1
|
Timmermans RGM, Blom AB, Nelissen RGHH, Broekhuis D, van der Kraan PM, Meulenbelt I, van den Bosch MHJ, Ramos YFM. Mechanical stress and inflammation have opposite effects on Wnt signaling in human chondrocytes. J Orthop Res 2024; 42:286-295. [PMID: 37525432 DOI: 10.1002/jor.25673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Dysregulation of Wingless and Int-1 (Wnt) signaling has been strongly associated with development and progression of osteoarthritis (OA). Here, we set out to investigate the independent effects of either mechanical stress (MS) or inflammation on Wnt signaling in human neocartilage pellets, and to relate this Wnt signaling to OA pathophysiology. OA synovium-conditioned media (OAS-CM) was collected after incubating synovium from human end-stage OA joints for 24 h in medium. Cytokine levels in the OAS-CM were determined with a multiplex immunoassay (Luminex). Human neocartilage pellets were exposed to 20% MS, 2% OAS-CM or 1 ng/mL Interleukin-1β (IL-1β). Effects on expression levels of Wnt signaling members were determined by reverse transcription-quantitative polymerase chain reaction. Additionally, the expression of these members in articular cartilage from human OA joints was analyzed in association with joint space narrowing (JSN) and osteophyte scores. Protein levels of IL-1β, IL-6, IL-8, IL-10, tumor necrosis factor α, and granulocyte-macrophage colony-stimulating factor positively correlated with each other. MS increased noncanonical WNT5A and FOS expression. In contrast, these genes were downregulated upon stimulation with OAS-CM or IL-1β. Furthermore, Wnt inhibitors DKK1 and FRZB decreased in response to OAS-CM or IL-1β exposure. Finally, expression of WNT5A in OA articular cartilage was associated with increased JSN scores, but not osteophyte scores. Our results demonstrate that MS and inflammatory stimuli have opposite effects on canonical and noncanonical Wnt signaling in human neocartilage. Considering the extent to which MS and inflammation contribute to OA in individual patients, we hypothesize that targeting specific Wnt pathways offers a more effective, individualized approach.
Collapse
Affiliation(s)
- Ritchie G M Timmermans
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob G H H Nelissen
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Demiën Broekhuis
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Li P, Cheng B, Yao Y, Yu W, Liu L, Cheng S, Zhang L, Ma M, Qi X, Liang C, Chu X, Ye J, Sun S, Jia Y, Guo X, Wen Y, Zhang F. WISP1 Is Involved in the Pathogenesis of Kashin-Beck Disease via the Autophagy Pathway. Int J Mol Sci 2023; 24:16037. [PMID: 38003226 PMCID: PMC10671535 DOI: 10.3390/ijms242216037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE Kashin-Beck disease (KBD) is a kind of endemic and chronic osteochondropathy in China. This study aims to explore the functional relevance and potential mechanism of Wnt-inducible signaling pathway protein 1 (WISP1) in the pathogenesis of KBD. DESIGN KBD and control cartilage specimens were collected for tissue section observation and primary chondrocyte culture. Firstly, the morphological and histopathological observations were made under a light and electron microscope. Then, the expression levels of WISP1 as well as molecular markers related to the autophagy pathway and extracellular matrix (ECM) synthesis were detected in KBD and control chondrocytes by qRT-PCR, Western blot, and immunohistochemistry. Furthermore, the lentiviral transfection technique was applied to make a WISP1 knockdown cell model based on KBD chondrocytes. In vitro intervention experiments were conducted on the C28/I2 human chondrocyte cell line using human recombinant WISP1 (rWISP1). RESULTS The results showed that the autolysosome appeared in the KBD chondrocytes. The expression of WISP1 was significantly higher in KBD chondrocytes. Additionally, T-2 toxin, a risk factor for KBD onset, could up-regulate the expression of WISP1 in C28/I2. The autophagy markers ATG4C and LC3II were upregulated after the low-concentration treatment of T-2 toxin and downregulated after the high-concentration treatment. After knocking down WISP1 expression in KBD chondrocytes, MAP1LC3B decreased while ATG4C and COL2A1 increased. Moreover, the rWISP1 protein treatment in C28/I2 chondrocytes could upregulate the expression of ATG4C and LC3II at the beginning and downregulate them then. CONCLUSIONS Our study suggested that WISP1 might play a role in the pathogenesis of KBD through autophagy.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Wenxing Yu
- Department of Joint Surgery, Xi’an Honghui Hospital, Health Science Center, Xi’an Jiaotong University, Xi’an 710054, China;
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Xiaomeng Chu
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Jing Ye
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Shiquan Sun
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Disease of National Health Commission of the People’s Republic of China, School of Public Health, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta West Road, Xi’an 710061, China; (P.L.); (B.C.); (Y.Y.); (L.L.); (S.C.); (L.Z.); (M.M.); (X.Q.); (C.L.); (X.C.); (J.Y.); (S.S.); (Y.J.); (X.G.)
