1
|
Xu Y, Jiang B, Liu F, Zhang H, Li D, Tang X, Yang X, Sheng Y, Wu X, Shi N. A Novel System for Fabricating Microspheres with Microelectromechanical System-Based Bioprinting Technology. BME FRONTIERS 2024; 5:0076. [PMID: 39568593 PMCID: PMC11576531 DOI: 10.34133/bmef.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Objective and Impact Statement: The microspheres were widely utilized in the field of life sciences, and we have developed an innovative microelectromechanical system (MEMS)-based bioprinting technology (MBT) system for the preparation of the microspheres. The microspheres can be automatically and high-throughput produced with this cutting-edge system. Introduction and Methods: This paper mainly introduced a novel, efficient, and cost-effective approach for the microsphere fabrication with the MBT system. In this work, the whole microsphere production equipment was built and the optimal conditions (like concentration, drying temperature, frequency, and voltage) for generating uniform hydroxypropyl cellulose-cyclosporine A (HPC-CsA) and poly-l-lactic acid (PLLA) microspheres were explored. Results: Results demonstrated that the optimal uniformity of HPC-CsA microspheres was achieved at 2% (w/v) HPC-CsA mixture, 45 °C (drying temperature), 1,000 Hz (frequency), and 25 V (voltage amplitude). CsA microspheres [coefficient of variation (CV): ~9%] are successfully synthesized, and the drug encapsulation rate was 84.8%. The methodology was further used to produce PLLA microspheres with a diameter of ~2.55 μm, and the best CV value achieved 6.84%. Conclusion: This investigation fully highlighted the integration of MEMS and bioprinting as a promising tool for the microsphere fabrication, and this MBT system had huge potential applications in pharmaceutical formulations and medical aesthetics.
Collapse
Affiliation(s)
- Yifeng Xu
- School of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Industrial μ Technology Research Institute, Shanghai 200000, China
| | - Bao Jiang
- School of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Industrial μ Technology Research Institute, Shanghai 200000, China
| | - Fangfang Liu
- Shanghai Industrial μ Technology Research Institute, Shanghai 200000, China
| | - Hua Zhang
- Suzhou Silicon jet Microelectronics Co. Ltd., Suzhou, Jiangsu Province 215000, China
| | - Dan Li
- Shanghai Industrial μ Technology Research Institute, Shanghai 200000, China
| | - Xiaohui Tang
- Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Xiuming Yang
- Shanghai Industrial μ Technology Research Institute, Shanghai 200000, China
| | - Yan Sheng
- Institute of Translational Medicine, Shanghai University, Shanghai 200000, China
| | - Xuanye Wu
- School of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Industrial μ Technology Research Institute, Shanghai 200000, China
| | - Nan Shi
- School of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Industrial μ Technology Research Institute, Shanghai 200000, China
- Institute of Translational Medicine, Shanghai University, Shanghai 200000, China
| |
Collapse
|
2
|
Srivastava S, Pandey VK, Dar AH, Shams R, Dash KK, Rafiq SM, Zahoor I, Kumar S. Effect of microencapsulation techniques on the different properties of bioactives, vitamins and minerals. Food Sci Biotechnol 2024; 33:3181-3198. [PMID: 39328216 PMCID: PMC11422329 DOI: 10.1007/s10068-024-01666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024] Open
Abstract
This paper explores the impact of encapsulation techniques on bioactive compounds, vitamins, and minerals, which are crucial for delivering bioactive compounds. Due to their instability and reactivity with the environment, encapsulation is often necessary to make these compounds suitable for medical or dietary applications. The evaluation of the kinetic model of bioactives reveals that encapsulation can significantly enhance their stability. However, encapsulation is not without its drawbacks. Incomplete encapsulation can reduce the effectiveness of the bioactives, and complexity of encapsulation processes can hinder widespread adoption. Interactions between the encapsulated materials and the encapsulating agents may also impact the release and bioavailability of the bioactives. It also presents perspectives for future research aimed at overcoming the limitations and enhancing the effectiveness of encapsulation. As research continues to advance, encapsulation is poised to play critical role in improving the delivery and stability of bioactive compounds, benefiting the food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Shivangi Srivastava
- Department of Food Technology, Harcourt Butler Technical University, Uttar Pradesh, Nawabganj, Kanpur, India
| | - Vinay Kumar Pandey
- Research & Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to be University), Faridabad, Haryana India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Kashmir India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal India
| | - Syed Mansha Rafiq
- Department of Food Science and Technology, National Institute of Food Technology and Entrepreneurship Management, Kundli, Sonipat, Haryana India
| | - Insha Zahoor
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Kashmir India
| | - Sharath Kumar
- ICAR-Central Institute of Temperate Horticulture, Srinagar, J&K 191132 India
| |
Collapse
|
3
|
Lončarević A, Clara-Trujillo S, Martínez-Férriz A, Blanco-Gómez M, Gallego-Ferrer G, Rogina A. Chitosan-copper microparticles as doxorubicin microcarriers for bone tumor therapy. Int J Pharm 2024; 659:124245. [PMID: 38772497 DOI: 10.1016/j.ijpharm.2024.124245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug used in osteosarcoma treatments, usually administrated in very high dosages. This study proposes novel DOX microcarriers based on chitosan (CHT) physically crosslinked with copper(II) ions that will act synergically to inhibit tumor growth at lower drug dosage without affecting the healthy cells. Spherical CHT-Cu microparticles with a smooth surface and an average size of 30.1 ± 9.1 µm were obtained by emulsion. The release of Cu2+ ions from the CHT-Cu microparticles showed that 99.4 % of added cupric ions were released in 72 h of incubation in a complete cell culture medium (CCM). DOX entrapment in microparticles was conducted in a phosphate buffer solution (pH 6), utilizing the pH sensitivity of the polymer. The successful drug-loading process was confirmed by DOX emitting red fluorescence from drug-loaded microcarriers (DOX@CHT-Cu). The drug release in CCM showed an initial burst release, followed by sustained release. Biological assays indicated mild toxicity of CHT-Cu microparticles on the MG-63 osteosarcoma cell line, without affecting the viability of human mesenchymal stem cells (hMSCs). The DOX@CHT-Cu microparticles at concentration of 0.5 mg mL‒1 showed selective toxicity toward MG-63 cells.
