1
|
Kälin T, Passarin K, Filipowic-Sinnreich M, Semela D, Seifert T, Sallusto F, Vergani D, Cerny A, Mieli-Vergani G, Terziroli Beretta-Piccoli B. SARS-CoV-2 mRNA vaccines do not worsen autoimmunity in patients with autoimmune liver diseases. J Autoimmun 2024; 149:103325. [PMID: 39413503 DOI: 10.1016/j.jaut.2024.103325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION AND AIMS mRNA vaccines against Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) infection have been associated with immune-related adverse reactions. We aimed at investigating whether SARS-CoV-2 vaccines may worsen autoimmune reactions in patients with autoimmune liver diseases. METHODS We centrally tested a large panel of liver- and non-liver-related autoantibodies in patients with primary biliary cholangitis (PBC), autoimmune hepatitis (AIH), primary sclerosing cholangitis (PSC), and in healthcare workers (HW) before and after SARS-CoV-2 mRNA vaccines. RESULTS 49 PBC, 35 AIH, 9 PSC and 38 HW were included. The proportion of subjects with at least one autoantibody positivization after vaccination was 11 % for HW, 37 % for AIH, 35 % for PBC and 56 % for PSC patients, patients having a significantly higher frequency of positivization as compared to HW. The proportion of seropositive subjects before vaccination who had at least one autoantibody negativization was 25 % for HW, 57 % for AIH, 40 % for PBC and 50 % for PSC, AIH patients having a significantly higher frequency of negativization as compared to HW. In the AIH group, the number of autoantibody negativizations was higher than the number of positivizations. The BNT162b2 vaccine was associated with a higher risk of developing new autoantibodies as compared to the mRNA-1273 vaccine. No new-onset autoimmune disease was observed after one year. One AIH patient had a relapse after vaccination. CONCLUSION mRNA SARS-CoV-2 vaccines do not induce short-term worsening of autoimmunity in patients with autoimmune liver diseases.
Collapse
Affiliation(s)
- Tobias Kälin
- Università della Svizzera Italiana, Facoltà di Scienze Biomediche, Lugano, Switzerland
| | | | - Magdalena Filipowic-Sinnreich
- Clinic for Gastroenterology and Hepatology, Medizinische Universitätsklinik, Kantonsspital Baselland, Liestal, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - David Semela
- Gastroenterology and Hepatology Department, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Tanja Seifert
- Institute for Experimental Immunology, affiliated with EUROIMMUN Medizinische Labordiagnostika AG, Seekamp 31, 23560, Luebeck, Germany
| | - Federica Sallusto
- Università della Svizzera Italiana, Facoltà di Scienze Biomediche, Lugano, Switzerland; Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland; Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Diego Vergani
- MowatLabs, Faculty of Life Sciences & Medicine, King's College London, King's College Hospital, London, UK
| | | | - Giorgina Mieli-Vergani
- MowatLabs, Faculty of Life Sciences & Medicine, King's College London, King's College Hospital, London, UK
| | - Benedetta Terziroli Beretta-Piccoli
- Università della Svizzera Italiana, Facoltà di Scienze Biomediche, Lugano, Switzerland; Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland; MowatLabs, Faculty of Life Sciences & Medicine, King's College London, King's College Hospital, London, UK; Epatocentro Ticino, Lugano, Switzerland.