| |
Collapse
|
3
|
Li X, Han Y, Li G, Zhang Y, Wang J, Feng C. Role of Wnt signaling pathway in joint development and cartilage degeneration. Front Cell Dev Biol 2023; 11:1181619. [PMID: 37363728 PMCID: PMC10285172 DOI: 10.3389/fcell.2023.1181619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent musculoskeletal disease that affects approximately 500 million people worldwide. Unfortunately, there is currently no effective treatment available to stop or delay the degenerative progression of joint disease. Wnt signaling pathways play fundamental roles in the regulation of growth, development, and homeostasis of articular cartilage. This review aims to summarize the role of Wnt pathways in joint development during embryonic stages and in cartilage maintenance throughout adult life. Specifically, we focus on aberrant mechanical loading and inflammation as major players in OA progression. Excessive mechanical load activates Wnt pathway in chondrocytes, resulting in chondrocyte apoptosis, matrix destruction and other osteoarthritis-related changes. Additionally, we discuss emerging Wnt-related modulators and present an overview of emerging treatments of OA targeting Wnt signaling. Ultimately, this review provides valuable insights towards discovering new drugs or gene therapies targeting Wnt signaling pathway for diagnosing and treating osteoarthritis and other degenerative joint diseases.
Collapse
Affiliation(s)
- Xinyan Li
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Han
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guimiao Li
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingze Zhang
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Juan Wang
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chen Feng
- Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Orthopedic Clinical Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Timmermans RGM, Blom AB, Bloks NGC, Nelissen RGHH, van der Linden EHMJ, van der Kraan PM, Meulenbelt I, Ramos YFM, van den Bosch MHJ. CCN4/WISP1 Promotes Migration of Human Primary Osteoarthritic Chondrocytes. Cartilage 2023; 14:67-75. [PMID: 36546648 PMCID: PMC10076902 DOI: 10.1177/19476035221144747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Previously, we have shown the involvement of cellular communication network factor 4/Wnt-activated protein Wnt-1-induced signaling protein 1 (CCN4/WISP1) in osteoarthritic (OA) cartilage and its detrimental effects on cartilage. Here, we investigated characteristics of CCN4 in chondrocyte biology by exploring correlations of CCN4 with genes expressed in human OA cartilage with functional follow-up. DESIGN Spearman correlation analysis was performed for genes correlating with CCN4 using our previously established RNA sequencing dataset of human preserved OA cartilage of the RAAK study, followed by a pathway enrichment analysis for genes with ρ ≥|0.6.| Chondrocyte migration in the absence or presence of CCN4 was determined in a scratch assay, measuring scratch size using a live cell imager for up to 36 h. Changes in expression levels of 12 genes, correlating with CCN4 and involved in migratory processes, were determined with reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS Correlation of CCN4 with ρ ≥|0.6| was found for 58 genes in preserved human OA cartilage. Pathway analysis revealed "neural crest cell migration" as most significant enriched pathway, containing among others CORO1C, SEMA3C, and SMO. Addition of CCN4 to primary chondrocytes significantly enhance chondrocyte migration as demonstrated by reduced scratch size over the course of 36 h, but at the timepoints measured no effect was observed on mRNA expression of the 12 genes. CONCLUSION CCN4 increases cell migration of human primary OA chondrocytes. Since WISP1 expression is known to be increased in OA cartilage, this may serve to direct chondrocytes toward cartilage defects and orchestrate repair.
Collapse
Affiliation(s)
- Ritchie G M Timmermans
- Experimental Rheumatology, Radboud university medical center, Nijmegen, The Netherlands
- Section Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud university medical center, Nijmegen, The Netherlands
| | - Niek G C Bloks
- Section Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | - Rob G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Peter M van der Kraan
- Experimental Rheumatology, Radboud university medical center, Nijmegen, The Netherlands
| | - Ingrid Meulenbelt
- Section Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | - Yolande F M Ramos
- Section Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
5
|
Green LC, Slone S, Anthony SR, Guarnieri AR, Parkins S, Shearer SM, Nieman ML, Roy S, Aube J, Wu X, Xu L, Kanisicak O, Tranter M. HuR-dependent expression of Wisp1 is necessary for TGFβ-induced cardiac myofibroblast activity. J Mol Cell Cardiol 2023; 174:38-46. [PMID: 36372279 PMCID: PMC9868076 DOI: 10.1016/j.yjmcc.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Cardiac fibrosis is regulated by the activation and phenotypic switching of quiescent cardiac fibroblasts to active myofibroblasts, which have extracellular matrix (ECM) remodeling and contractile functions which play a central role in cardiac remodeling in response to injury. Here, we show that expression and activity of the RNA binding protein HuR is increased in cardiac fibroblasts upon transformation to an active myofibroblast. Pharmacological inhibition of HuR significantly blunts the TGFβ-dependent increase in ECM remodeling genes, total collagen secretion, in vitro scratch closure, and collagen gel contraction in isolated primary cardiac fibroblasts, suggesting a suppression of TGFβ-induced myofibroblast activation upon HuR inhibition. We identified twenty-four mRNA transcripts that were enriched for HuR binding following TGFβ treatment via photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP). Eleven of these HuR-bound mRNAs also showed significant co-expression correlation with HuR, αSMA, and periostin in primary fibroblasts isolated from the ischemic-zone of infarcted mouse hearts. Of these, WNT1-inducible signaling pathway protein-1 (Wisp1; Ccn4), was the most significantly associated with HuR expression in fibroblasts. Accordingly, we found Wisp1 expression to be increased in cardiac fibroblasts isolated from the ischemic-zone of mouse hearts following ischemia/reperfusion, and confirmed Wisp1 expression to be HuR-dependent in isolated fibroblasts. Finally, addition of exogenous recombinant Wisp1 partially rescued myofibroblast-induced collagen gel contraction following HuR inhibition, demonstrating that HuR-dependent Wisp1 expression plays a functional role in HuR-dependent MF activity downstream of TGFβ. In conclusion, HuR activity is necessary for the functional activation of primary cardiac fibroblasts in response to TGFβ, in part through post-transcriptional regulation of Wisp1.
