1
|
McGrath S, Sundbeck B, Thorarinsdottir K, Jonsson CA, Camponeschi A, Agelii ML, Ekwall AKH, Hetland ML, Østergaard M, Uhlig T, Nurmohamed M, Lampa J, Nordström D, Hørslev-Petersen K, Gudbjornsson B, Gröndal G, van Vollenhoven R, Rudin A, Mårtensson IL, Gjertsson I. Transitional and CD21 - PD-1 + B cells are associated with remission in early rheumatoid arthritis. BMC Rheumatol 2025; 9:45. [PMID: 40259340 PMCID: PMC12010607 DOI: 10.1186/s41927-025-00487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Early initiation of effective treatment is associated with positive long-term prognosis for patients with rheumatoid arthritis (RA). Currently, there are no biomarkers in clinical use to predict treatment response. A predictor of treatment response may be the B-cell compartment, as this is altered in RA patients, making it a potential candidate for predicting treatment response. In this study, we sought to identify B-cell subset(s) at diagnosis that might be associated with Clinical Disease Activity Index (CDAI) remission at 24-week follow-up. METHODS Seventy early RA patients from the NORD-STAR trial, recruited from two Swedish sites, and 28 matched healthy controls, were included in this spin-off study. In NORD-STAR, all patients were randomized to methotrexate (MTX) combined with 1) prednisolone, 2) anti-TNF (certolizumab-pegol), 3) CTLA4-Ig (abatacept), or 4) anti-IL-6R (tocilizumab). Circulating B-cell subsets at diagnosis were assessed by flow cytometry. The primary outcome measure was remission according to CDAI ≤ 2.8. A multivariate two-part discriminant analysis was performed to assess whether B-cell subpopulations at diagnosis could predict remission at 24 weeks. Subsequent univariable statistical analyses were performed using t-tests, Mann-Whitney U, or Kruskal-Wallis tests, as appropriate. Correlations were analyzed using Spearman or Pearson tests, depending on data type. The impact of specific B-cell populations on remission at week 24 was assessed using logistic regression models. The logistic regression model was also used to simultaneously visualize the sensitivity and specificity of the model for all possible values of the exposure (B-cell subpopulations) in predicting the outcome. RESULTS Patients who achieved CDAI remission at 24 weeks had higher proportions of transitional (p < 0.01) and CD21- PD-1+ (p < 0.01) B cells at diagnosis compared to those who did not. When the two B-cell populations were combined, the sensitivity and specificity for remission, including all treatment arms, were 59% and 86%, respectively. Stratification of the patients by treatment arm revealed a significant negative correlation between the proportion of transitional B cells at baseline and disease activity after 24 weeks of treatment with either MTX and prednisolone or anti-IL-6R. CONCLUSIONS Our results indicate that transitional and CD21- PD-1+ B cells are associated with remission in early RA. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Sarah McGrath
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Boel Sundbeck
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden.