| |
Collapse
|
2
|
Raadsen MP, Visser C, Lavell AHA, van de Munckhof AAGA, Coutinho JM, de Maat MPM, GeurtsvanKessel CH, Bomers MK, Haagmans BL, van Gorp ECM, Porcelijn L, Kruip MJHA. Transient Autoreactive PF4 and Antiphospholipid Antibodies in COVID-19 Vaccine Recipients. Vaccines (Basel) 2023; 11:1851. [PMID: 38140254 PMCID: PMC10747426 DOI: 10.3390/vaccines11121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare autoimmune condition associated with recombinant adenovirus (rAV)-based COVID-19 vaccines. It is thought to arise from autoantibodies targeting platelet factor 4 (aPF4), triggered by vaccine-induced inflammation and the formation of neo-antigenic complexes between PF4 and the rAV vector. To investigate the specific induction of aPF4 by rAV-based vaccines, we examined sera from rAV vaccine recipients (AZD1222, AD26.COV2.S) and messenger RNA (mRNA) based (mRNA-1273, BNT162b2) COVID-19 vaccine recipients. We compared the antibody fold change (FC) for aPF4 and for antiphospholipid antibodies (aPL) of rAV to mRNA vaccine recipients. We combined two biobanks of Dutch healthcare workers and matched rAV-vaccinated individuals to mRNA-vaccinated controls, based on age, sex and prior history of COVID-19 (AZD1222: 37, Ad26.COV2.S: 35, mRNA-1273: 47, BNT162b2: 26). We found no significant differences in aPF4 FCs after the first (0.99 vs. 1.08, mean difference (MD) = -0.11 (95% CI -0.23 to 0.057)) and second doses of AZD1222 (0.99 vs. 1.10, MD = -0.11 (95% CI -0.31 to 0.10)) and after a single dose of Ad26.COV2.S compared to mRNA-based vaccines (1.01 vs. 0.99, MD = 0.026 (95% CI -0.13 to 0.18)). The mean FCs for the aPL in rAV-based vaccine recipients were similar to those in mRNA-based vaccines. No correlation was observed between post-vaccination aPF4 levels and vaccine type (mean aPF difference -0.070 (95% CI -0.14 to 0.002) mRNA vs. rAV). In summary, our study indicates that rAV and mRNA-based COVID-19 vaccines do not substantially elevate aPF4 levels in healthy individuals.
Collapse
Affiliation(s)
- Matthijs P. Raadsen
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (M.P.R.); (C.H.G.); (B.L.H.); (E.C.M.v.G.)
| | - Chantal Visser
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.V.); (M.P.M.d.M.)
| | - A. H. Ayesha Lavell
- Department of Internal Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.H.A.L.); (M.K.B.)
- Amsterdam Institute for Infection & Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Anita A. G. A. van de Munckhof
- Department of Neurology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.A.G.A.v.d.M.); (J.M.C.)
| | - Jonathan M. Coutinho
- Department of Neurology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.A.G.A.v.d.M.); (J.M.C.)
| | - Moniek P. M. de Maat
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.V.); (M.P.M.d.M.)
| | - Corine H. GeurtsvanKessel
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (M.P.R.); (C.H.G.); (B.L.H.); (E.C.M.v.G.)
| | | | - Marije K. Bomers
- Department of Internal Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.H.A.L.); (M.K.B.)
- Amsterdam Institute for Infection & Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (M.P.R.); (C.H.G.); (B.L.H.); (E.C.M.v.G.)
| | - Eric C. M. van Gorp
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (M.P.R.); (C.H.G.); (B.L.H.); (E.C.M.v.G.)
| | - Leendert Porcelijn
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands;
| | - Marieke J. H. A. Kruip
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.V.); (M.P.M.d.M.)
