1
|
Pelissier A, Laragione T, Harris C, Rodríguez Martínez M, Gulko PS. BACH1 as a key driver in rheumatoid arthritis fibroblast-like synoviocytes identified through gene network analysis. Life Sci Alliance 2025; 8:e202402808. [PMID: 39467637 PMCID: PMC11519322 DOI: 10.26508/lsa.202402808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
RNA-sequencing and differential gene expression studies have significantly advanced our understanding of pathogenic pathways underlying rheumatoid arthritis (RA). Yet, little is known about cell-specific regulatory networks and their contributions to disease. In this study, we focused on fibroblast-like synoviocytes (FLS), a cell type central to disease pathogenesis and joint damage in RA. We used a strategy that computed sample-specific gene regulatory networks to compare network properties between RA and osteoarthritis FLS. We identified 28 transcription factors (TFs) as key regulators central to the signatures of RA FLS. Six of these TFs are new and have not been previously implicated in RA through ex vivo or in vivo studies, and included BACH1, HLX, and TGIF1. Several of these TFs were found to be co-regulated, and BACH1 emerged as the most significant TF and regulator. The main BACH1 targets included those implicated in fatty acid metabolism and ferroptosis. The discovery of BACH1 was validated in experiments with RA FLS. Knockdown of BACH1 in RA FLS significantly affected the gene expression signatures, reduced cell adhesion and mobility, interfered with the formation of thick actin fibers, and prevented the polarized formation of lamellipodia, all required for the RA destructive behavior of FLS. This study establishes BACH1 as a central regulator of RA FLS phenotypes and suggests its potential as a therapeutic target to selectively modulate RA FLS.
Collapse
Affiliation(s)
- Aurelien Pelissier
- IBM Research Europe, Eschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Teresina Laragione
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn Harris
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Percio S Gulko
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Cheng X, Meng X, Chen R, Song Z, Li S, Wei S, Lv H, Zhang S, Tang H, Jiang Y, Zhang R. The molecular subtypes of autoimmune diseases. Comput Struct Biotechnol J 2024; 23:1348-1363. [PMID: 38596313 PMCID: PMC11001648 DOI: 10.1016/j.csbj.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Autoimmune diseases (ADs) are characterized by their complexity and a wide range of clinical differences. Despite patients presenting with similar symptoms and disease patterns, their reactions to treatments may vary. The current approach of personalized medicine, which relies on molecular data, is seen as an effective method to address the variability in these diseases. This review examined the pathologic classification of ADs, such as multiple sclerosis and lupus nephritis, over time. Acknowledging the limitations inherent in pathologic classification, the focus shifted to molecular classification to achieve a deeper insight into disease heterogeneity. The study outlined the established methods and findings from the molecular classification of ADs, categorizing systemic lupus erythematosus (SLE) into four subtypes, inflammatory bowel disease (IBD) into two, rheumatoid arthritis (RA) into three, and multiple sclerosis (MS) into a single subtype. It was observed that the high inflammation subtype of IBD, the RA inflammation subtype, and the MS "inflammation & EGF" subtype share similarities. These subtypes all display a consistent pattern of inflammation that is primarily driven by the activation of the JAK-STAT pathway, with the effective drugs being those that target this signaling pathway. Additionally, by identifying markers that are uniquely associated with the various subtypes within the same disease, the study was able to describe the differences between subtypes in detail. The findings are expected to contribute to the development of personalized treatment plans for patients and establish a strong basis for tailored approaches to treating autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | - Zerun Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuai Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Siyu Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuhao Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hao Tang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Pelissier A, Laragione T, Gulko PS, Rodríguez Martínez M. Cell-specific gene networks and drivers in rheumatoid arthritis synovial tissues. Front Immunol 2024; 15:1428773. [PMID: 39161769 PMCID: PMC11330812 DOI: 10.3389/fimmu.2024.1428773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune and inflammatory disease characterized by inflammation and hyperplasia of the synovial tissues. RA pathogenesis involves multiple cell types, genes, transcription factors (TFs) and networks. Yet, little is known about the TFs, and key drivers and networks regulating cell function and disease at the synovial tissue level, which is the site of disease. In the present study, we used available RNA-seq databases generated from synovial tissues and developed a novel approach to elucidate cell type-specific regulatory networks on synovial tissue genes in RA. We leverage established computational methodologies to infer sample-specific gene regulatory networks and applied statistical methods to compare network properties across phenotypic groups (RA versus osteoarthritis). We developed computational approaches to rank TFs based on their contribution to the observed phenotypic differences between RA and controls across different cell types. We identified 18 (fibroblast-like synoviocyte), 16 (T cells), 19 (B cells) and 11 (monocyte) key regulators in RA synovial tissues. Interestingly, fibroblast-like synoviocyte (FLS) and B cells were driven by multiple independent co-regulatory TF clusters that included MITF, HLX, BACH1 (FLS) and KLF13, FOSB, FOSL1 (B cells). However, monocytes were collectively governed by a single cluster of TF drivers, responsible for the main phenotypic differences between RA and controls, which included RFX5, IRF9, CREB5. Among several cell subset and pathway changes, we also detected reduced presence of Natural killer T (NKT) cells and eosinophils in RA synovial tissues. Overall, our novel approach identified new and previously unsuspected Key driver genes (KDG), TF and networks and should help better understanding individual cell regulation and co-regulatory networks in RA pathogenesis, as well as potentially generate new targets for treatment.