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Katrin Thorarinsdottir
- Center for Rheumatology Research, Department of Rheumatology, Landspitali University Hospital, Reykjavik, Iceland
| | - Charlotte A Jonsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Monica Leu Agelii
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Karin H Ekwall
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Merete Lund Hetland
- Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Centre for Head and Orthopaedics, Rigshospitalet, Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Østergaard
- Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Centre for Head and Orthopaedics, Rigshospitalet, Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Till Uhlig
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Michael Nurmohamed
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center, Reade, Amsterdam, The Netherlands
| | - Jon Lampa
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine (CMM), Karolinska Institute, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Dan Nordström
- Division of Medicine and Rheumatology, Helsinki University Hospital, Helsinki, Finland
| | - Kim Hørslev-Petersen
- Danish Hospital for Rheumatic Diseases, University Hospital of Southern Denmark, Sønderborg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Bjorn Gudbjornsson
- Center for Rheumatology Research, Department of Rheumatology, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Gerdur Gröndal
- Center for Rheumatology Research, Department of Rheumatology, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ronald van Vollenhoven
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Villalba A, Nuño L, Benito-Miguel M, Nieto-Carvalhal B, Monjo I, Novella-Navarro M, Peiteado D, García-Carazo S, Balsa A, Miranda-Carús ME. Transiently increased circulating CD39+FoxP3+ Treg cells predicts the clinical response to methotrexate in early rheumatoid arthritis. Rheumatology (Oxford) 2025; 64:2282-2289. [PMID: 39141491 DOI: 10.1093/rheumatology/keae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/18/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024] Open
Abstract
OBJECTIVES A subset of human circulating FoxP3+ regulatory T cells expresses CD39 (cTreg39+) and hydrolyses pro-inflammatory adenine nucleotides released at inflammatory foci, releasing the anti-inflammatory agent adenosine. Methotrexate (MTX), inhibiting 5-aminoimidazole-4-carboxamide ribonucleotide transformylase, enhances the extrusion of adenine nucleotides and may help Treg39+ cells control inflammation. Therefore, we examined the relation of cTreg39+ cells with the effect of MTX in early rheumatoid arthritis (eRA). METHODS Freshly isolated peripheral blood lymphocytes from 98 untreated eRA patients and 98 healthy controls (HC) were examined by cytometry. Twelve months (12 m) after initiating MTX, 82 patients were clinically re-evaluated and cytometry was repeated in 40 of them. The effect of MTX on Treg cell potency was assessed in Treg/Tresp cocultures. RESULTS The baseline (0 m) cTreg39+ cell frequency was elevated in eRA above HC levels. Patients who reached low disease activity at 12 months (12 m-LDA, DAS28-ESR ≤ 3.2, n = 51) had presented with a significantly higher 0 m cTreg39+ frequency vs those who did not (n = 31). The 0 m cTreg39+ cutoff for attaining 12 m-LDA was 42.0% (sensitivity = 90.4%, specificity = 96.8%). At 12 m, the cTreg39+ frequency was no longer elevated but its association with disease activity remained: it was still significantly higher in patients who had reached LDA vs those who had not. In vitro, MTX augmented the Treg39+ cell potency but had no effect on Treg39- cells. CONCLUSION MTX cooperates with Treg39+ cells and the baseline cTreg39+ frequency predicts the response to MTX in eRA. In addition, the transiently elevated baseline cTreg39+ frequency in eRA may provide a slot for prompt MTX initiation.
Collapse
Affiliation(s)
- Alejandro Villalba
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Laura Nuño
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Marta Benito-Miguel
- Fundación San Juan de Dios, Centro de Ciencias de la Salud San Rafael, Department of Physiology, Universidad de Nebrija, Madrid, Spain
| | | | - Irene Monjo
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | | | - Diana Peiteado
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Sara García-Carazo
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Alejandro Balsa
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | | |
Collapse
|
3
|
Wang J, Miao J, Zhu P. Insights into the complexities of Citrullination: From immune regulation to autoimmune disease. Autoimmun Rev 2025; 24:103734. [PMID: 39719187 DOI: 10.1016/j.autrev.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Citrullination, a post-translational modification that changes arginine to citrulline in proteins, is vital for immune response modulation and cell signaling. Catalyzed by peptidyl arginine deiminases (PADs), citrullination is linked to various diseases, particularly autoimmune disorders like rheumatoid arthritis (RA). Citrullinated proteins can trigger the production of anti-citrullinated protein antibodies (ACPAs), included in RA classification criteria. The immune response to citrullination involves both innate and adaptive immunity, affecting monocytes/macrophages, neutrophils, dendritic cells, natural killer cells, B cells, and T cells. Citrullination contributes to disease development in RA and other conditions such as multiple sclerosis, sepsis, and cancer. Therapeutic strategies targeting citrullination and its effects are being explored, including B cell depletion therapies, T cell-directed approaches, PAD inhibitors, and citrullinated peptide-based vaccines. Understanding the interplay between citrullination and the immune system may lead to novel diagnostic tools and targeted therapies for autoimmune diseases and beyond.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jinlin Miao
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ping Zhu
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
4
|
Ye R, Li S, Li Y, Shi K, Li L. Revealing the role of regulatory b cells in cancer: development, function and treatment significance. Cancer Immunol Immunother 2025; 74:125. [PMID: 39998678 PMCID: PMC11861783 DOI: 10.1007/s00262-025-03973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
B cells are essential components of the immune response, primarily recognized for their ability to produce antibodies. However, emerging research reveals their important roles in regulating immune responses and influencing tumor development, independent of antibodies. The connection between tumor progression and alterations in the tumor microenvironment is well-established, as immune infiltrating cells can enhance the survival of tumor cells by modifying their surroundings. Despite this, the majority of studies have focused on T cells and macrophages, creating a gap in our understanding of B cells. Regulatory B cells (Bregs) represent a crucial subpopulation that plays a significant role in maintaining immune balance. They may have a substantial impact on tumor immunity by negatively regulating tumor-infiltrating immune cells. This paper reviews the existing literature on Bregs, examining their development, phenotypes, functions, and the mechanisms through which they exert their regulatory effects. Furthermore, we highlight their potential interventional roles and prognostic significance in cancer therapy. By addressing the current gaps in knowledge regarding Bregs within tumors, we hope to inspire further research that could lead to innovative cancer treatments and improved outcomes for patients.