| |
Collapse
|
3
|
Scholkmann F, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, "long COVID") and post-COVID-19 vaccination syndrome (PCVS, "post-COVIDvac-syndrome"): Similarities and differences. Pathol Res Pract 2023; 246:154497. [PMID: 37192595 DOI: 10.1016/j.prp.2023.154497] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Worldwide there have been over 760 million confirmed coronavirus disease 2019 (COVID-19) cases, and over 13 billion COVID-19 vaccine doses have been administered as of April 2023, according to the World Health Organization. An infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to an acute disease, i.e. COVID-19, but also to a post-acute COVID-19 syndrome (PACS, "long COVID"). Currently, the side effects of COVID-19 vaccines are increasingly being noted and studied. Here, we summarise the currently available indications and discuss our conclusions that (i) these side effects have specific similarities and differences to acute COVID-19 and PACS, that (ii) a new term should be used to refer to these side effects (post-COVID-19 vaccination syndrome, PCVS, colloquially "post-COVIDvac-syndrome"), and that (iii) there is a need to distinguish between acute COVID-19 vaccination syndrome (ACVS) and post-acute COVID-19 vaccination syndrome (PACVS) - in analogy to acute COVID-19 and PACS ("long COVID"). Moreover, we address mixed forms of disease caused by natural SARS-CoV-2 infection and COVID-19 vaccination. We explain why it is important for medical diagnosis, care and research to use the new terms (PCVS, ACVS and PACVS) in order to avoid confusion and misinterpretation of the underlying causes of disease and to enable optimal medical therapy. We do not recommend to use the term "Post-Vac-Syndrome" as it is imprecise. The article also serves to address the current problem of "medical gaslighting" in relation to PACS and PCVS by raising awareness among the medical professionals and supplying appropriate terminology for disease.
Collapse
Affiliation(s)
- Felix Scholkmann
- University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Christian-Albrecht May
- Department of Anatomy, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
4
|
Islam MS, Wang Z, Abdel-Mohsen M, Chen X, Montaner LJ. Tissue injury and leukocyte changes in post-acute sequelae of SARS-CoV-2: review of 2833 post-acute patient outcomes per immune dysregulation and microbial translocation in long COVID. J Leukoc Biol 2023; 113:236-254. [PMID: 36807444 DOI: 10.1093/jleuko/qiac001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 01/18/2023] Open
Abstract
A significant number of persons with coronavirus disease 2019 (COVID-19) experience persistent, recurrent, or new symptoms several months after the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This phenomenon, termed post-acute sequelae of SARS-CoV-2 (PASC) or long COVID, is associated with high viral titers during acute infection, a persistently hyperactivated immune system, tissue injury by NETosis-induced micro-thrombofibrosis (NETinjury), microbial translocation, complement deposition, fibrotic macrophages, the presence of autoantibodies, and lymphopenic immune environments. Here, we review the current literature on the immunological imbalances that occur during PASC. Specifically, we focus on data supporting common immunopathogenesis and tissue injury mechanisms shared across this highly heterogenous disorder, including NETosis, coagulopathy, and fibrosis. Mechanisms include changes in leukocyte subsets/functions, fibroblast activation, cytokine imbalances, lower cortisol, autoantibodies, co-pathogen reactivation, and residual immune activation driven by persistent viral antigens and/or microbial translocation. Taken together, we develop the premise that SARS-CoV-2 infection results in PASC as a consequence of acute and/or persistent single or multiple organ injury mediated by PASC determinants to include the degree of host responses (inflammation, NETinjury), residual viral antigen (persistent antigen), and exogenous factors (microbial translocation). Determinants of PASC may be amplified by comorbidities, age, and sex.
Collapse
Affiliation(s)
- Md Sahidul Islam
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China
| | - Zhaoxiong Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| | - Xin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Research Building N22, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China
| | - Luis J Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| |
Collapse
|
5
|
The Third Dose of BNT162b2 COVID-19 Vaccine Does Not “Boost” Disease Flares and Adverse Events in Patients with Rheumatoid Arthritis. Biomedicines 2023; 11:biomedicines11030687. [PMID: 36979666 PMCID: PMC10045021 DOI: 10.3390/biomedicines11030687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Data on the risk of adverse events (AEs) and disease flares in autoimmune rheumatic diseases (ARDs) after the third dose of COVID-19 vaccine are scarce. The aim of this multicenter, prospective study is to analyze the clinical and immunological safety of BNT162b2 vaccine in a cohort of rheumatoid arthritis (RA) patients followed-up from the first vaccine cycle to the third dose. The vaccine showed an overall good safety profile with no patient reporting serious AEs, and a low percentage of total AEs at both doses (40/78 (51.3%) and 13/47 (27.7%) patients after the second and third dose, respectively (p < 0.002). Flares were observed in 10.3% of patients after the end of the vaccination cycle and 12.8% after the third dose. Being vaccinated for influenza was inversely associated with the onset of AEs after the second dose, at both univariable (p = 0.013) and multivariable analysis (p = 0.027). This result could allow identification of a predictive factor of vaccine tolerance, if confirmed in larger patient populations. A higher disease activity at baseline was not associated with a higher incidence of AEs or disease flares. Effectiveness was excellent after the second dose, with only 1/78 (1.3%) mild breakthrough infection (BI) and worsened after the third dose, with 9/47 (19.2%) BI (p < 0.002), as a probable expression of the higher capacity of the Omicron variants to escape vaccine recognition.