Collapse
Affiliation(s)
- Andrea Lončarević
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia.
| | - Sandra Clara-Trujillo
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - Arantxa Martínez-Férriz
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.
| | - Mireia Blanco-Gómez
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.
| | - Gloria Gallego-Ferrer
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - Anamarija Rogina
- University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia.
| |
Collapse
|
4
|
Han Q, Bai L, Qian Y, Zhang X, Wang J, Zhou J, Cui W, Hao Y, Yang X. Antioxidant and anti-inflammatory injectable hydrogel microspheres for in situ treatment of tendinopathy. Regen Biomater 2024; 11:rbae007. [PMID: 38414798 PMCID: PMC10898336 DOI: 10.1093/rb/rbae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 02/29/2024] Open
Abstract
Tendinopathy is a common disorder that causes local dysfunction and reduces quality of life. Recent research has indicated that alterations in the inflammatory microenvironment play a vital role in the pathogenesis of tendinopathy. Herein, injectable methacrylate gelatin (GelMA) microspheres (GM) were fabricated and loaded with heparin-dopamine conjugate (HDC) and hepatocyte growth factor (HGF). GM@HDC@HGF were designed to balance the inflammatory microenvironment by inhibiting oxidative stress and inflammation, thereby regulating extracellular matrix (ECM) metabolism and halting tendon degeneration. Combining growth factors with heparin was expected to improve the encapsulation rate and maintain the long-term efficacy of HGF. In addition, the catechol groups on dopamine have adhesion and antioxidant properties, allowing potential attachment at the injured site, and better function synergized with HGF. GM@HDC@HGF injected in situ in rat Achilles tendinopathy (AT) models significantly down-regulated oxidative stress and inflammation, and ameliorated ECM degradation. In conclusion, the multifunctional platform developed presents a promising alternative for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Qibin Han
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, P.R. China
| | - Lang Bai
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, P.R. China
| | - Yinhua Qian
- Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Suzhou 215300, P.R. China
| | - Xiaoyu Zhang
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, P.R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jing Zhou
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, P.R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yuefeng Hao
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, P.R. China
| | - Xing Yang
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, P.R. China
| |
Collapse
|
5
|
Xuan H, Zhang Z, Jiang W, Li N, Sun L, Xue Y, Guan H, Yuan H. Dual-bioactive molecules loaded aligned core-shell microfibers for tendon tissue engineering. Colloids Surf B Biointerfaces 2023; 228:113416. [PMID: 37348269 DOI: 10.1016/j.colsurfb.2023.113416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Development of a controlled delivery ultrafine fibrous system with two bioactive molecules is required to stimulate tendon healing in different phase. In this study, we used emulsion stable jet electrospinning to fabricate aligned poly(L-lactic acid) (PLLA) based ultrafine fibers with two small bioactive molecules of L-Arginine (Arg) and low molecular weight hyaluronic acid (HA). The results demonstrated that the aligned Arg/HA/PLLA microfibrous scaffold showed core-shell structure and allowed sequential release of Arg and HA due to their different electric charge. The scaffold also showed enhanced hydrophilicity, cell migration, spread and proliferation. Using an Achilles tendon repair model in rats, we demonstrated that this novel fibrous scaffold can prevent adhesion and promote tendon regeneration. Additionally, two p53 and ER-α-mediated signalling pathways were described as the probable main path of synergistic effects of the novel scaffold on tendon generation. Thus, this study may provide an important strategy for developing biofunctional and biomimetic tendon scaffolds.
Collapse
Affiliation(s)
- Hongyun Xuan
- School of Life Sciences, Nantong University, Nantong 226019, PR China
| | - Zhuojun Zhang
- School of Life Sciences, Nantong University, Nantong 226019, PR China
| | - Wei Jiang
- School of Life Sciences, Nantong University, Nantong 226019, PR China
| | - Nianci Li
- School of Life Sciences, Nantong University, Nantong 226019, PR China
| | - Li Sun
- School of Life Sciences, Nantong University, Nantong 226019, PR China
| | - Ye Xue
- School of Life Sciences, Nantong University, Nantong 226019, PR China.
| | - Haitao Guan
- Department of Ultrasonography, Affiliated Suzhou Hospital, Medical School of Nanjing University, Nanjing University, Suzhou 215153, PR China.
| | - Huihua Yuan
- School of Life Sciences, Nantong University, Nantong 226019, PR China.