Collapse
Affiliation(s)
- Aurelien Pelissier
- Institute of Computational Life Sciences, Zürich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- AI for Scientific Discovery, IBM Research Europe, Rüschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Teresina Laragione
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Percio S. Gulko
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - María Rodríguez Martínez
- AI for Scientific Discovery, IBM Research Europe, Rüschlikon, Switzerland
- Department of Biomedical Informatics & Data Science, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Chang MJ, Feng QF, Hao JW, Zhang YJ, Zhao R, Li N, Zhao YH, Han ZY, He PF, Wang CH. Deciphering the molecular landscape of rheumatoid arthritis offers new insights into the stratified treatment for the condition. Front Immunol 2024; 15:1391848. [PMID: 38983856 PMCID: PMC11232074 DOI: 10.3389/fimmu.2024.1391848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
Background For Rheumatoid Arthritis (RA), a long-term chronic illness, it is essential to identify and describe patient subtypes with comparable goal status and molecular biomarkers. This study aims to develop and validate a new subtyping scheme that integrates genome-scale transcriptomic profiles of RA peripheral blood genes, providing a fresh perspective for stratified treatments. Methods We utilized independent microarray datasets of RA peripheral blood mononuclear cells (PBMCs). Up-regulated differentially expressed genes (DEGs) were subjected to functional enrichment analysis. Unsupervised cluster analysis was then employed to identify RA peripheral blood gene expression-driven subtypes. We defined three distinct clustering subtypes based on the identified 404 up-regulated DEGs. Results Subtype A, named NE-driving, was enriched in pathways related to neutrophil activation and responses to bacteria. Subtype B, termed interferon-driving (IFN-driving), exhibited abundant B cells and showed increased expression of transcripts involved in IFN signaling and defense responses to viruses. In Subtype C, an enrichment of CD8+ T-cells was found, ultimately defining it as CD8+ T-cells-driving. The RA subtyping scheme was validated using the XGBoost machine learning algorithm. We also evaluated the therapeutic outcomes of biological disease-modifying anti-rheumatic drugs. Conclusions The findings provide valuable insights for deep stratification, enabling the design of molecular diagnosis and serving as a reference for stratified therapy in RA patients in the future.
Collapse
Affiliation(s)
- Min-Jing Chang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Qi-Fan Feng
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
| | - Jia-Wei Hao
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Ya-Jing Zhang
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Rong Zhao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
| | - Nan Li
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Yu-Hui Zhao
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Zi-Yi Han
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Pei-Feng He
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Cai-Hong Wang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
| |
Collapse
|
5
|
Sharma SD, Bluett J. Towards Personalized Medicine in Rheumatoid Arthritis. Open Access Rheumatol 2024; 16:89-114. [PMID: 38779469 PMCID: PMC11110814 DOI: 10.2147/oarrr.s372610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, incurable, multisystem, inflammatory disease characterized by synovitis and extra-articular features. Although several advanced therapies targeting inflammatory mechanisms underlying the disease are available, no advanced therapy is universally effective. Therefore, a ceiling of treatment response is currently accepted where no advanced therapy is superior to another. The current challenge for medical research is the discovery and integration of predictive markers of drug response that can be used to personalize medicine so that the patient is started on "the right drug at the right time". This review article summarizes our current understanding of predicting response to anti-rheumatic drugs in RA, obstacles impeding the development of personalized medicine approaches and future research priorities to overcome these barriers.