Collapse
Affiliation(s)
- Lisa C Green
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America; Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Samuel Slone
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America; Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Sarah R Anthony
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Adrienne R Guarnieri
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Sharon Parkins
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Shannon M Shearer
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America; Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Michelle L Nieman
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Sudeshna Roy
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States of America
| | - Jeffrey Aube
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States of America
| | - Xiaoqing Wu
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Michael Tranter
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America.
| |
Collapse
|
6
|
Cheng J, Li M, Bai R. The Wnt signaling cascade in the pathogenesis of osteoarthritis and related promising treatment strategies. Front Physiol 2022; 13:954454. [PMID: 36117702 PMCID: PMC9479192 DOI: 10.3389/fphys.2022.954454] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease, characterized by the degradation of articular cartilage, synovial inflammation, and changes in periarticular and subchondral bone. Recent studies have reported that Wnt signaling cascades play an important role in the development, growth, and homeostasis of joints. The Wnt signaling cascade should be tightly regulated to maintain the homeostasis of cartilage in either the over-activation or the suppression of Wnt/β-catenin, as this could lead to OA. This review summarizes the role and mechanism of canonical Wnt cascade and noncanonical Wnt cascade experiments in vivo and in vitro. The Wnt cascade is controlled by several agonists and antagonists in the extracellular medium and the cytoplasm. These antagonists and agonists serve as key molecules in drug intervention into the Wnt pathway and may provide potential approaches for the treatment of OA. However, the complexity of the Wnt signaling cascade and the pharmaceutical effects on its mechanism are still not fully understood, which forces us to conduct further research and develop efficient therapeutic approaches to treat OA.
Collapse
Affiliation(s)
- Jinchao Cheng
- Department of Orthopaedics, Xuancheng Central Hospital, Xuancheng, China
| | - Min Li
- Department of Orthopaedics, Xuancheng Central Hospital, Xuancheng, China
| | - Ruijun Bai
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ruijun Bai,
| |
Collapse
|
7
|
Neefjes M, Housmans BAC, van Beuningen HM, Vitters EL, van den Akker GGH, Welting TJM, van Caam APM, van der Kraan PM. Prediction of the Effect of the Osteoarthritic Joint Microenvironment on Cartilage Repair. Tissue Eng Part A 2021; 28:27-37. [PMID: 34039008 DOI: 10.1089/ten.tea.2021.0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Osteoarthritis (OA) is characterized by progressive articular cartilage loss. Human mesenchymal stromal cells (MSCs) can be used for cartilage repair therapies based on their potential to differentiate into chondrocytes. However, the joint microenvironment is a major determinant of the success of MSC-based cartilage formation. Currently, there is no tool that is able to predict the effect of a patient's OA joint microenvironment on MSC-based cartilage formation. Our goal was to develop a molecular tool that can predict this effect before the start of cartilage repair therapies. Six different promoter reporters (hIL6, hIL8, hADAMTS5, hWISP1, hMMP13, and hADAM28) were generated and evaluated in an immortalized human articular chondrocyte for their responsiveness to an osteoarthritic microenvironment by stimulation with OA synovium-conditioned medium (OAs-cm) obtained from 32 different knee OA patients. To study the effect of this OA microenvironment on MSC-based cartilage formation, MSCs were cultured in a three-dimensional pellet culture model, while stimulated with OAs-cm. Cartilage formation was assessed histologically and by quantifying sulfated glycosaminoglycan (sGAG) production. We confirmed that OAs-cm of different patients had significantly different effects on sGAG production. In addition, significant correlations were obtained between the effect of the OAs-cm on cartilage formation and promoter reporter outcome. Furthermore, we validated the predictive value of measuring two promoter reporters with an independent cohort of OAs-cm and the effect of 87.5% of the OAs-cm on MSC-based cartilage formation could be predicted. Together, we developed a novel tool to predict the effect of the OA joint microenvironment on MSC-based cartilage formation. This is an important first step toward personalized cartilage repair strategies for OA patients.
