1
|
Takahashi N, Mori Y, Momo K, Murakami H, Tanaka H. Duloxetine-induced syndrome of inappropriate antidiuretic hormone secretion in a patient with neuropathic pain. Clin Case Rep 2024; 12:e9526. [PMID: 39529719 PMCID: PMC11552648 DOI: 10.1002/ccr3.9526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Syndrome of inappropriate antidiuretic hormone secretion (SIADH) induces hyponatremia accompanied by uric acid reduction. We report a case of a patient with small-cell lung cancer who developed SIADH with hypouricemia after duloxetine treatment and discuss the potential underlying mechanisms. SIADH and hypouricemia improved after duloxetine was switched to mirogabalin.
Collapse
Affiliation(s)
- Nobuyuki Takahashi
- Department of PharmacyShowa University East HospitalShinagawa‐kuTokyoJapan
- Department of Hospital Pharmaceutics, School of PharmacyShowa UniversityShinagawa‐kuTokyoJapan
| | - Yukiko Mori
- Department of NeurologyShowa University School of MedicineShinagawa‐kuTokyoJapan
| | - Kenji Momo
- Department of Hospital Pharmaceutics, School of PharmacyShowa UniversityShinagawa‐kuTokyoJapan
| | - Hidetomo Murakami
- Department of NeurologyShowa University School of MedicineShinagawa‐kuTokyoJapan
| | - Hironori Tanaka
- Department of PharmacyShowa University East HospitalShinagawa‐kuTokyoJapan
- Department of Hospital Pharmaceutics, School of PharmacyShowa UniversityShinagawa‐kuTokyoJapan
| |
Collapse
|
2
|
Toyoda Y, Takada T, Nakayama A, Shinomiya N, Matsuo H. Biochemical characterization of renal hypouricemia-associated mutations in urate transporter genes using human cells. Hum Cell 2024; 37:1231-1234. [PMID: 38811494 DOI: 10.1007/s13577-024-01079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Yu Toyoda
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan.
- Department of Bioinformation Management, National Defense Medical College Research Institute, Saitama, Japan.
| |
Collapse
|
3
|
Ichida K. [Uric Acid Metabolism, Uric Acid Transporters and Dysuricemia]. YAKUGAKU ZASSHI 2024; 144:659-674. [PMID: 38825475 DOI: 10.1248/yakushi.23-00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Serum urate levels are determined by the balance between uric acid production and uric acid excretion capacity from the kidneys and intestinal tract. Dysuricemia, including hyperuricemia and hypouricemia, develops when the balance shifts towards an increase or a decrease in the uric acid pool. Hyperuricemia is mostly a multifactorial genetic disorder involving several disease susceptibility genes and environmental factors. Hypouricemia, on the other hand, is caused by genetic abnormalities. The main genes involved in dysuricemia are xanthine oxidoreductase, an enzyme that produces uric acid, and the urate transporters urate transporter 1/solute carrier family 22 member 12 (URAT1/SLC22A12), glucose transporter 9/solute carrier family 2 member 9 (GLUT9/SLC2A9) and ATP binding cassette subfamily G member 2 (ABCG2). Deficiency of xanthine oxidoreductase results in xanthinuria, a rare disease with marked hypouricemia. Xanthinuria can be due to a single deficiency of xanthine oxidoreductase or in combination with aldehyde oxidase deficiency as well. The latter is caused by a deficiency in molybdenum cofactor sulfurase, which is responsible for adding sulphur atoms to the molybdenum cofactor required for xanthine oxidoreductase and aldehyde oxidase to exert their action. URAT1/SLC22A12 and GLUT9/SLC2A9 are involved in urate reabsorption and their deficiency leads to renal hypouricemia, a condition that is common in Japanese due to URAT1/SLC22A12 deficiency. On the other hand, ABCG2 is involved in the secretion of urate, and many Japanese have single nucleotide polymorphisms that result in its reduced function, leading to hyperuricemia. In particular, severe dysfunction of ABCG2 leads to hyperuricemia with reduced extrarenal excretion.