| |
Collapse
|
6
|
Berraquero-García C, Pérez-Gálvez R, Espejo-Carpio FJ, Guadix A, Guadix EM, García-Moreno PJ. Encapsulation of Bioactive Peptides by Spray-Drying and Electrospraying. Foods 2023; 12:foods12102005. [PMID: 37238822 DOI: 10.3390/foods12102005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Bioactive peptides derived from enzymatic hydrolysis are gaining attention for the production of supplements, pharmaceutical compounds, and functional foods. However, their inclusion in oral delivery systems is constrained by their high susceptibility to degradation during human gastrointestinal digestion. Encapsulating techniques can be used to stabilize functional ingredients, helping to maintain their activity after processing, storage, and digestion, thus improving their bioaccessibility. Monoaxial spray-drying and electrospraying are common and economical techniques used for the encapsulation of nutrients and bioactive compounds in both the pharmaceutical and food industries. Although less studied, the coaxial configuration of both techniques could potentially improve the stabilization of protein-based bioactives via the formation of shell-core structures. This article reviews the application of these techniques, both monoaxial and coaxial configurations, for the encapsulation of bioactive peptides and protein hydrolysates, focusing on the factors affecting the properties of the encapsulates, such as the formulation of the feed solution, selection of carrier and solvent, as well as the processing conditions used. Furthermore, this review covers the release, retention of bioactivity, and stability of peptide-loaded encapsulates after processing and digestion.
Collapse
Affiliation(s)
| | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | |
Collapse
|
7
|
Formation of disaggregated polymer microspheres by a novel method combining pulsed voltage electrospray and wet phase inversion techniques. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Li C, Xu X, Gao J, Zhang X, Chen Y, Li R, Shen J. 3D printed scaffold for repairing bone defects in apical periodontitis. BMC Oral Health 2022; 22:327. [PMID: 35941678 PMCID: PMC9358902 DOI: 10.1186/s12903-022-02362-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To investigate the feasibility of the 3D printed scaffold for periapical bone defects. Methods In this study, antimicrobial peptide KSL-W-loaded PLGA sustainable-release microspheres (KSL-W@PLGA) were firstly prepared followed by assessing the drug release behavior and bacteriostatic ability against Enterococcus faecalis and Porphyromonas gingivalis. After that, we demonstrated that KSL-W@PLGA/collagen (COL)/silk fibroin (SF)/nano-hydroxyapatite (nHA) (COL/SF/nHA) scaffold via 3D-printing technique exhibited significantly good biocompatibility and osteoconductive property. The scaffold was characterized as to pore size, porosity, water absorption expansion rate and mechanical properties. Moreover, MC3T3-E1 cells were seeded into sterile scaffold materials and investigated by CCK-8, SEM and HE staining. In the animal experiment section, we constructed bone defect models of the mandible and evaluated its effect on bone formation. The Japanese white rabbits were killed at 1 and 2 months after surgery, the cone beam computerized tomography (CBCT) and micro-CT scanning, as well as HE and Masson staining analysis were performed on the samples of the operation area, respectively. Data analysis was done using ANOVA and LSD tests. (α = 0.05). Results We observed that the KSL-W@PLGA sustainable-release microspheres prepared in the experiment were uniform in morphology and could gradually release the antimicrobial peptide (KSL-W), which had a long-term antibacterial effect for at least up to 10 days. HE staining and SEM showed that the scaffold had good biocompatibility, which was conducive to the adhesion and proliferation of MC3T3-E1 cells. The porosity and water absorption of the scaffold were (81.96 ± 1.83)% and (458.29 ± 29.79)%, respectively. Histological and radiographic studies showed that the bone healing efficacy of the scaffold was satisfactory. Conclusions The KSL-W@PLGA/COL/SF/nHA scaffold possessed good biocompatibility and bone repairing ability, and had potential applications in repairing infected bone defects. Clinical significance The 3D printed scaffold not only has an antibacterial effect, but can also promote bone tissue formation, which provides an alternative therapy option in apical periodontitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02362-4.
Collapse
Affiliation(s)
- Cong Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Xiaoyin Xu
- The Affiliated Stomatological Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Jing Gao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Xiaoyan Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Yao Chen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Ruixin Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China.
| | - Jing Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China.
| |
Collapse
|
9
|
Pectin Microspheres: Synthesis Methods, Properties, and Their Multidisciplinary Applications. CHEMISTRY 2022. [DOI: 10.3390/chemistry4010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is great contemporary interest in using cleaner technologies through green chemistry and utilizing biopolymers as raw material. Pectin is found on plant cell walls, and it is commonly extracted from fruit shells, mostly apples or citrus fruits. Pectin has applications in many areas of commercial relevance; for this reason, it is possible to find available information about novel methods to transform pectin and pursuing enhanced features, with the structuring of biopolymer microspheres being highly cited to enhance its activity. The structuring of polymers is a technique that has been growing in recent decades, due to its potential for diverse applications in various fields of science and technology. Several techniques are used for the synthesis of microspheres, such as ionotropic gelation, extrusion, aerosol drying, or emulsions, with the latter being the most commonly used method based on its reproducibility and simplicity. The most cited applications are in drug delivery, especially for the treatment of colon diseases and digestive-tract-related issues. In the industrial field, it is used for protecting encapsulated compounds; moreover, the environmental applications mainly include the bioremediation of toxic substances. However, there are still many possibilities for expanding the use of this biopolymer in the environmental field.
