Chun Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Meiling Fu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jiali Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Rolin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaolin Ran
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- Correspondence address. Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China. Tel: +86(0)23-65112675; Fax: +86(0)23-65112507; E-mail:
| |
Collapse
|
37
|
Li Z, Zhao R, Fang X, Huang Q, Liu J. Recombinant human SDF-1α administration accelerates aneurysm neck reendothelialization in rabbit saccular aneurysm after flow diverter treatment. Acta Biochim Biophys Sin (Shanghai) 2017; 49:246-253. [PMID: 28159982 DOI: 10.1093/abbs/gmx001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 12/21/2022] Open
Abstract
Reendothelialization in the aneurysm neck is pivotal to vascular repair for intracranial aneurysm after flow diverter (FD) implantation. Recombinant human stromal cell-derived factor 1α (rhSDF-1α) is a vital chemoattractant to stem cells and potentially facilitates reendothelialization. Here, we sought to investigate the therapeutic effects of intravenous administration of rhSDF-1α and uncover its potential mechanism for promoting aneurysm neck reendothelialization. Recombinant pET32a-186 plasmid was transformed into Escherichia coli to produce the rhSDF-1α protein with biological activity. FD was implanted into the elastase-induced saccular aneurysm in New Zealand white rabbits. rhSDF-1α (50 μg/kg/day) was intravenously administrated for consecutive 7 days after FD implantation. After these procedures, aneurysms were harvested after 2 or 4 weeks. Scanning electron microscopy was used to measure the neointima thickness and count the endothelial-like cells at aneurysm neck. Four weeks later, the mRNA levels of endothelial markers in the neointima at aneurysm neck were examined. Migration assay showed that rhSDF-1α could induce migration of endothelial progenitor cells in a dose-dependent manner. Two weeks after stent implantation, follow-up angiography showed partial aneurysm occlusion in one of each group and total aneurysm occlusion in 17 saccular aneurysm rabbits (9 of the rhSDF-1α group and 8 of the control group). No significant change of neointima thickness at aneurysm neck was observed. Intriguingly, more endothelial-like cells were observed at aneurysm neck in the rhSDF-1α group at 2 weeks (55 vs 13 cells per high-power field) and 4 weeks (104 vs 60 cells per high-power field). The mRNA levels of Tie-2, VE-cadherin, KDR and E-selectin were significantly enhanced compared with those of the control group. These results showed that intravenous administration of rhSDF-1α can accelerate reendothelialization in the aneurysm neck after FD implantation. Our study reveals an important role of rhSDF-1α in inducing aneurysm occlusion and suggests that it achieves its function through modulating the reendothelialization.
Collapse
Affiliation(s)
- Zifu Li
- Neurosurgery Department, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Rui Zhao
- Neurosurgery Department, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xinggen Fang
- Neurosurgery Department, Yijishan Hospital, Wuhu 241001, China
| | - Qinghai Huang
- Neurosurgery Department, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jianmin Liu
- Neurosurgery Department, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|