Collapse
Affiliation(s)
- Seema D Sharma
- Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - James Bluett
- Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Pelissier A, Laragione T, Gulko PS, Rodríguez Martínez M. Cell-Specific Gene Networks and Drivers in Rheumatoid Arthritis Synovial Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.28.573505. [PMID: 38234732 PMCID: PMC10793435 DOI: 10.1101/2023.12.28.573505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune and inflammatory disease characterized by inflammation and hyperplasia of the synovial tissues. RA pathogenesis involves multiple cell types, genes, transcription factors (TFs) and networks. Yet, little is known about the TFs, and key drivers and networks regulating cell function and disease at the synovial tissue level, which is the site of disease. In the present study, we used available RNA-seq databases generated from synovial tissues and developed a novel approach to elucidate cell type-specific regulatory networks on synovial tissue genes in RA. We leverage established computational methodologies to infer sample-specific gene regulatory networks and applied statistical methods to compare network properties across phenotypic groups (RA versus osteoarthritis). We developed computational approaches to rank TFs based on their contribution to the observed phenotypic differences between RA and controls across different cell types. We identified 18,16,19,11 key regulators of fibroblast-like synoviocyte (FLS), T cells, B cells, and monocyte signatures and networks, respectively, in RA synovial tissues. Interestingly, FLS and B cells were driven by multiple independent co-regulatory TF clusters that included MITF, HLX, BACH1 (FLS) and KLF13, FOSB, FOSL1 (synovial B cells). However, monocytes were collectively governed by a single cluster of TF drivers, responsible for the main phenotypic differences between RA and controls, which included RFX5, IRF9, CREB5. Among several cell subset and pathway changes, we also detected reduced presence of NKT cell and eosinophils in RA synovial tissues. Overall, our novel approach identified new and previously unsuspected KDG, TF and networks and should help better understanding individual cell regulation and co-regulatory networks in RA pathogenesis, as well as potentially generate new targets for treatment.
Collapse
Affiliation(s)
- Aurelien Pelissier
- IBM Research Europe, 8803 Rüschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- Currently at Institute of Computational Life Sciences, ZHAW, 8400 Winterthur, Switzerland
| | - Teresina Laragione
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, 10029 New York, United States
| | - Percio S. Gulko
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, 10029 New York, United States
| | - María Rodríguez Martínez
- IBM Research Europe, 8803 Rüschlikon, Switzerland
- Currently at Yale School of Medicine, 06510 New Haven, United States
| |
Collapse
|
7
|
Pelissier A, Laragione T, Harris C, Martínez MR, Gulko PS. Gene Network Analyses Identify Co-regulated Transcription Factors and BACH1 as a Key Driver in Rheumatoid Arthritis Fibroblast-like Synoviocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.28.573506. [PMID: 38234777 PMCID: PMC10793426 DOI: 10.1101/2023.12.28.573506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
RNA-sequencing and differential gene expression studies have significantly advanced our understanding of pathogenic pathways underlying Rheumatoid Arthritis (RA). Yet, little is known about cell-specific regulatory networks and their contributions to disease. In this study, we focused on fibroblast-like synoviocytes (FLS), a cell type central to disease pathogenesis and joint damage in RA. We used a strategy that computed sample-specific gene regulatory networks (GRNs) to compare network properties between RA and osteoarthritis FLS. We identified 28 transcription factors (TFs) as key regulators central to the signatures of RA FLS. Six of these TFs are new and have not been previously implicated in RA, and included BACH1, HLX, and TGIF1. Several of these TFs were found to be co-regulated, and BACH1 emerged as the most significant TF and regulator. The main BACH1 targets included those implicated in fatty acid metabolism and ferroptosis. The discovery of BACH1 was validated in experiments with RA FLS. Knockdown of BACH1 in RA FLS significantly affected the gene expression signatures, reduced cell adhesion and mobility, interfered with the formation of thick actin fibers, and prevented the polarized formation of lamellipodia, all required for the RA destructive behavior of FLS. This is the first time that BACH1 is shown to have a central role in the regulation of FLS phenotypes, and gene expression signatures, as well as in ferroptosis and fatty acid metabolism. These new discoveries have the potential to become new targets for treatments aimed at selectively targeting the RA FLS.