Collapse
Affiliation(s)
- Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yuxiao Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Kaixin Shi
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
5
|
Yu S, Yan J, Fang Y, Ye Y, Bu B. Effect of thymectomy on the frequencies of peripheral regulatory B and T lymphocytes in patients with Myasthenia gravis-a pilot study. Int J Neurosci 2024; 134:1210-1219. [PMID: 37668142 DOI: 10.1080/00207454.2023.2254922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/19/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
AIM We aimed to investigate the relationship between the peripheral lymphocyte subset frequency and thymectomy in patients with myasthenia gravis (MG). MATERIALS AND METHODS The frequencies of regulatory B (Breg) and regulatory T (Treg) cells in peripheral blood samples obtained from 69 patients with MG and 10 healthy controls were analyzed using flow cytometry. Serum acetylcholine receptor antibodies (AchR-Ab) were measured. Patients with MG were subdivided into pre-thymectomy, post-thymectomy, and normal thymus control group. RESULTS The percentage of Breg cells was significantly decreased in both the pre-thymectomy (7.92 ± 1.30%) and post-thymectomy (8.14 ± 1.34%) groups compared to healthy controls (16.02 ± 2.78%) and reduced in the exacerbation and relapse phase compared to the stable maintenance stage. The proportion of cluster of differentiation (CD) 4 + CD25 + T cells and CD4 + CD25 + CD127low/- Treg cells in MG patients were not significantly different than healthy controls. AchR-Ab titers in aggravating or recurrence patients after thymectomy were significantly higher than that of the stable remission patients (11.13 ± 0.70 and 6.03 ± 0.85 nmol/L, respectively; p < 0.001). CONCLUSION The frequency of Breg cells may serve as a potential indicator of MG prognosis, while Treg cell frequency did not demonstrate the same prognostic ability. The concentration of AchR-Ab can be used as a dynamic monitoring index of disease severity in patients with MG.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjun Yan
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fang
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ye
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Wu Y, Jiang H, Hu Y, Dai H, Zhao Q, Zheng Y, Liu W, Rui H, Liu B. B cell dysregulation and depletion therapy in primary membranous nephropathy: Prospects and potential challenges. Int Immunopharmacol 2024; 140:112769. [PMID: 39098228 DOI: 10.1016/j.intimp.2024.112769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
B cells are crucial to the humoral immune response, originating in the bone marrow and maturing in the spleen and lymph nodes. They primarily function to protect against a wide range of infections through the secretion of antibodies. The role of B cells in primary membranous nephropathy (PMN) has gained significant attention, especially following the discovery of various autoantibodies that target podocyte antigens and the observed positive outcomes from B cell depletion therapy. Increasing evidence points to the presence of abnormal B cell subsets and functions in MN. B cells have varied roles during the different stages of disease onset, progression, and relapse. Initially, B cells facilitate self-antigen presentation, activate effector T cells, and initiate cellular immunity. Subsequently, the disruption of both central and peripheral immune tolerance results in the emergence of autoreactive B cells, with strong germinal center responses as a major source of MN autoantibodies. Additionally, critical B cell subsets, including Bregs, memory B cells, and plasma cells, play roles in the immune dysregulation observed in MN, assisting in predicting disease recurrence and guiding management strategies for MN. This review offers a detailed overview of research advancements on B cells and elucidates their pathological roles in MN.