Collapse
|
10
|
He Y, Li Y, Zuo E, Chai S, Ren X, Fei T, Ma G, Wang X, Liu H. A Novel Antibacterial Titanium Modification with a Sustained Release of Pac-525. NANOMATERIALS 2021; 11:nano11123306. [PMID: 34947655 PMCID: PMC8704243 DOI: 10.3390/nano11123306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
Abstract
For the benefit of antibacterial Ti on orthopedic and dental implants, a bioactive coating (Pac@PLGA MS/HA coated Ti) was deposited on the surface of pure titanium (Ti), which included two layers: an acid-alkali heat pretreated biomimetic mineralization layer and an electrosprayed Poly (D,L-lactide-co- glycolic acid) (PLGA) microsphere layer as a sustained-release system. Hydroxyapatite (HA) in mineralization layer was primarily prepared on the Ti followed by the antibacterial coating of Pac-525 loaded by PLGA microspheres. After observing the antimicrobial peptides distributed uniformly on the titanium surface, the release assay showed that the release of Pac-525 from Pac@PLGA MS/HA coated Ti provided a large initial burst followed by a slow release at a flat rate. Pac@PLGA MS/HA coated Ti exhibited a strong cytotoxicity to both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). In addition, Pac@PLGA MS/HA coated Ti did not affect the growth and adhesion of the osteoblast-like cell line, MC3T3-E1. These data suggested that a bionic mineralized composite coating with long-term antimicrobial activity was successfully prepared.
Collapse
Affiliation(s)
- Yuzhu He
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Li
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Enjun Zuo
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
| | - Songling Chai
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
| | - Xiang Ren
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
| | - Tao Fei
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
- Correspondence: (G.M.); (X.W.); (H.L.); Tel.: +86-8611-0401 (G.M.); +86-1062-782-966 (X.W.); +86-8611-0404 (H.L.)
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Correspondence: (G.M.); (X.W.); (H.L.); Tel.: +86-8611-0401 (G.M.); +86-1062-782-966 (X.W.); +86-8611-0404 (H.L.)
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian 116044, China; (Y.H.); (Y.L.); (E.Z.); (S.C.); (X.R.); (T.F.)
- Correspondence: (G.M.); (X.W.); (H.L.); Tel.: +86-8611-0401 (G.M.); +86-1062-782-966 (X.W.); +86-8611-0404 (H.L.)
| |
Collapse
|
11
|
YURDASİPER A. Development of Triamcinolone Acetonide Loaded Poly(lactide-co-glycolic acid) Dry Powder Inhaler Formulations For The Treatment of Asthma. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.1015166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Zhang T, Qiu Y, Song J, Zhou P, Liao H, Cheng Y, Wu X. Electrosprayed minocycline hydrochloride-loaded microsphere/SAIB hybrid depot for periodontitis treatment. Drug Deliv 2021; 28:620-633. [PMID: 33779441 PMCID: PMC8008938 DOI: 10.1080/10717544.2021.1902020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Minocycline hydrochloride (MINO) has been one of the most frequently used antibiotics in the treatment of periodontitis due to its antibacterial activity and osteogenesis effects; however, high levels of MINO administered during the treatment halt the formation of new bone. Therefore, the purpose of the present study was to prepare a MINO-microsphere/sucrose acetate isobutyrate (SAIB) hybrid depot to reduce the burst release of MINO and ensure antibacterial and osteogenesis effects of MINO in the treatment of periodontitis. Uniform microspheres, approximately 5 µm size, with a slightly rough surface and different MINO loading (10, 12, and 14%) were prepared, and the microspheres were added into SAIB, after which the burst release significantly decreased from 66.18 to 2.92%, from 71.82 to 3.82%, and from 73.35 to 4.45%, respectively, and the release from all the MINO-microspheres/SAIB hybrid depots lasted for 77 days. In addition, cytotoxicity test showed that the MINO-microsphere with 12% drug loading promoted the proliferation of osteoblasts the most and was subsequently used in vivo experiments. Moreover, in the model of ligatured-induced periodontitis in SD rats, the MINO-microsphere/SAIB hybrid depot not only significantly increased the alveolar bone height and bone volume but also reduced the inflammation of the periodontal tissue. Additionally, it also inhibited the expression of the receptor activator of nuclear factor-kappa B ligand (RANKL) and promoted the expression of osteoprotegerin (OPG).. These results indicated that the MINO-microsphere/SAIB hybrid depot might be promising in the treatment of periodontitis.
Collapse
Affiliation(s)
- Ting Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yingqian Qiu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Pengfei Zhou
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hang Liao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuting Cheng
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaohong Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
13
|
He Y, Jin Y, Ying X, Wu Q, Yao S, Li Y, Liu H, Ma G, Wang X. Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair. Regen Biomater 2020; 7:515-525. [PMID: 33149940 PMCID: PMC7597801 DOI: 10.1093/rb/rbaa015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/21/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
The repair of infective bone defects is a great challenge in clinical work. It is of vital importance to develop a kind of bone scaffold with good osteogenic properties and long-term antibacterial activity for local anti-infection and bone regeneration. A porous mineralized collagen (MC) scaffold containing poly(d,l-lactide-co-glycolic acid) (PLGA) microspheres loaded with two antibacterial synthetic peptides, Pac-525 or KSL-W was developed and characterized via scanning electron microscopy (SEM), porosity measurement, swelling and mechanical tests. The results showed that the MC scaffold embedded with smooth and compact PLGA microspheres had a positive effect on cell growth and also had antibacterial properties. Through toxicity analysis, cell morphology and proliferation analysis and alkaline phosphatase evaluation, the antibacterial scaffolds showed excellent biocompatibility and osteogenic activity. The antibacterial property evaluated with Staphylococcus aureus and Escherichia coli suggested that the sustained release of Pac-525 or KSL-W from the scaffolds could inhibit the bacterial growth aforementioned in the long term. Our results suggest that the antimicrobial peptides-loaded MC bone scaffold has good antibacterial and osteogenic activities, thus providing a great promise for the treatment of infective bone defects.