Collapse
Affiliation(s)
- Margot Neefjes
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bas A C Housmans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Henk M van Beuningen
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elly L Vitters
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Guus G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Arjan P M van Caam
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Pivovarova-Ramich O, Loske J, Hornemann S, Markova M, Seebeck N, Rosenthal A, Klauschen F, Castro JP, Buschow R, Grune T, Lange V, Rudovich N, Ouwens DM. Hepatic Wnt1 Inducible Signaling Pathway Protein 1 (WISP-1/CCN4) Associates with Markers of Liver Fibrosis in Severe Obesity. Cells 2021; 10:cells10051048. [PMID: 33946738 PMCID: PMC8146455 DOI: 10.3390/cells10051048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a critical complication of obesity-induced fatty liver disease. Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4), a novel adipokine associated with visceral obesity and insulin resistance, also contributes to lung and kidney fibrosis. The aim of the present study was to investigate the role of CCN4 in liver fibrosis in severe obesity. For this, human liver biopsies were collected from 35 severely obese humans (BMI 42.5 ± 0.7 kg/m2, age 46.7 ± 1.8 y, 25.7% males) during bariatric surgery and examined for the expression of CCN4, fibrosis, and inflammation markers. Hepatic stellate LX-2 cells were treated with human recombinant CCN4 alone or in combination with LPS or transforming growth factor beta (TGF-β) and examined for fibrosis and inflammation markers. CCN4 mRNA expression in the liver positively correlated with BMI and expression of fibrosis markers COL1A1, COL3A1, COL6A1, αSMA, TGFB1, extracellular matrix turnover enzymes TIMP1 and MMP9, and the inflammatory marker ITGAX/CD11c. In LX-2 cells, the exposure to recombinant CCN4 caused dose-dependent induction of MMP9 and MCP1. CCN4 potentiated the TGF-β-mediated induction of COL3A1, TIMP1, and MCP1 but showed no interaction with LPS treatment. Our results suggest a potential contribution of CCN4 to the early pathogenesis of obesity-associated liver fibrosis.
Collapse
Affiliation(s)
- Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- Correspondence:
| | - Jennifer Loske
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
| | - Nicole Seebeck
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | | | - Frederick Klauschen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - José Pedro Castro
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - René Buschow
- Department of Microscopy & Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
| | - Tilman Grune
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- German Center for Cardiovascular Research (DZHK), 13347 Berlin, Germany
| | - Volker Lange
- Centre for Obesity and Metabolic Surgery, Vivantes Hospital, 13509 Berlin, Germany;
- Helios Klinikum Berlin-Buch, 13125 Berlin, Germany
| | - Natalia Rudovich
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Spital Bülach, 8180 Bülach, Switzerland
| | - D. Margriet Ouwens
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- German Diabetes Center, 40225 Duesseldorf, Germany
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
9
|
MacDonald IJ, Huang CC, Liu SC, Lin YY, Tang CH. Targeting CCN Proteins in Rheumatoid Arthritis and Osteoarthritis. Int J Mol Sci 2021; 22:ijms22094340. [PMID: 33919365 PMCID: PMC8122640 DOI: 10.3390/ijms22094340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
The CCN family of matricellular proteins (CYR61/CCN1, CTGF/CCN2, NOV/CCN3 and WISP1-2-3/CCN4-5-6) are essential players in the key pathophysiological processes of angiogenesis, wound healing and inflammation. These proteins are well recognized for their important roles in many cellular processes, including cell proliferation, adhesion, migration and differentiation, as well as the regulation of extracellular matrix differentiation. Substantial evidence implicates four of the proteins (CCN1, CCN2, CCN3 and CCN4) in the inflammatory pathologies of rheumatoid arthritis (RA) and osteoarthritis (OA). A smaller evidence base supports the involvement of CCN5 and CCN6 in the development of these diseases. This review focuses on evidence providing insights into the involvement of the CCN family in RA and OA, as well as the potential of the CCN proteins as therapeutic targets in these diseases.
Collapse
Affiliation(s)
- Iona J. MacDonald
- Graduate Institute of Basic Medical Science, Collage of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (Y.-Y.L.)
| | - Chien-Chung Huang
- School of Medicine, Collage of Medicine, China Medical University, Taichung 406040, Taiwan;
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 65152, Taiwan;
| | - Yen-You Lin
- Graduate Institute of Basic Medical Science, Collage of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (Y.-Y.L.)
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, Collage of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (Y.-Y.L.)
- School of Medicine, Collage of Medicine, China Medical University, Taichung 406040, Taiwan;
- Graduate Institute of Biomedical Sciences, Collage of Medicine, China Medical University, Taichung 406040, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 406040, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 413305, Taiwan
- Correspondence:
| |
Collapse
|
10
|
Volpini X, Ambrosio LF, Brajín MA, Brugo MB, Aoki MP, Rivarola HW, Alfonso F, Fozzatti L, Cervi L, Motran CC. Wnt Signaling Plays a Key Role in the Regulation of the Immune Response and Cardiac Damage during Trypanosoma cruzi Infection. ACS Infect Dis 2021; 7:566-578. [PMID: 33573383 DOI: 10.1021/acsinfecdis.0c00590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chagas cardiomyopathy is the consequence of a compromised electrical and mechanical cardiac function, with parasite persistence, unbalanced inflammation, and pathological tissue remodelling, being intricately related to myocardial aggression and impaired function. Recent studies have shown that Wnt signaling pathways play a critical role in the pathogenesis of cardiac and vascular diseases. In addition, we have reported that Trypanosoma cruzi infection activates Wnt signaling to promote intracellular replication of the parasites in macrophages, with the treatment of mice with IWP-L6 (an inhibitor of the O-acyl-transferase, PORCN, responsible for the post-translational modifications necessary for Wnt protein secretion) being able to diminish parasitemia and tissue parasitism. Here, we show that inhibition of Wnt signaling during the acute phase of T. cruzi infection controls the parasite replication, inhibits the development of parasite-prone and fibrosis-prone Th2-type immune response, and prevents the development of cardiac abnormalities characteristics of chronic Chagas disease. Our results suggest that the Wnt signaling pathway might be a potential target to prevent the development of T. cruzi-induced cardiomyopathy.