Collapse
|
6
|
Gazitt T, Eviatar T, Shear J, Meidan R, Furer V, Feld J, Haddad A, Elias M, Hijazi N, Stein N, Shaked Mishan P, Zetser A, Peleg H, Elkayam O, Zisman D. Development of Autoantibodies Following BNT162b2 mRNA COVID-19 Vaccination and Their Association with Disease Flares in Adult Patients with Autoimmune Inflammatory Rheumatic Diseases (AIIRD) and the General Population: Results of 1-Year Prospective Follow-Up Study. Vaccines (Basel) 2023; 11:vaccines11020476. [PMID: 36851352 PMCID: PMC9958930 DOI: 10.3390/vaccines11020476] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Development of autoantibodies following BNT162b2 mRNA COVID-19 vaccination and their association with disease flares in adult patients with autoimmune inflammatory rheumatic diseases (AIIRD) and the general population: results of 1-year prospective follow-up study. We conducted a prospective study aimed at investigating the incidence of appearance of autoantibodies (antinuclear, antiphospholipid, and rheumatoid factor) in the sera of 463 adult patients with AIIRD compared to 55 controls from the general population prior to, and following the second and third vaccine doses, and at 1-year of follow-up. Pre- and post-vaccination disease activity indices and the association of autoantibodies with rheumatic disease flares and new onset AIIRD were examined. Autoantibody development of any type in AIIRD patients vs. the controls was 4.0% (vs. 6.7%, p = 0.423) following two vaccine doses and 7.6% (vs. 0%, p = 0.152) after three doses. There was no significant difference in sex, age, or disease-type among individuals with and without autoantibody development, regardless of the immunosuppressant use. More patients developed autoantibodies following the third than the second vaccine dose (p = 0.004). Disease flares occurred in 5.8% and 7.2% of AIIRD patients following second and third vaccine doses, respectively, with autoantibody production increasing the risk of flares following the second (p = 0.002) and third (p = 0.004) vaccine doses. BNT162b2 vaccination resulted in the development of autoantibodies in a minority of AIIRD patients and controls. Autoantibody development was associated with disease flares in patients, but no new-onset autoimmunity was observed.