Collapse
Affiliation(s)
- Yadi Wu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Haoran Dai
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100310, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yang Zheng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Chinese Medicine, Beijing 100010, China.
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Deng B, Deng L, Liu M, Zhao Z, Huang H, Tu X, Liang E, Tian R, Wang X, Wang R, Lin H, Yu Y, Peng A, Xu P, Bao K, He M. Elevated circulating CD19 +CD24 hiCD38 hi B cells display pro-inflammatory phenotype in idiopathic membranous nephropathy. Immunol Lett 2023; 261:58-65. [PMID: 37553031 DOI: 10.1016/j.imlet.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
CD19+CD24hiCD38hi regulatory B cells exert immunosuppressive functions by producing IL-10, but their role in idiopathic membranous nephropathy (IMN) remains elusive. Here, we investigated the frequency and functional changes of circulating CD19+CD24hiCD38hi B cells and evaluated the correlation of CD19+CD24hiCD38hi B cells with clinical features and T helper cell subsets in IMN patients. Compared with healthy controls (HCs), IMN patients showed an increased frequency of CD19+CD24hiCD38hi B cells, but a significant reduction in the percentage of CD19+CD24hiCD38hi B cells was observed 4 weeks after cyclophosphamide treatment. The frequency of CD19+CD24hiCD38hi B cells was positively correlated with the levels of 24h urinary protein, but negatively correlated with serum total protein and serum albumin, respectively. CD19+CD24hiCD38hi B cells in IMN patients displayed a skewed pro-inflammatory cytokine profile with a higher level of IL-6 and IL-12, but a lower concentration of IL-10 than their healthy counterparts. Accompanied by upregulation of Th2 and Th17 cells in IMN patients, the percentage of CD19+CD24hiCD38hi B cell subset was positively associated with Th17 cell frequency. In conclusion, CD19+CD24hiCD38hi B cells were expanded but functionally impaired in IMN patients. Their altered pro-inflammatory cytokine profile may contribute to the pathogenesis of IMN.
Collapse
Affiliation(s)
- Bishun Deng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Deng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Liu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziling Zhao
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huijie Huang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxin Tu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Enyu Liang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruimin Tian
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaowan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongrong Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibiao Lin
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongyi Yu
- Department of Laboratory Medicine, Kaiping Central Hospital, JiangMen, China
| | - Anping Peng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kun Bao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Min He
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
8
|
Tout I, Miossec P. The role of B cells and their interactions with stromal cells in the context of inflammatory autoimmune diseases. Clin Exp Rheumatol 2022; 21:103098. [PMID: 35417796 DOI: 10.1016/j.autrev.2022.103098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
Interactions between B cells and stromal cells have essential functions in immune cell development and responses. During chronic inflammation, the pro-inflammatory microenvironment leads to changes in stromal cells, which acquire a pathogenic phenotype specific to each organ and disease. B cells are recruited to the site of inflammation and interact with these pathogenic stromal cells contributing to the disease's severity. In addition to producing autoantibodies, B cells contribute to the pathogenesis of autoimmune inflammatory diseases by serving as professional antigen-presenting cells, producing cytokines, and through additional mechanisms. This review describes the role of B cells and their interactions with stromal cells in chronic inflammation, with a focus on human disease, using three selected autoimmune inflammatory diseases: rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis. Understanding B cells roles and their interaction with stromal cells will help develop new therapeutic options for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Issam Tout
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit, University of Lyon, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 Place d'Arsonval, 69437 Lyon, France
| | - Pierre Miossec
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit, University of Lyon, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 Place d'Arsonval, 69437 Lyon, France.