Collapse
Affiliation(s)
- Yuzhu He
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084, China.,Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Lushunkou District, Dalian 116044, China
| | - Yahui Jin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084, China.,Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Lushunkou District, Dalian 116044, China.,Department of Stomatology, Zhejiang Provincial Hospital of Chinese Medicine, The 9th Street, Economic and Technological Development Zone, Hangzhou 310018, China
| | - Xiaoxia Ying
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Lushunkou District, Dalian 116044, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084, China
| | - Shenglian Yao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084, China
| | - Yuanyuan Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084, China.,Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Lushunkou District, Dalian 116044, China
| | - Huiying Liu
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Lushunkou District, Dalian 116044, China
| | - Guowu Ma
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Lushunkou District, Dalian 116044, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084, China
| |
Collapse
|
14
|
Wu M, Chen J, Huang W, Yan B, Peng Q, Liu J, Chen L, Zeng H. Injectable and Self-Healing Nanocomposite Hydrogels with Ultrasensitive pH-Responsiveness and Tunable Mechanical Properties: Implications for Controlled Drug Delivery. Biomacromolecules 2020; 21:2409-2420. [DOI: 10.1021/acs.biomac.0c00347] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Meng Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Weijuan Huang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Bin Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jifang Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
15
|
Liu Z, Ye W, Zheng J, Wang Q, Ma G, Liu H, Wang X. Hierarchically electrospraying a PLGA@chitosan sphere-in-sphere composite microsphere for multi-drug-controlled release. Regen Biomater 2020; 7:381-390. [PMID: 32793383 PMCID: PMC7415000 DOI: 10.1093/rb/rbaa009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/22/2020] [Indexed: 01/18/2023] Open
Abstract
Sequential administration and controlled release of different drugs are of vital importance for regulating cellular behaviors and tissue regeneration, which usually demands appropriate carriers like microspheres (MS) to control drugs releases. Electrospray has been proven an effective technique to prepare MS with uniform particle size and high drug-loading rate. In this study, we applied electrospray to simply and hierarchically fabricate sphere-in-sphere composite microspheres, with smaller poly(lactic-co-glycolic acid) MS (∼8–10 μm in diameter) embedded in a larger chitosan MS (∼250–300 μm in diameter). The scanning electron microscopy images revealed highly uniform MS that can be accurately controlled by adjusting the nozzle diameter or voltage. Two kinds of model drugs, bovine serum albumin and chlorhexidine acetate, were encapsulated in the microspheres. The fluorescence-labeled rhodamine-fluoresceine isothiocyanate (Rho-FITC) and ultraviolet (UV) spectrophotometry results suggested that loaded drugs got excellent distribution in microspheres, as well as sustained, slow release in vitro. In addition, far-UV circular dichroism and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) results indicated original secondary structure and molecular weight of drugs after electrospraying. Generally speaking, our research proposed a modified hierarchically electrospraying technique to prepare sphere-in-sphere composite MS with two different drugs loaded, which could be applied in sequential, multi-modality therapy.
Collapse
Affiliation(s)
- Zhu Liu
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 1 Qinghuayuan, Beijing 100084, China.,Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Weilong Ye
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 1 Qinghuayuan, Beijing 100084, China.,Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Jingchuan Zheng
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 1 Qinghuayuan, Beijing 100084, China.,Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Qindong Wang
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 1 Qinghuayuan, Beijing 100084, China.,Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Guowu Ma
- Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Huiying Liu
- Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 1 Qinghuayuan, Beijing 100084, China
| |
Collapse
|
16
|
Effect of microsphere size on the drug release and experimental characterization of an electrospun naringin‐loaded microsphere/sucrose acetate isobutyrate (SAIB) depot. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Dwivedi P, Han S, Mangrio F, Fan R, Dwivedi M, Zhu Z, Huang F, Wu Q, Khatik R, Cohn DE, Si T, Hu S, Sparreboom A, Xu RX. Engineered multifunctional biodegradable hybrid microparticles for paclitaxel delivery in cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:113-123. [DOI: 10.1016/j.msec.2019.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 02/14/2019] [Accepted: 03/03/2019] [Indexed: 01/06/2023]
|
18
|
Yang X, Almassri HNS, Zhang Q, Ma Y, Zhang D, Chen M, Wu X. Electrosprayed naringin-loaded microsphere/SAIB hybrid depots enhance bone formation in a mouse calvarial defect model. Drug Deliv 2019; 26:137-146. [PMID: 30799644 PMCID: PMC6394313 DOI: 10.1080/10717544.2019.1568620] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The burst release of active osteogenic factors, which is not beneficial to osteogenesis, is commonly encountered in bone tissue engineering. The aims of this study were to prepare naringin-loaded microsphere/sucrose acetate isobutyrate (Ng-m-SAIB) hybrid depots, reduce the burst release of naringin (Ng), and improve osteogenesis. The morphology and size distributions of electrosprayed Ng-microspheres were characterized by scanning electron microscopy (SEM). The Ng-microspheres and Ng-m-SAIB depots were characterized by Fourier transform infrared spectroscopy (FTIR) and in vitro release studies. In vitro osteoblast-microsphere interactions and in vivo osteogenesis were assessed after implantation of Ng-m-SAIB depots. The addition of sucrose acetate isobutyrate (SAIB) to monodisperse Ng-microspheres did not cause a change in the chemical structure. The performances of the microspheres in osteoblast-microsphere interactions were better when the naringin content was 4% than when it was at 2% and 6%. On the first day following the loading of Ng-microspheres (2%, 4%, and 6%) into SAIB depots, the burst release was reduced dramatically from 70.9% to 6.3%, 73.1% to 7.2%, and 73.9% to 9.9%, respectively. In addition, after 8 weeks, the new bone formation rate in the calvarial defects of SD rats receiving Ng-m-SAIB was 53.1% compared to 21.2% for the control group and 16.1% for the microsphere-SAIB group. These results demonstrated that Ng-m-SAIB hybrid depots may have promise in bone regeneration applications.