Collapse
MESH Headings
- Humans
- Hyperuricemia/etiology
- Hyperuricemia/metabolism
- Hyperuricemia/genetics
- Uric Acid/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Organic Anion Transporters/metabolism
- Organic Anion Transporters/genetics
- Glucose Transport Proteins, Facilitative/metabolism
- Glucose Transport Proteins, Facilitative/genetics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Xanthine Dehydrogenase/metabolism
- Xanthine Dehydrogenase/genetics
- Xanthine Dehydrogenase/deficiency
- Animals
- Organic Cation Transport Proteins/genetics
- Organic Cation Transport Proteins/metabolism
- Renal Tubular Transport, Inborn Errors/genetics
- Renal Tubular Transport, Inborn Errors/etiology
- Renal Tubular Transport, Inborn Errors/metabolism
- Urinary Calculi/etiology
- Urinary Calculi/metabolism
- Urinary Calculi/genetics
- Metabolism, Inborn Errors
Collapse
Affiliation(s)
- Kimiyoshi Ichida
- Department of Pathophysiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
- Division of Kidney and Hypertension, The Jikei University School of Medicine
| |
Collapse
|
4
|
Nakayama A, Kurajoh M, Toyoda Y, Takada T, Ichida K, Matsuo H. Dysuricemia. Biomedicines 2023; 11:3169. [PMID: 38137389 PMCID: PMC10740884 DOI: 10.3390/biomedicines11123169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Gout results from elevated serum urate (SU) levels, or hyperuricemia, and is a globally widespread and increasingly burdensome disease. Recent studies have illuminated the pathophysiology of gout/hyperuricemia and its epidemiology, diagnosis, treatment, and complications. The genetic involvement of urate transporters and enzymes is also proven. URAT1, a molecular therapeutic target for gout/hyperuricemia, was initially derived from research into hereditary renal hypouricemia (RHUC). RHUC is often accompanied by complications such as exercise-induced acute kidney injury, which indicates the key physiological role of uric acid. Several studies have also revealed its physiological role as both an anti-oxidant and a pro-oxidant, acting as both a scavenger and a generator of reactive oxygen species (ROSs). These discoveries have prompted research interest in SU and xanthine oxidoreductase (XOR), an enzyme that produces both urate and ROSs, as status or progression biomarkers of chronic kidney disease and cardiovascular disease. The notion of "the lower, the better" is therefore incorrect; a better understanding of uric acid handling and metabolism/transport comes from an awareness that excessively high and low levels both cause problems. We summarize here the current body of evidence, demonstrate that uric acid is much more than a metabolic waste product, and finally propose the novel disease concept of "dysuricemia" on the path toward "normouricemia", or optimal SU level, to take advantage of the dual roles of uric acid. Our proposal should help to interpret the spectrum from hypouricemia to hyperuricemia/gout as a single disease category.