| |
Collapse
|
9
|
Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, Zhang L. B Cells in Rheumatoid Arthritis:Pathogenic Mechanisms and Treatment Prospects. Front Immunol 2021; 12:750753. [PMID: 34650569 PMCID: PMC8505880 DOI: 10.3389/fimmu.2021.750753] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common, chronic, systemic autoimmune disease, and its clinical features are the proliferation of joint synovial tissue, the formation of pannus and the destruction of cartilage. The global incidence of RA is about 1%, and it is more common in women. The basic feature of RA is the body’s immune system disorders, in which autoreactive CD4+T cells, pathogenic B cells, M1 macrophages, inflammatory cytokines, chemokines and autoantibodies abnormally increase in the body of RA patients B cell depletion therapy has well proved the important role of B cells in the pathogenesis of RA, and the treatment of RA with B cells as a target has also been paid more and more attention. Although the inflammatory indicators in RA patients receiving B-cell depletion therapy have been significantly improved, the risk of infection and cancer has also increased, which suggests that we need to deplete pathogenic B cells instead of all B cells. However, at present we cannot distinguish between pathogenic B cells and protective B cells in RA patients. In this review, we explore fresh perspectives upon the roles of B cells in the occurrence, development and treatment of RA.
Collapse
Affiliation(s)
- Fengping Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xuexue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Hernández-Breijo B, Plasencia-Rodríguez C, Navarro-Compán V, García-Hoz C, Nieto-Gañán I, Sobrino C, Bachiller-Corral J, Díaz-Almirón M, Martínez-Feito A, Jurado T, Lapuente-Suanzes P, Bonilla G, Pijoán-Moratalla C, Roy G, Vázquez-Díaz M, Balsa A, Villar LM, Pascual-Salcedo D, Rodríguez-Martín E. Remission Induced by TNF Inhibitors Plus Methotrexate is Associated With Changes in Peripheral Naïve B Cells in Patients With Rheumatoid Arthritis. Front Med (Lausanne) 2021; 8:683990. [PMID: 34222289 PMCID: PMC8245775 DOI: 10.3389/fmed.2021.683990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Biological therapies, such as TNF inhibitors (TNFi), are increasing remission (REM) rates in rheumatoid arthritis (RA) patients, although these are still limited. The aim of our study was to analyze changes in the profile of peripheral blood mononuclear cells (PBMC) in patients with RA treated with TNFi in relation to the clinical response. This is a prospective and observational study including 78 RA patients starting the first TNFi. PBMC were analyzed by flow cytometry both at baseline and at 6 months. Disease activity at the same time points was assessed by DAS28, establishing DAS28 ≤ 2.6 as the criteria for REM. Logistic regression models were employed to analyze the association between the changes in PBMC and REM. After 6 months of TNFi treatment, 37% patients achieved REM by DAS28. Patients who achieved REM showed a reduction in the percentage of naive B cells, but only when patients had received concomitant methotrexate (MTX) (OR: 0.59; 95% CI: 0.39–0.91). However, no association was found for patients who did not receive concomitant MTX (OR: 0.85; 95% CI: 0.63–1.16). In conclusion, PBMC, mainly the B-cell subsets, are modified in RA patients with TNFi who achieve clinical REM. A significant decrease in naive B-cell percentage is associated with achieving REM after 6 months of TNFi treatment in patients who received concomitant therapy with MTX.