Collapse
Affiliation(s)
- Xue Yang
- a Department of Prosthodontics , Stomatological Hospital of Chongqing Medical University , Chongqing , China.,b Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences , Chongqing , China.,c Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing , China
| | - Huthayfa N S Almassri
- a Department of Prosthodontics , Stomatological Hospital of Chongqing Medical University , Chongqing , China.,b Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences , Chongqing , China.,c Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing , China
| | - Qiongyue Zhang
- a Department of Prosthodontics , Stomatological Hospital of Chongqing Medical University , Chongqing , China.,b Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences , Chongqing , China.,c Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing , China
| | - Yihui Ma
- a Department of Prosthodontics , Stomatological Hospital of Chongqing Medical University , Chongqing , China.,b Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences , Chongqing , China.,c Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing , China
| | - Dan Zhang
- a Department of Prosthodontics , Stomatological Hospital of Chongqing Medical University , Chongqing , China.,b Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences , Chongqing , China.,c Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing , China
| | - Mingsheng Chen
- a Department of Prosthodontics , Stomatological Hospital of Chongqing Medical University , Chongqing , China.,b Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences , Chongqing , China.,c Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing , China
| | - Xiaohong Wu
- a Department of Prosthodontics , Stomatological Hospital of Chongqing Medical University , Chongqing , China.,b Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences , Chongqing , China.,c Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing , China
| |
Collapse
|
19
|
Jeon SH, Na YG, Lee HK, Cho CW. Hybrid polymeric microspheres for enhancing the encapsulation of phenylethyl resorcinol. J Microencapsul 2019; 36:130-139. [DOI: 10.1080/02652048.2019.1607598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sung-Hoon Jeon
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, Korea
| | - Young-Guk Na
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, Korea
| | - Hong-Ki Lee
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, Korea
| | - Cheong-Weon Cho
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, Korea
| |
Collapse
|
20
|
Abstract
Currently, nanotechnology-based products are gaining tremendous interest in the development of nanocarriers for drug delivery and nano-diagnostic devices. Nanodroplets (NDs) emerge as novel carriers for delivery of gases and actives with a wide range of applications in fields of theranostics, drug delivery and diagnostic devices. NDs are multifunctional carriers composed of an outer shell of drug and polymer that encapsulates the inner core of gases and liquid molecules. This review focuses on properties of NDs, mathematical theories, different polymers used in the preparation of NDs, characterisation, animal models, toxicity and applications of NDs. These nanocarriers are advantageous due to their cost-effectiveness and compatibility with both gaseous and liquid core molecules. NDs are increasingly utilised in the field of healthcare due to their properties like large effective surface area for drug loading and target specificity. These nanocarriers are also employed in the treatment of hypoxia, multiple sclerosis and cancer. In the near future, NDs will advance in fields of personalised medicine and precise theranostics.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS , Mumbai , India
| | - Sajal Jain
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS , Mumbai , India
| |
Collapse
|
21
|
Lee PW, Pokorski JK. Poly(lactic-co-glycolic acid) devices: Production and applications for sustained protein delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1516. [PMID: 29536634 PMCID: PMC6136991 DOI: 10.1002/wnan.1516] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/30/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Injectable or implantable poly(lactic-co-glycolic acid) (PLGA) devices for the sustained delivery of proteins have been widely studied and utilized to overcome the necessity of repeated administrations for therapeutic proteins due to poor pharmacokinetic profiles of macromolecular therapies. These devices can come in the form of microparticles, implants, or patches depending on the disease state and route of administration. Furthermore, the release rate can be tuned from weeks to months by controlling the polymer composition, geometry of the device, or introducing additives during device fabrication. Slow-release devices have become a very powerful tool for modern medicine. Production of these devices has initially focused on emulsion-based methods, relying on phase separation to encapsulate proteins within polymeric microparticles. Process parameters and the effect of additives have been thoroughly researched to ensure protein stability during device manufacturing and to control the release profile. Continuous fluidic production methods have also been utilized to create protein-laden PLGA devices through spray drying and electrospray production. Thermal processing of PLGA with solid proteins is an emerging production method that allows for continuous, high-throughput manufacturing of PLGA/protein devices. Overall, polymeric materials for protein delivery remain an emerging field of research for the creation of single administration treatments for a wide variety of disease. This review describes, in detail, methods to make PLGA devices, comparing traditional emulsion-based methods to emerging methods to fabricate protein-laden devices. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Peptide-Based Structures.