Collapse
Affiliation(s)
- Tal Gazitt
- Carmel Medical Center, Rheumatology Unit, Haifa 3436212, Israel
- Division of Rheumatology, University of Washington Medical Center, Seattle, WA 98195-6428, USA
- Correspondence: ; Tel.: +972-4-8250486; Fax: +972-4-8260213
| | - Tali Eviatar
- Tel Aviv Medical Center, Rheumatology, Tel Aviv 6423906, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jacqueline Shear
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Roni Meidan
- Tel Aviv Medical Center, Rheumatology, Tel Aviv 6423906, Israel
| | - Victoria Furer
- Tel Aviv Medical Center, Rheumatology, Tel Aviv 6423906, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Joy Feld
- Carmel Medical Center, Rheumatology Unit, Haifa 3436212, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Amir Haddad
- Carmel Medical Center, Rheumatology Unit, Haifa 3436212, Israel
| | - Muna Elias
- Carmel Medical Center, Rheumatology Unit, Haifa 3436212, Israel
| | - Nizar Hijazi
- Carmel Medical Center, Rheumatology Unit, Haifa 3436212, Israel
| | - Nili Stein
- Department of Community Medicine and Epidemiology, Carmel Medical Center, Haifa 3436212, Israel
| | - Pninit Shaked Mishan
- Microbiology and Immunology Laboratory, Carmel Medical Center, Haifa 3436212, Israel
| | - Anna Zetser
- Microbiology and Immunology Laboratory, Carmel Medical Center, Haifa 3436212, Israel
| | - Hagit Peleg
- Rheumatology Unit, Hadassah Medical Center, Jerusalem 91120, Israel
- Hadassah Medical Center, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Ori Elkayam
- Tel Aviv Medical Center, Rheumatology, Tel Aviv 6423906, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Devy Zisman
- Carmel Medical Center, Rheumatology Unit, Haifa 3436212, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| |
Collapse
|
7
|
Noureldine HA, Maamari J, El Helou MO, Chedid G, Farra A, Husni R, Mokhbat JE. The effect of the BNT162b2 vaccine on antinuclear antibody and antiphospholipid antibody levels. Immunol Res 2022; 70:800-810. [PMID: 35978253 PMCID: PMC9385410 DOI: 10.1007/s12026-022-09309-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/20/2022] [Indexed: 11/05/2022]
Abstract
The Food and Drug Administration (FDA) approved the first SARS-CoV-2 mRNA vaccine (Pfizer-BioNTech) in December 2020. New adverse events have emerged since these vaccines have reached market. Although no clear association between messenger ribonucleic acid (mRNA) vaccines and autoimmunity has emerged, the significance of such an association warrants further exploration. After obtaining consent, a standardized survey on baseline characteristics and other relevant variables was conducted on unvaccinated individuals who were scheduled for vaccination and had not previously contracted COVID-19. Blood samples were collected from participants prior to the first dose, prior to the second dose, and 1 month after the second dose. All collected samples were tested for antinuclear antibody (ANA) titers using indirect immunofluorescence microscopy kits, and antiphospholipid (APS) immunoglobulin M (IgM) and immunoglobulin G (IgG) levels using an enzyme-linked immunoassay (ELISA) technique. ANA titers were positive for 9 participants out of 101 (8.9%) in the first pre-vaccination draw. For the second draw, the number of participants testing positive for ANA decreased to 5 (5%). For the last draw, 6 (5.9%) participants tested positive for ANA titers. One participant tested positive for APS IgM at the first pre-vaccination draw, 2 tested positive at the second draw, and 2 at the third draw. As for APS IgG titers, all participants tested negative in the three draws. McNemar's test for two dependent categorical outcomes was conducted on all variables and did not show a statistical significance. The McNemar test of these two composite variables (i.e., ANA/APS, first draw vs. ANA/APS, second and third draws) did not show statistical significance. The 2-sided exact significance of the McNemar test was 1.0. The Friedman test also showed no significance (p = 0.459). No association was found between BNT162b2 vaccine administration and changes in APS and ANA titers. The benefits of the BNT162b2 vaccine significantly outweigh any possible risk of autoimmune dysregulation considering the current evidence.
Collapse
Affiliation(s)
- Hussein A Noureldine
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Julian Maamari
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mohamad Othman El Helou
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Scholars in Health Research Program, Faculty of Medicine and Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Georges Chedid
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Anna Farra
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University Medical Center - Rizk Hospital, Zahar St, Achrafieh, Beirut, Lebanon
| | - Roula Husni
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University Medical Center - Rizk Hospital, Zahar St, Achrafieh, Beirut, Lebanon
| | - Jacques E Mokhbat
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University Medical Center - Rizk Hospital, Zahar St, Achrafieh, Beirut, Lebanon.