Collapse
Affiliation(s)
- Aurelien Pelissier
- IBM Research Europe, 8803 Ruschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- Currently at Institute of Computational Life Sciences, ZHAW, 8400 Winterthur, Switzerland
| | - Teresina Laragione
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, 10029 New York, United States
| | - Carolyn Harris
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, 10029 New York, United States
| | - María Rodríguez Martínez
- IBM Research Europe, 8803 Ruschlikon, Switzerland
- Currently at Yale School of Medicine, 06510 New Haven, United States
| | - Percio S. Gulko
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, 10029 New York, United States
| |
Collapse
|
8
|
Zhang F, Cheng T, Zhang SX. Mechanistic target of rapamycin (mTOR): a potential new therapeutic target for rheumatoid arthritis. Arthritis Res Ther 2023; 25:187. [PMID: 37784141 PMCID: PMC10544394 DOI: 10.1186/s13075-023-03181-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic synovitis and bone destruction. Proinflammatory cytokines activate pathways of immune-mediated inflammation, which aggravates RA. The mechanistic target of rapamycin (mTOR) signaling pathway associated with RA connects immune and metabolic signals, which regulates immune cell proliferation and differentiation, macrophage polarization and migration, antigen presentation, and synovial cell activation. Therefore, therapy strategies targeting mTOR have become an important direction of current RA treatment research. In the current review, we summarize the biological functions of mTOR, its regulatory effects on inflammation, and the curative effects of mTOR inhibitors in RA, thus providing references for the development of RA therapeutic targets and new drugs.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, 030001, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, 030001, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, 030001, Shanxi Province, China.
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China.
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
| |
Collapse
|
9
|
Zhang S, Niu Q, Tong L, Liu S, Wang P, Xu H, Li B, Zhang H. Identification of the susceptible genes and mechanism underlying the comorbid presence of coronary artery disease and rheumatoid arthritis: a network modularization analysis. BMC Genomics 2023; 24:411. [PMID: 37474895 PMCID: PMC10360345 DOI: 10.1186/s12864-023-09519-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
OBJECTIVE The comorbidities of coronary artery disease (CAD) and rheumatoid arthritis (RA) are mutual risk factors, which lead to higher mortality, but the biological mechanisms connecting the two remain unclear. Here, we aimed to identify the risk genes for the comorbid presence of these two complex diseases using a network modularization approach, to offer insights into clinical therapy and drug development for these diseases. METHOD The expression profile data of patients CAD with and without RA were obtained from the GEO database (GSE110008). Based on the differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA) was used to construct a gene network, detect co-expression modules, and explore their relation to clinical traits. The Zsummary index, gene significance (GS), and module membership (MM) were utilized to screen the important differentiated modules and hub genes. The GO and KEGG pathway enrichment analysis were applied to analyze potential mechanisms. RESULT Based on the 278 DEGs obtained, 41 modules were identified, of which 17 and 24 modules were positively and negatively correlated with the comorbid occurrence of CAD and RA (CAD&RA), respectively. Thirteen modules with Zsummary < 2 were found to be the underlying modules, which may be related to CAD&RA. With GS ≥ 0.5 and MM ≥ 0.8, 49 hub genes were identified, such as ADO, ABCA11P, POT1, ZNF141, GPATCH8, ATF6 and MIA3, etc. The area under the curve values of the representative seven hub genes under the three models (LR, KNN, SVM) were greater than 0.88. Enrichment analysis revealed that the biological functions of the targeted modules were mainly involved in cAMP-dependent protein kinase activity, demethylase activity, regulation of calcium ion import, positive regulation of tyrosine, phosphorylation of STAT protein, and tissue migration, etc. CONCLUSION: Thirteen characteristic modules and 49 susceptibility hub genes were identified, and their corresponding molecular functions may reflect the underlying mechanism of CAD&RA, hence providing insights into the development of clinical therapies against these diseases.