Collapse
Affiliation(s)
- Borja Hernández-Breijo
- Immuno-Rheumatology Research Group, Hospital La Paz Institute for Health Research-IdiPAZ, Madrid, Spain
| | - Chamaida Plasencia-Rodríguez
- Immuno-Rheumatology Research Group, Hospital La Paz Institute for Health Research-IdiPAZ, Madrid, Spain.,Rheumatology, La Paz University Hospital, Madrid, Spain
| | - Victoria Navarro-Compán
- Immuno-Rheumatology Research Group, Hospital La Paz Institute for Health Research-IdiPAZ, Madrid, Spain.,Rheumatology, La Paz University Hospital, Madrid, Spain
| | - Carlota García-Hoz
- Immunology, Ramón y Cajal Institute for Health Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Israel Nieto-Gañán
- Immunology, Ramón y Cajal Institute for Health Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Cristina Sobrino
- Rheumatology, Ramón y Cajal Institute for Health Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Javier Bachiller-Corral
- Rheumatology, Ramón y Cajal Institute for Health Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mariana Díaz-Almirón
- Biostatistics Unit, Hospital La Paz Institute for Health Research-IdiPAZ, Madrid, Spain
| | - Ana Martínez-Feito
- Immuno-Rheumatology Research Group, Hospital La Paz Institute for Health Research-IdiPAZ, Madrid, Spain.,Immunology, La Paz University Hospital, Madrid, Spain
| | - Teresa Jurado
- Immuno-Rheumatology Research Group, Hospital La Paz Institute for Health Research-IdiPAZ, Madrid, Spain
| | - Paloma Lapuente-Suanzes
- Immunology, Ramón y Cajal Institute for Health Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Gema Bonilla
- Rheumatology, La Paz University Hospital, Madrid, Spain
| | - Cristina Pijoán-Moratalla
- Rheumatology, Ramón y Cajal Institute for Health Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Garbiñe Roy
- Immunology, Ramón y Cajal Institute for Health Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mónica Vázquez-Díaz
- Rheumatology, Ramón y Cajal Institute for Health Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alejandro Balsa
- Immuno-Rheumatology Research Group, Hospital La Paz Institute for Health Research-IdiPAZ, Madrid, Spain.,Rheumatology, La Paz University Hospital, Madrid, Spain
| | - Luisa M Villar
- Immunology, Ramón y Cajal Institute for Health Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Dora Pascual-Salcedo
- Immuno-Rheumatology Research Group, Hospital La Paz Institute for Health Research-IdiPAZ, Madrid, Spain
| | - Eulalia Rodríguez-Martín
- Immunology, Ramón y Cajal Institute for Health Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| |
Collapse
|
11
|
Zhu Q, Rui K, Wang S, Tian J. Advances of Regulatory B Cells in Autoimmune Diseases. Front Immunol 2021; 12:592914. [PMID: 33936028 PMCID: PMC8082147 DOI: 10.3389/fimmu.2021.592914] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
With the ability to induce T cell activation and elicit humoral responses, B cells are generally considered as effectors of the immune system. However, the emergence of regulatory B cells (Bregs) has given new insight into the role of B cells in immune responses. Bregs exhibit immunosuppressive functions via diverse mechanisms, including the secretion of anti-inflammatory cytokines and direct cell contact. The balance between Bregs and effector B cells is important for the immune tolerance. In this review, we focus on recent advances in the characteristics of Bregs and their functional roles in autoimmunity.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
B Cells and Antibodies as Targets of Therapeutic Intervention in Neuromyelitis Optica Spectrum Disorders. Pharmaceuticals (Basel) 2021; 14:ph14010037. [PMID: 33419217 PMCID: PMC7825598 DOI: 10.3390/ph14010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
The first description of neuromyelitis optica by Eugène Devic and Fernand Gault dates back to the 19th century, but only the discovery of aquaporin-4 autoantibodies in a major subset of affected patients in 2004 led to a fundamentally revised disease concept: Neuromyelits optica spectrum disorders (NMOSD) are now considered autoantibody-mediated autoimmune diseases, bringing the pivotal pathogenetic role of B cells and plasma cells into focus. Not long ago, there was no approved medication for this deleterious disease and off-label therapies were the only treatment options for affected patients. Within the last years, there has been a tremendous development of novel therapies with diverse treatment strategies: immunosuppression, B cell depletion, complement factor antagonism and interleukin-6 receptor blockage were shown to be effective and promising therapeutic interventions. This has led to the long-expected official approval of eculizumab in 2019 and inebilizumab in 2020. In this article, we review current pathogenetic concepts in NMOSD with a focus on the role of B cells and autoantibodies as major contributors to the propagation of these diseases. Lastly, by highlighting promising experimental and future treatment options, we aim to round up the current state of knowledge on the therapeutic arsenal in NMOSD.
Collapse
|