Collapse
Affiliation(s)
- Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Masafumi Kurajoh
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Yu Toyoda
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa 359-8513, Japan
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Science, Hachioji 192-0392, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa 359-8513, Japan
| |
Collapse
|
5
|
Toyoda Y, Cho SK, Tasic V, Pavelcová K, Bohatá J, Suzuki H, David VA, Yoon J, Pallaiova A, Šaligová J, Nousome D, Cachau R, Winkler CA, Takada T, Stibůrková B. Identification of a dysfunctional exon-skipping splice variant in GLUT9/ SLC2A9 causal for renal hypouricemia type 2. Front Genet 2023; 13:1048330. [PMID: 36733941 PMCID: PMC9887137 DOI: 10.3389/fgene.2022.1048330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Renal hypouricemia (RHUC) is a pathological condition characterized by extremely low serum urate and overexcretion of urate in the kidney; this inheritable disorder is classified into type 1 and type 2 based on causative genes encoding physiologically-important urate transporters, URAT1 and GLUT9, respectively; however, research on RHUC type 2 is still behind type 1. We herein describe a typical familial case of RHUC type 2 found in a Slovak family with severe hypouricemia and hyperuricosuria. Via clinico-genetic analyses including whole exome sequencing and in vitro functional assays, we identified an intronic GLUT9 variant, c.1419+1G>A, as the causal mutation that could lead the expression of p.Gly431GlufsTer28, a functionally-null variant resulting from exon 11 skipping. The causal relationship was also confirmed in another unrelated Macedonian family with mild hypouricemia. Accordingly, non-coding regions should be also kept in mind during genetic diagnosis for hypouricemia. Our findings provide a better pathogenic understanding of RHUC and pathophysiological importance of GLUT9.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Sung Kweon Cho
- Molecular Genetics Epidemiology Section, Basic Research Laboratory, National Cancer Institute and Frederick National Laboratory for Cancer Research, Frederick, MD, United States,Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea
| | - Velibor Tasic
- Faculty of Medicine, University Ss. Cyril and Methodius, Skopje, North Macedonia
| | | | | | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Victor A. David
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Jaeho Yoon
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | | | - Jana Šaligová
- Metabolic Clinic, Children’s Faculty Hospital, Košice, Slovakia
| | - Darryl Nousome
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Raul Cachau
- Integrated Data Science Section, Research Technologies Branch, National Institute of Allergies and Infectious Diseases, Bethesda, MD, United States
| | - Cheryl A. Winkler
- Molecular Genetics Epidemiology Section, Basic Research Laboratory, National Cancer Institute and Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Blanka Stibůrková
- Institute of Rheumatology, Prague, Czechia,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia,Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia,*Correspondence: Blanka Stibůrková,
| |
Collapse
|
6
|
Abstract
Gout is a chronic metabolic disease that seriously affects human health. It is also a major challenge facing the world, which has brought a heavy burden to patients and society. Hyperuricemia (HUA) is the most important risk factor for gout. In recent years, with the improvement of living standards and the change of dietary habits, the incidence of gout in the world has increased dramatically, and gradually tends to be younger. An increasing number of studies have shown that gene mutations may play an important role in the development of HUA and gout. Therefore, we reviewed the existing literature and summarized the susceptibility genes and research status of HUA and gout, in order to provide reference for the early diagnosis, individualized treatment and the development of new targeted drugs of HUA and gout.
Collapse
Affiliation(s)
- Yue-Li Nian
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Chong-Ge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
7
|
Comparison of the Application Value for Diagnosis of Chronic Kidney Disease between Color Doppler Flow Quantification Technique and Computed Tomography. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6485273. [PMID: 35854779 PMCID: PMC9286941 DOI: 10.1155/2022/6485273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Objective The aim of this study is to compare the application value for diagnosis of chronic kidney disease (CKD) between the color Doppler flow quantification (CDFQ) technique and computed tomography (CT). Methods The clinical data of 88 hospitalized patients treated in the Renal Medicine of our hospital and diagnosed with CKD after pathological examination from June 2020 to June 2021 were selected for the retrospective analysis, and 32 individuals with normal physical examination results in the same period were selected as the control group. All study subjects received CDFQ and 640-slice volume CT examination, and by plotting the ROC curves, the clinical value of different diagnostic modalities was analyzed. Results The 3D renal volumes between the stage 1 group and control group were significantly different (P < 0.05); the 3D renal volumes between the stage 2 group and control group and between the stage 2 group and stage 1 group were significantly different (P < 0.05); in the comparison between the stage 3 group versus control group/stage 2 group, the RI values, 3D renal volumes, and cortical thicknesses were significantly different (P < 0.05); in the comparison between the stage 4 group versus control group/stage 1 group, the RI values, 3D renal volumes, and cortical thicknesses were significantly different, and between the stage 4 group and stage 2 group, the RI values and cortical thicknesses were significantly different (P < 0.05); in the comparison between the stage 5 group versus control group/stage 1 group/stage 2 group/stage 3 group, the RI values, 3D renal volumes, and cortical thicknesses were significantly different, and between the stage 5 group and stage 4 group, the RI values and 3D renal volumes were significantly different (P < 0.05); among various groups, the measurement indicators of 640-slice volume CT scan were significantly different (P < 0.05); and in terms of disease classification, the AUC value, positive predictive value, negative predictive value, sensitivity, and specificity of 640-slice volume CT were higher than those of CDFQ diagnosis. Conclusion 640-slice volume CT has a higher efficacy in diagnosing CKD and can provide a reliable basis for the selection of treatment schemes for CKD patients.