| |
Collapse
|
8
|
The Risk of Autoimmunity Development following mRNA COVID-19 Vaccination. Viruses 2022; 14:v14122655. [PMID: 36560659 PMCID: PMC9788148 DOI: 10.3390/v14122655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The broad spectrum of interactions between autoimmune diseases and the SARS-CoV-2 vaccination is not fully understood. This study aims to evaluate the prevalence of anti-nuclear antibodies (ANA), anti-ENA, anticardiolipin antibodies (ACL), and anti-beta-2 glycoprotein I antibodies (anti-β2GPI) before and after the SARS-CoV-2 mRNA vaccination in a real-life setting in healthcare professionals. The identification of risk factors associated with vaccine immunogenicity was evaluated. The study group consisted of employees of two hospitals (354 individuals). Samples for antibody assays were collected before vaccination and at 7-9 months after complete immunisation. There was no significant increase in the prevalence of ANA, ACL or anti-β2GPI antibodies, or autoimmune diseases in subjects who were vaccinated 7-9 months after complete immunisation. In terms of detected anti-ENA, the anti-DFS70 antibodies were found in 6 times more subjects than before vaccination at the second blood draw (in 18 and 3 subjects, respectively) (p = 0.001). There were no significant relationships between a SARS-CoV-2 infection history, humoral response, cellular response, subject category, smoking, sex, body weight, ANA, anti-ENA, ACL, or anti-β2GPI. This study revealed a possible association between the severity of vaccine adverse events (VAEs) and ANA titre. Individuals with more severe VAEs (>10 points) after the second dose of the vaccine had significantly higher ANA titre after complete immunization. When analysing the significance of time between the ANA, anti-ENA, ACL, and anti- β2GPI assays and complete immunisation antibody values, no qualitative result was statistically significant. There was correlation between the time since complete immunization and ANA after.
Collapse
|
9
|
Mahroum N, Elsalti A, Alwani A, Seida I, Alrais M, Seida R, Esirgun SN, Abali T, Kiyak Z, Zoubi M, Shoenfeld Y. The mosaic of autoimmunity - Finally discussing in person. The 13 th international congress on autoimmunity 2022 (AUTO13) Athens. Autoimmun Rev 2022; 21:103166. [PMID: 35932955 PMCID: PMC9349027 DOI: 10.1016/j.autrev.2022.103166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Abstract
While autoimmunity is a branch of medicine linked to every single organ system via direct and indirect pathways, meeting in person to discuss autoimmunity during the 13th international congress on autoimmunity (AUTO13) with participants from all over the world had a very good reason. The mechanisms involved in autoimmune diseases are of extreme importance and in fact critical in understanding the course of diseases as well as selecting proper therapies. COVID-19 has served as a great example of how autoimmunity is deeply involved in the disease and directly correlated to severity, morbidity, and mortality. For instance, initially the term cytokine storm dominated, then COVID-19 was addressed as the new member of the hyperferritinemic syndrome, and also the use of immunosuppressants in patients with COVID-19 throughout the pandemic, all shed light on the fundamental role of autoimmunity. Unsurprisingly, SARS-CoV-2 was called the “autoimmune virus” during AUTO13. Subsequently, the correlation between autoimmunity and COVID-19 vaccines and post-COVID, all were discussed from different autoimmune aspects during the congress. In addition, updates on the mechanisms of diseases, autoantibodies, novel diagnostics and therapies in regard to autoimmune diseases such as antiphospholipid syndrome, systemic lupus erythematosus, systemic sclerosis and others, were discussed in dedicated sessions. Due to the magnificence of the topics discussed, we aimed to bring in our article hereby, the pearls of AUTO13 in terms of updates, new aspects of autoimmunity, and interesting findings. While more than 500 abstract were presented, concluding all the topics was not in reach, hence major findings were summarized.
Collapse
Affiliation(s)
- Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Abdulrahman Elsalti
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Abdulkarim Alwani
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Isa Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mahmoud Alrais
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ravend Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Sevval Nil Esirgun
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Tunahan Abali
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Zeynep Kiyak
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Majdi Zoubi
- Department of Internal Medicine B, HaEmek Medical Center, Afula, Israel, Affiliated to Technion, Faculty of Medicine, Haifa, Israel
| | | |
Collapse
|