Collapse
Affiliation(s)
- Ximena Volpini
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Laura Fernanda Ambrosio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - María Agustina Brajín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - María Belen Brugo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - María Pilar Aoki
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Hector Walter Rivarola
- Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESV Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Bv. De la Reforma y Enfermera Gordillo, Pabellón
de Biología Celular. Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Fernando Alfonso
- Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESV Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Bv. De la Reforma y Enfermera Gordillo, Pabellón
de Biología Celular. Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Claudia Cristina Motran
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y
Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
11
|
Kaur T, John AA, Sharma C, Vashisht NK, Singh D, Kapila R, Kapila S. miR300 intervenes Smad3/β-catenin/RunX2 crosstalk for therapy with an alternate function as indicative biomarker in osteoporosis. Bone 2021; 143:115603. [PMID: 32827850 DOI: 10.1016/j.bone.2020.115603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
Abstract
The study reports a theranostic nature of rno-miR-300 (miR300) in the osteoblast functioning, by influencing the signaling pathway(s), associated with osteoblast differentiation. Excessive expression of miR300 suppresses osteoblast functions. Smad3 served as a validated target for miR300, on homology-based computational analysis and experimental testimony, which activates β-catenin, and subsequently potentiates Runx2. The impact of miR300 on the Smad3/β-catenin/Runx2 signaling interactions in the induction of osteoblast differentiation was scrutinized by immunoblotting and in vivo miRNA antagonism. Overexpression of miR300 in the rat calvarial osteoblasts decreases the protein levels of Smad3, β-catenin and Runx2. Besides, in vivo silencing of miR300 in the neonatal pups and adult rats by AntimiR300 abolishes the suppressing action of miR300 on the osteoblast differentiation and expressions of Smad3/β-catenin/Runx2 axis. MicroCT studies showed improved trabecular microarchitecture in the AntimiR300 transfected ovariectomised rat model compared to sham and negative control. Furthermore, expression levels of miR300 were evaluated in serum samples from an independent set of 30 osteoporotic patients followed by a Receiver Operating Characteristic Curve (ROC) based analysis for the diagnostic efficiency of miR300. Interestingly, the results exhibited high levels of miR300 (p < 0.0001) in the serum samples from osteoporotic patients relative to non-osteoporotic subjects (AUC = 0.9689). Thus, miR300 negatively regulates the differentiation of osteoblasts by targeting crosstalk among Smad3, β-catenin and Runx2, unveiling an enormous ability to serve as a therapeutic target for bone-related disorder management strategies. Besides, miR300 may potentially function for the diagnosis of osteoporosis as a non-invasive biomarker.
Collapse
Affiliation(s)
- Taruneet Kaur
- Animal Biochemistry Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Aijaz A John
- Division of Endocrinology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow 226031, India
| | - Chandresh Sharma
- Multidisciplinary Clinical Translational Research, Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | - N K Vashisht
- Department of Obstetrics and Gynaecology, SMBT Institute of Medical Sciences and Research Centre, Nashik 422403, Maharashtra, India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow 226031, India
| | - Rajeev Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Suman Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal 132001, Haryana, India.
| |
Collapse
|
12
|
An Update to the WISP-1/CCN4 Role in Obesity, Insulin Resistance and Diabetes. ACTA ACUST UNITED AC 2021; 57:medicina57020100. [PMID: 33498604 PMCID: PMC7911315 DOI: 10.3390/medicina57020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 01/22/2023]
Abstract
Insulin resistance refers to the diminished response of peripheral tissues to insulin and is considered the major risk factor for type 2 diabetes. Although many possible mechanisms have been reported to develop insulin resistance, the exact underlying processes remain unclear. In recent years, the role of adipose tissue as a highly active metabolic and endocrine organ, producing proteins called adipokines and their multidirectional activities has gained interest. The physiological effects of adipokines include energy homeostasis and insulin sensitivity regulation. In addition, an excess of adipose tissue is followed by proinflammatory state which results in dysregulation of secreted cytokines contributing to insulin resistance. Wingless-type (Wnt) inducible signalling pathway protein-1 (WISP-1), also known as CCN4, has recently been described as a novel adipokine, whose circulating levels are elevated in obese and insulin resistant individuals. Growing evidence suggests that WISP-1 may participate in the impaired glucose homeostasis. In this review, we characterize WISP-1 and summarize the latest reports on the role of WISP-1 in obesity, insulin resistance and type 2 diabetes.
Collapse
|
13
|
A novel role of LRP5 in tubulointerstitial fibrosis through activating TGF-β/Smad signaling. Signal Transduct Target Ther 2020; 5:45. [PMID: 32345960 PMCID: PMC7188863 DOI: 10.1038/s41392-020-0142-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Previous studies by us and others demonstrated that activation of Wnt/β-catenin signaling plays a pathogenic role in chronic kidney diseases (CKD). Wnt co-receptor LRP5 variants are reported to associate with autosomal dominant polycystic kidney disease; but their exact roles in this disease and renal fibrosis have not been explored. Here, we observed the upregulation of LRP5 in the renal tubules of both type 1 and type 2 diabetic models and of an obstructive nephropathy model. In the obstructed kidneys, Lrp5 knockout significantly ameliorated tubulointerstitial fibrosis and tubular injury without changing Wnt/β-catenin signaling. Instead, decreased levels of TGF-β1 and TGF-β receptors (TβRs) were detected in Lrp5 knockout kidneys, followed by attenuated activation and nuclear translocation of Smad2/3 in the renal tubules, suggesting a regulatory effect of LRP5 on TGF-β/Smad signaling. In consistent with this hypothesis, LRP5 overexpression resulted in enhanced TGF-β/Smad signaling activation in renal tubule epithelial cells. Furthermore, LRP5 was co-immunoprecipitated with TβRI and TβRII, and its extracellular domain was essential for interacting with TβRs and for its pro-fibrotic activity. In addition to stabilizing TβRs, LRP5 increased the basal membrane presentation and TGF-β1-induced internalization of these receptors. Notably, TGF-β1 also induced LRP5 internalization. These findings indicate that LRP5 promotes tubulointerstitial fibrosis, at least partially, via direct modulation of TGF-β/Smad signaling, a novel, Wnt-independent function.