Collapse
|
8
|
Otani N, Ouchi M, Misawa K, Hisatome I, Anzai N. Hypouricemia and Urate Transporters. Biomedicines 2022; 10:biomedicines10030652. [PMID: 35327453 PMCID: PMC8945357 DOI: 10.3390/biomedicines10030652] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023] Open
Abstract
Hypouricemia is recognized as a rare disorder, defined as a serum uric acid level of 2.0 mg/dL or less. Hypouricemia is divided into an overexcretion type and an underproduction type. The former typical disease is xanthinuria, and the latter is renal hypouricemia (RHUC). The frequency of nephrogenic hypouricemia due to a deficiency of URAT1 is high in Japan, accounting for most asymptomatic and persistent cases of hypouricemia. RHUC results in a high risk of exercise-induced acute kidney injury and urolithiasis. It is vital to promote research on RHUC, as this will lead not only to the elucidation of its pathophysiology but also to the development of new treatments for gout and hyperuricemia.
Collapse
Affiliation(s)
- Naoyuki Otani
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan;
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan;
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan;
| | - Ichiro Hisatome
- Yonago Medical Center, National Hospital Organization, Yonago 683-0006, Tottori, Japan;
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Yonago 680-8550, Tottori, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Chiba, Japan
- Correspondence:
| |
Collapse
|
9
|
Toyoda Y, Takada T, Saito H, Hirata H, Ota-Kontani A, Tsuchiya Y, Suzuki H. Identification of Inhibitory Activities of Dietary Flavonoids against URAT1, a Renal Urate Re-Absorber: In Vitro Screening and Fractional Approach Focused on Rooibos Leaves. Nutrients 2022; 14:nu14030575. [PMID: 35276934 PMCID: PMC8839210 DOI: 10.3390/nu14030575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Hyperuricemia, a lifestyle-related disease characterized by elevated serum urate levels, is the main risk factor for gout; therefore, the serum urate-lowering effects of human diets or dietary ingredients have attracted widespread interest. As Urate transporter 1 (URAT1) governs most urate reabsorption from primary urine into blood, URAT1 inhibition helps decrease serum urate levels by increasing the net renal urate excretion. In this study, we used a cell-based urate transport assay to investigate the URAT1-inhibitory effects of 162 extracts of plant materials consumed by humans. Among these, we focused on Aspalathus linearis, the source of rooibos tea, to explore its active ingredients. Using liquid–liquid extraction with subsequent column chromatography, as well as spectrometric analyses for chemical characterization, we identified quercetin as a URAT1 inhibitor. We also investigated the URAT1-inhibitory activities of 23 dietary ingredients including nine flavanols, two flavanonols, two flavones, two isoflavonoids, eight chalcones, and a coumarin. Among the tested authentic chemicals, fisetin and quercetin showed the strongest and second-strongest URAT1-inhibitory activities, with IC50 values of 7.5 and 12.6 μM, respectively. Although these effects of phytochemicals should be investigated further in human studies, our findings may provide new clues for using nutraceuticals to promote health.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.T.); (H.S.); (H.S.)
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.T.); (H.S.); (H.S.)
- Correspondence: ; Tel.: +81-3-3815-5411 (ext. 37514)
| | - Hiroki Saito
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.T.); (H.S.); (H.S.)
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.H.); (A.O.-K.); (Y.T.)
| | - Hiroshi Hirata
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.H.); (A.O.-K.); (Y.T.)
| | - Ami Ota-Kontani
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.H.); (A.O.-K.); (Y.T.)
| | - Youichi Tsuchiya
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.H.); (A.O.-K.); (Y.T.)
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.T.); (H.S.); (H.S.)
| |
Collapse
|