Collapse
Affiliation(s)
- Parker W. Lee
- Department of Macromolecular Science and Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jonathan K. Pokorski
- Department of Macromolecular Science and Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
22
|
Booysen E, Bezuidenhout M, van Staden ADP, Dimitrov D, Deane SM, Dicks LMT. Antibacterial Activity of Vancomycin Encapsulated in Poly(DL-lactide-co-glycolide) Nanoparticles Using Electrospraying. Probiotics Antimicrob Proteins 2018; 11:310-316. [PMID: 29961212 DOI: 10.1007/s12602-018-9437-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vancomycin is often used to treat infections caused by β-lactam-resistant bacteria. However, methicillin-resistant strains of Staphylococcus aureus (MRSA) acquired resistance to vancomycin, rendering it less effective in the treatment of serious infections. In the search for novel antibiotics, alternative delivery mechanisms have also been explored. In this study, we report on the encapsulation of vancomycin in PLGA [poly(DL-lactide-co-glycolide)] nanoparticles by electrospraying. The nanoparticles were on average 247 nm in size with small bead formations on the surface. Clusters of various sizes were visible under the SEM (scanning electron microscope). Vancomycin encapsulated in PLGA (VNP) was more effective in inhibiting the growth of S. aureus Xen 31 (MRSA) and S. aureus Xen 36 than un-encapsulated vancomycin. Encapsulated vancomycin had a minimum inhibitory concentration (MIC) of 1 μg/mL against MRSA compared to 5 μg/mL of free vancomycin. At least 70% (w/w) of the vancomycin was encapsulated. Thirty percent of the vancomycin was released within the first 144 h, followed by slow release over 10 days. Vancomycin encapsulated in PLGA nanoparticles may be used to treat serious infections.
Collapse
Affiliation(s)
- Elzaan Booysen
- Department of Microbiology, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Martin Bezuidenhout
- Department of Industrial Engineering, Faculty of Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Anton Du Preez van Staden
- Department of Physiological Science, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Dimiter Dimitrov
- Department of Industrial Engineering, Faculty of Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Shelly M Deane
- Department of Microbiology, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M T Dicks
- Department of Microbiology, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
23
|
He Y, Jin Y, Wang X, Yao S, Li Y, Wu Q, Ma G, Cui F, Liu H. An Antimicrobial Peptide-Loaded Gelatin/Chitosan Nanofibrous Membrane Fabricated by Sequential Layer-by-Layer Electrospinning and Electrospraying Techniques. NANOMATERIALS 2018; 8:nano8050327. [PMID: 29758001 PMCID: PMC5977341 DOI: 10.3390/nano8050327] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/22/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Guided bone regeneration (GBR) technique is widely used in the treatment of bone defects caused by peri-implantitis, periodontal disease, etc. However, the GBR membranes commonly used in clinical treatments currently have no antibacterial activity. Therefore, in this study, sequential layer-by-layer electrospinning and electrospraying techniques were utilized to prepare a gelatin (Gln) and chitosan (CS) composite GBR membrane containing hydroxyapatite nanoparticles (nHAp) and antimicrobial peptide (Pac-525)-loaded PLGA microspheres (AMP@PLGA-MS), which was supposed to have osteogenic and antibacterial activities. The scanning electron microscope (SEM) observation showed that the morphology of the nanofibers and microspheres could be successfully produced. The diameters of the electrospun fibers with and without nHAp were 359 ± 174 nm and 409 ± 197 nm, respectively, and the mechanical properties of the membrane were measured according to the tensile stress-strain curve. Both the involvement of nHAp and the chemical crosslinking were able to enhance their tensile strength. In vitro cell culture of rat bone marrow mesenchymal stem cells (rBMSCs) indicated that the Gln/CS composite membrane had an ideal biocompatibility with good cell adhesion, spreading, and proliferation. In addition, the Gln/CS membrane containing nHAp could promote osteogenic differentiation of rBMSCs. Furthermore, according to the in vitro drug release assay and antibacterial experiments, the composite GBR membrane containing AMP@PLGA-MS exhibited a long-term sustained release of Pac-525, which had bactericidal activity within one week and antibacterial activity for up to one month against two kinds of bacteria, S. aureus and E. coli. Our results suggest that the antimicrobial peptide-loaded Gln/CS composite membrane (AMP@PLGA-MS@Gln/CS/nHAp) has a great promise in bone generation-related applications for the unique functions of guiding bone regeneration and inhibiting bacterial infection as well.
Collapse
Affiliation(s)
- Yuzhu He
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China.
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Yahui Jin
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China.
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou 310018, China.
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Shenglian Yao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuanyuan Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China.