Collapse
|
14
|
Zhou X, Cao H, Yuan Y, Wu W. Biochemical Signals Mediate the Crosstalk between Cartilage and Bone in Osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5720360. [PMID: 32337258 PMCID: PMC7165323 DOI: 10.1155/2020/5720360] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/30/2019] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Osteochondral junction is a functional unit comprising the articular cartilage, calcified cartilage, and subchondral bone. Alteration in any component of this composite unit can disrupt the joint integrity and function directly or indirectly. Biochemical signals mediate the crosstalk between tissues and play an essential role in the initiation and progression of osteoarthritis. As osteoarthritis progresses, abnormal subchondral bone remodelling leads to increased angiogenesis and porosity of the subchondral bone plate, which further triggers biochemical signals to mediate the crosstalk between cartilage and bone, contributing to the progression of osteoarthritis. Notably, common biochemical signals include the TGF-β/Smad, Wnt/β-catenin, RANK/RANKL/OPG, and MAPK pathways. This biomarker crosstalk network is the basis of osteoarthritis pathogenesis, and some of their key regulators may be potential therapeutic targets for osteoarthritis drug therapy. This review summarised the biochemical crosstalk between cartilage and bone in the pathogenesis of osteoarthritis, which may provide the basis for the discovery of osteoarthritis treatment targets.
Collapse
Affiliation(s)
- Xuchang Zhou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yu Yuan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Wei Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
15
|
Thümmler K, Rom E, Zeis T, Lindner M, Brunner S, Cole JJ, Arseni D, Mücklisch S, Edgar JM, Schaeren-Wiemers N, Yayon A, Linington C. Polarizing receptor activation dissociates fibroblast growth factor 2 mediated inhibition of myelination from its neuroprotective potential. Acta Neuropathol Commun 2019; 7:212. [PMID: 31856924 PMCID: PMC6923900 DOI: 10.1186/s40478-019-0864-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling contributes to failure of remyelination in multiple sclerosis, but targeting this therapeutically is complicated by its functional pleiotropy. We now identify FGF2 as a factor up-regulated by astrocytes in active inflammatory lesions that disrupts myelination via FGF receptor 2 (FGFR2) mediated activation of Wingless (Wnt) signaling; pharmacological inhibition of Wnt being sufficient to abrogate inhibition of myelination by FGF2 in tissue culture. Using a novel FGFR1-selective agonist (F2 V2) generated by deleting the N-terminal 26 amino acids of FGF2 we demonstrate polarizing signal transduction to favor FGFR1 abrogates FGF mediated inhibition of myelination but retains its ability to induce expression of pro-myelinating and immunomodulatory factors that include Cd93, Lif, Il11, Hbegf, Cxcl1 and Timp1. Our data provide new insights into the mechanistic basis of remyelination failure in MS and identify selective activation of FGFR1 as a novel strategy to induce a neuroprotective signaling environment in multiple sclerosis and other neurological diseases.
Collapse
|
16
|
Cosin-Roger J, Ortiz-Masià MD, Barrachina MD. Macrophages as an Emerging Source of Wnt Ligands: Relevance in Mucosal Integrity. Front Immunol 2019; 10:2297. [PMID: 31608072 PMCID: PMC6769121 DOI: 10.3389/fimmu.2019.02297] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The Wnt signaling pathway is a conserved pathway involved in important cellular processes such as the control of embryonic development, cellular polarity, cellular migration, and cell proliferation. In addition to playing a central role during embryogenesis, this pathway is also an essential part of adult homeostasis. Indeed, it controls the proliferation of epithelial cells in different organs such as intestine, lung, and kidney, and guarantees the maintenance of the mucosa in physiological conditions. The origin of this molecular pathway is the binding between Wnt ligands (belonging to a family of 19 different homologous secreted glycoproteins) and their specific membrane receptors, from the Frizzled receptor family. This specific interaction triggers the activation of the signaling cascade, which in turn activates or suppresses the expression of different genes in order to change the behavior of the cell. On the other hand, alterations of this pathway have been described in pathological conditions such as inflammation, fibrosis, and cancer. In recent years, macrophages-among other cell types-have emerged as a potential source of Wnt ligands. Due to their high plasticity, macrophages, which are central to the innate immune response, are capable of adopting different phenotypes depending on their microenvironment. In the past, two different phenotypes were described: a proinflammatory phenotype-M1 macrophages-and an anti-inflammatory phenotype-M2 macrophages-and a selective expression of Wnt ligands has been associated with said phenotypes. However, nowadays it is assumed that macrophages in vivo move through a continual spectrum of functional phenotypes. In both physiological and pathological (inflammation, fibrosis and cancer) conditions, the accumulation and polarization of macrophages conditions the future of the tissue, facilitating various scenarios, such as resolution of inflammation, activation of fibrosis, and cancer development due to the modulation of the Wnt signaling pathway, in autocrine and paracrine manner. In this work, we provide an overview of studies that have explored the role of macrophages and how they act as a source of Wnt ligands and as mediators of mucosal integrity.