Collapse
Affiliation(s)
- Siqi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qikai Niu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lin Tong
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Sihong Liu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Huamin Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
10
|
Momtazmanesh S, Nowroozi A, Rezaei N. Artificial Intelligence in Rheumatoid Arthritis: Current Status and Future Perspectives: A State-of-the-Art Review. Rheumatol Ther 2022; 9:1249-1304. [PMID: 35849321 PMCID: PMC9510088 DOI: 10.1007/s40744-022-00475-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Investigation of the potential applications of artificial intelligence (AI), including machine learning (ML) and deep learning (DL) techniques, is an exponentially growing field in medicine and healthcare. These methods can be critical in providing high-quality care to patients with chronic rheumatological diseases lacking an optimal treatment, like rheumatoid arthritis (RA), which is the second most prevalent autoimmune disease. Herein, following reviewing the basic concepts of AI, we summarize the advances in its applications in RA clinical practice and research. We provide directions for future investigations in this field after reviewing the current knowledge gaps and technical and ethical challenges in applying AI. Automated models have been largely used to improve RA diagnosis since the early 2000s, and they have used a wide variety of techniques, e.g., support vector machine, random forest, and artificial neural networks. AI algorithms can facilitate screening and identification of susceptible groups, diagnosis using omics, imaging, clinical, and sensor data, patient detection within electronic health record (EHR), i.e., phenotyping, treatment response assessment, monitoring disease course, determining prognosis, novel drug discovery, and enhancing basic science research. They can also aid in risk assessment for incidence of comorbidities, e.g., cardiovascular diseases, in patients with RA. However, the proposed models may vary significantly in their performance and reliability. Despite the promising results achieved by AI models in enhancing early diagnosis and management of patients with RA, they are not fully ready to be incorporated into clinical practice. Future investigations are required to ensure development of reliable and generalizable algorithms while they carefully look for any potential source of bias or misconduct. We showed that a growing body of evidence supports the potential role of AI in revolutionizing screening, diagnosis, and management of patients with RA. However, multiple obstacles hinder clinical applications of AI models. Incorporating the machine and/or deep learning algorithms into real-world settings would be a key step in the progress of AI in medicine.
Collapse
Affiliation(s)
- Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran
| | - Ali Nowroozi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Ding J, Blencowe M, Nghiem T, Ha SM, Chen YW, Li G, Yang X. Mergeomics 2.0: a web server for multi-omics data integration to elucidate disease networks and predict therapeutics. Nucleic Acids Res 2021; 49:W375-W387. [PMID: 34048577 PMCID: PMC8262738 DOI: 10.1093/nar/gkab405] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 12/13/2022] Open
Abstract
The Mergeomics web server is a flexible online tool for multi-omics data integration to derive biological pathways, networks, and key drivers important to disease pathogenesis and is based on the open source Mergeomics R package. The web server takes summary statistics of multi-omics disease association studies (GWAS, EWAS, TWAS, PWAS, etc.) as input and features four functions: Marker Dependency Filtering (MDF) to correct for known dependency between omics markers, Marker Set Enrichment Analysis (MSEA) to detect disease relevant biological processes, Meta-MSEA to examine the consistency of biological processes informed by various omics datasets, and Key Driver Analysis (KDA) to identify essential regulators of disease-associated pathways and networks. The web server has been extensively updated and streamlined in version 2.0 including an overhauled user interface, improved tutorials and results interpretation for each analytical step, inclusion of numerous disease GWAS, functional genomics datasets, and molecular networks to allow for comprehensive omics integrations, increased functionality to decrease user workload, and increased flexibility to cater to user-specific needs. Finally, we have incorporated our newly developed drug repositioning pipeline PharmOmics for prediction of potential drugs targeting disease processes that were identified by Mergeomics. Mergeomics is freely accessible at http://mergeomics.research.idre.ucla.edu and does not require login.
Collapse
Affiliation(s)
- Jessica Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Thien Nghiem
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Sung-min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Yen-Wei Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Gaoyan Li
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Bioinformatics, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|