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Guowu Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China.
| | - Fuzhai Cui
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Huiying Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
24
|
Waghulde M, Mujumdar A, Naik J. Preparation and characterization of miglitol-loaded Poly (d, l-lactide-co-glycolide) microparticles using high pressure homogenization-solvent evaporation method. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1434652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mrunal Waghulde
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, North Maharashtra University, Jalgaon, Maharashtra, India
| | - Arun Mujumdar
- Department of Chemical & Biochemical Engineering, Western University, London, Ontario, Canada
| | - Jitendra Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, North Maharashtra University, Jalgaon, Maharashtra, India
| |
Collapse
|
25
|
Chen L, Mei L, Feng D, Huang D, Tong X, Pan X, Zhu C, Wu C. Anhydrous reverse micelle lecithin nanoparticles/PLGA composite microspheres for long-term protein delivery with reduced initial burst. Colloids Surf B Biointerfaces 2017; 163:146-154. [PMID: 29291500 DOI: 10.1016/j.colsurfb.2017.12.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 11/25/2022]
Abstract
To address the issue of initial burst release from poly (lactic-co-glycolic) acid (PLGA) microspheres prepared by water-in-oil-in-water (W/O/W) double emulsion technique, PLGA composite microspheres containing anhydrous reverse micelle (ARM) lecithin nanoparticles were developed by a modified solid-in-oil-in-water (S/O/W) technique. Bovine serum albumin (BSA) loaded ARM lecithin nanoparticles, which were obtained by initial self-assembly and subsequent lipid inversion of the lecithin vesicles, were then encapsulated into PLGA matrix by the S/O/W technique to form composite microspheres. In vitro release study indicated that BSA was slowly released from the PLGA composite microspheres over 60 days with a reduced initial burst (11.42 ± 2.17% within 24 h). The potential mechanism of reduced initial burst and protein protection using this drug delivery system was analyzed through observing the degradation process of carriers and fitting drug release data with various kinetic models. The secondary structure of encapsulated BSA was well maintained through the steric barrier effect of ARM lecithin nanoparticles, which avoided exposure of proteins to the organic solvent during the preparation procedure. In addition, the PLGA composite microspheres exhibited superior biocompatibility without notable cytotoxicity. These results suggested that ARM lecithin nanoparticles/PLGA composite microspheres could be a promising platform for long-term protein delivery with a reduced initial burst.
Collapse
Affiliation(s)
- Longkai Chen
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liling Mei
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Disang Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Di Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xin Tong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chune Zhu
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Chuanbin Wu
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
26
|
Icart LP, Santos ERF, Agüero L, Andrade LR, de Souza CG, d´Avila LA, Zaldivar D, Dias ML. Paclitaxel-loaded PLA/PEG/fluorescein anticancer agent prepared by Ugi reaction. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1378884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- L. P. Icart
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edson R. F. Santos
- Centro de Tecnologia, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L. Agüero
- Instituto de Biomateriales (BIOMAT), Universidad de la Habana, Havana, Cuba
| | - Leonardo R. Andrade
- Laboratório de Biomineralização, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C. G. de Souza
- Laboratório de Biocombustíveis, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L. A. d´Avila
- Laboratório de Biocombustíveis, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - D. Zaldivar
- Instituto de Biomateriales (BIOMAT), Universidad de la Habana, Havana, Cuba
| | - M. L. Dias
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Li Y, Na R, Wang X, Liu H, Zhao L, Sun X, Ma G, Cui F. Fabrication of Antimicrobial Peptide-Loaded PLGA/Chitosan Composite Microspheres for Long-Acting Bacterial Resistance. Molecules 2017; 22:molecules22101637. [PMID: 28961197 PMCID: PMC6151433 DOI: 10.3390/molecules22101637] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 11/16/2022] Open
Abstract
An antimicrobial decapeptide, KSL-W (KKVVFWVKFK-CONH₂), which could maintain stable antimicrobial activity in saliva, has therefore been widely used to inhibit biofilm formation on teeth and prevent the growth of oral microorganisms for related infectious diseases treatment. In order to control the release of KSL-W for long-term bacterial resistance, KSL-W-loaded PLGA/chitosan composite microspheres (KSL/PLGA/CS MSs) were prepared by electrospraying and combined crosslinking-emulsion methods. Different formulations of microspheres were characterized as to surface morphology, size distribution, encapsulation efficiency, in vitro drug release, and antimicrobial activity. Antibacterial experiment demonstrated the prolonged antimicrobial and inhibitory effects of KSL/PLGA/CS MSs on oral bacteria. Moreover, the cell proliferation assay proved that the released KSL-W antibacterial dosage had no cytotoxicity to the growth of osteoblast MC3T3-E1. Thus, our study suggested that the KSL-W-loaded PLGA/CS composite microspheres may have potentially therapeutic applications as an effective drug delivery system in the treatment of oral infectious diseases such as periodontitis and periodontitis, and also within bone graft substitutes for alveolar bone augmentation.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
- Department of Prosthodontics, School of Stomatology, Dalian Medical University, Dalian 116044, China.
- Department of Stomatology, Shengli Oil Field Central Hospital, Dongying 257034, China.
| | - Rongwei Na
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
- Department of Prosthodontics, School of Stomatology, Dalian Medical University, Dalian 116044, China.
| | - Xiumei Wang
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Huiying Liu
- Department of Prosthodontics, School of Stomatology, Dalian Medical University, Dalian 116044, China.
| | - Lingyun Zhao
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaodan Sun
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Guowu Ma
- Department of Prosthodontics, School of Stomatology, Dalian Medical University, Dalian 116044, China.
| | - Fuzhai Cui
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
28
|
Yao S, Yang Y, Wang X, Wang L. Fabrication and characterization of aligned fibrin nanofiber hydrogel loaded with PLGA microspheres. Macromol Res 2017. [DOI: 10.1007/s13233-017-5121-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|