Collapse
Affiliation(s)
| | - Mª Dolores Ortiz-Masià
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Mª Dolores Barrachina
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
17
|
Kovács B, Vajda E, Nagy EE. Regulatory Effects and Interactions of the Wnt and OPG-RANKL-RANK Signaling at the Bone-Cartilage Interface in Osteoarthritis. Int J Mol Sci 2019; 20:ijms20184653. [PMID: 31546898 PMCID: PMC6769977 DOI: 10.3390/ijms20184653] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Cartilage and the bordering subchondral bone form a functionally active regulatory interface with a prominent role in osteoarthritis pathways. The Wnt and the OPG-RANKL-RANK signaling systems, as key mediators, interact in subchondral bone remodeling. Osteoarthritic osteoblasts polarize into two distinct phenotypes: a low secretory and an activated, pro-inflammatory and anti-resorptive subclass producing high quantities of IL-6, PGE2, and osteoprotegerin, but low levels of RANKL, thus acting as putative effectors of subchondral bone sclerosis. Wnt agonists, Wnt5a, Wisp-1 initiate excessive bone remodeling, while Wnt3a and 5a simultaneously cause loss of proteoglycans and phenotype shift in chondrocytes, with decreased expression of COL2A, aggrecan, and Sox-9. Sclerostin, a Wnt antagonist possesses a protective effect for the cartilage, while DKK-1 inhibits VEGF, suspending neoangiogenesis in the subchondral bone. Experimental conditions mimicking abnormal mechanical load, the pro-inflammatory milieu, but also a decreased OPG/RANKL ratio in the cartilage, trigger chondrocyte apoptosis and loss of the matrix via degradative matrix metalloproteinases, like MMP-13 or MMP-9. Hypoxia, an important cofactor exerts a dual role, promoting matrix synthesis via HIF-1α, a Wnt silencer, but turning on HIF-2α that enhances VEGF and MMP-13, along with aberrant collagen expression and extracellular matrix deterioration in the presence of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Béla Kovács
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| | - Enikő Vajda
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| |
Collapse
|
18
|
Gaudreau PO, Clairefond S, Class CA, Boulay PL, Chrobak P, Allard B, Azzi F, Pommey S, Do KA, Saad F, Trudel D, Young M, Stagg J. WISP1 is associated to advanced disease, EMT and an inflamed tumor microenvironment in multiple solid tumors. Oncoimmunology 2019; 8:e1581545. [PMID: 31069142 PMCID: PMC6492985 DOI: 10.1080/2162402x.2019.1581545] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 02/08/2023] Open
Abstract
Background: WNT1-Inducible Signaling Pathway Protein 1 (WISP1) is implicated in prostate cancer growth and metastasis and the regulation of inflammation in diverse benign diseases. The objectives of this study were to assess the prognostic value of WISP1, its association to inflammation and its relevance as a biomarker for immune checkpoint blockade (ICB) response. Methods: Publicly available RNA-seq datasets were used to evaluate the prognostic value of WISP1 gene expression and its association with tumor-infiltrating lymphocytes, inflamed tumor microenvironment, and anti-PD-1 ICB response. A tissue microarray (TMA) including 285 radical prostatectomy specimens was used to confirm these associations in prostate cancer. The effect of recombinant WISP1 (rWISP1) on inflammatory cytokines was assessed in vitro. Results: High levels of WISP1 correlated with BCR-free survival in prostate adenocarcinoma and overall survival in primary melanoma, low-grade glioma, and kidney papillary cell carcinoma. Some effects could be accounted for by higher WISP1 expression in advanced disease. High WISP1 expression in prostate adenocarcinoma was correlated with CD8+ cells density. In vitro, rWISP1 increased inflammatory cytokine production. High WISP1 gene expression in RNA-seq datasets was correlated with gene signatures of multiple immune cell types as well as an inflammatory cytokine, immune checkpoint, and epithelial-mesenchymal transition (EMT) gene expression. WISP1 mRNA expression was associated with primary resistance to ICB in datasets showing EMT. Conclusions: Our results support an association between WISP1 expression and advanced disease, EMT and an inflamed tumor microenvironment in multiple solid tumors. The consequences of WISP1 expression on cancer immunotherapy remains to be addressed.
Collapse
Affiliation(s)
- Pierre-Olivier Gaudreau
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sylvie Clairefond
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Caleb A Class
- T. Boone Pickens Academic Tower, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pierre-Luc Boulay
- Département de pharmacologie et de physiologie, Université de Montréal, Montreal, QC, Canada
| | - Pavel Chrobak
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Bertrand Allard
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Feryel Azzi
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Sandra Pommey
- Axe Cancer, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Kim-Anh Do
- T. Boone Pickens Academic Tower, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fred Saad
- Département d'Urologie du Centre Hospitalier Universitaire de Montréal (CHUM) et Institut du Cancer de Montréal / CRCHUM, Montreal, QC, Canada
| | - Dominique Trudel
- Centre Hospitalier de l'Université de Montréal (Département de pathologie), Département de pathologie et axe cancer, Université de Montréal (Département de pathologie et de biologie cellulaire) et Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Marian Young
- NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - John Stagg
- Faculté de Pharmacie, Université de Montréal et Institut du Cancer de Montréal / CRCHUM, Axe Cancer, Montreal, QC, Canada
| |
Collapse
|
19
|
Luttrell LM, Dar MS, Gesty-Palmer D, El-Shewy HM, Robinson KM, Haycraft CJ, Barth JL. Transcriptomic characterization of signaling pathways associated with osteoblastic differentiation of MC-3T3E1 cells. PLoS One 2019; 14:e0204197. [PMID: 30608923 PMCID: PMC6319725 DOI: 10.1371/journal.pone.0204197] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/16/2018] [Indexed: 12/21/2022] Open
Abstract
Bone remodeling involves the coordinated actions of osteoclasts, which resorb the calcified bony matrix, and osteoblasts, which refill erosion pits created by osteoclasts to restore skeletal integrity and adapt to changes in mechanical load. Osteoblasts are derived from pluripotent mesenchymal stem cell precursors, which undergo differentiation under the influence of a host of local and environmental cues. To characterize the autocrine/paracrine signaling networks associated with osteoblast maturation and function, we performed gene network analysis using complementary “agnostic” DNA microarray and “targeted” NanoString nCounter datasets derived from murine MC3T3-E1 cells induced to undergo synchronized osteoblastic differentiation in vitro. Pairwise datasets representing changes in gene expression associated with growth arrest (day 2 to 5 in culture), differentiation (day 5 to 10 in culture), and osteoblast maturation (day 10 to 28 in culture) were analyzed using Ingenuity Systems Pathways Analysis to generate predictions about signaling pathway activity based on the temporal sequence of changes in target gene expression. Our data indicate that some pathways involved in osteoblast differentiation, e.g. Wnt/β-catenin signaling, are most active early in the process, while others, e.g. TGFβ/BMP, cytokine/JAK-STAT and TNFα/RANKL signaling, increase in activity as differentiation progresses. Collectively, these pathways contribute to the sequential expression of genes involved in the synthesis and mineralization of extracellular matrix. These results provide insight into the temporal coordination and complex interplay between signaling networks controlling gene expression during osteoblast differentiation. A more complete understanding of these processes may aid the discovery of novel methods to promote osteoblast development for the treatment of conditions characterized by low bone mineral density.
Collapse
Affiliation(s)
- Louis M. Luttrell
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- * E-mail:
| | - Moahad S. Dar
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Diane Gesty-Palmer
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Hesham M. El-Shewy
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Katherine M. Robinson
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Courtney J. Haycraft
- Department of Biology, Mississippi College, Clinton, Mississippi, United States of America
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
20
|
The Role of Wnt Pathway in the Pathogenesis of OA and Its Potential Therapeutic Implications in the Field of Regenerative Medicine. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7402947. [PMID: 30410938 PMCID: PMC6205317 DOI: 10.1155/2018/7402947] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/25/2018] [Indexed: 01/20/2023]
Abstract
Introduction Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation, subchondral damage, and bone remodelling, affecting most commonly weight-bearing joints, such as the knee and hip. The loss of cartilage leads to joint space narrowing, pain, and loss of function which could ultimately require total joint replacement. The Wnt/β catenin pathway is involved in the pathophysiology of OA and has been proposed as a therapeutic target. Endogenous and pharmacological inhibitors of this pathway were recently investigated within innovative therapies including the use of platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs). Methods A review of the literature was performed on the PubMed database based on the following inclusion criteria: article written in English language in the last 20 years and dealing with (1) the role of Wnt-β catenin pathway in the pathogenesis of osteoarthritis and (2) pharmacologic or biologic strategies modulating the Wnt-β catenin pathway in the OA setting. Results Evidences support that Wnt signalling pathway is likely linked to OA progression and severity. Its inhibition through natural antagonists and new synthetic or biological drugs shares the potential to improve the clinical condition of the patients by affecting the pathological activity of Wnt/β-catenin signalling. Conclusions While further research is needed to better understand the mechanisms regulating the molecular interaction between OA regenerative therapies and Wnt, it seems that biologic therapies for OA exert modulation on Wnt/β catenin pathway that might be relevant in achieving the beneficial clinical effect of those therapeutic strategies.
Collapse
|
21
|
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70:68-141. [PMID: 29247129 PMCID: PMC6040091 DOI: 10.1124/pr.117.013896] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels. The high prevalence of these pathologies and their significant contribution to human disease burden has raised interest in WNT signaling as a potential target for therapeutic intervention. In this review, we first will focus on the constituents of the pathway and their regulation and the different signaling routes. Subsequently, the role of WNT signaling in cardiovascular development is addressed, followed by a detailed discussion of its involvement in vascular and cardiac disease. After highlighting the crosstalk between WNT, transforming growth factor-β and angiotensin II signaling, and the emerging role of WNT signaling in the regulation of stem cells, we provide an overview of drugs targeting the pathway at different levels. From the combined studies we conclude that, despite the sometimes conflicting experimental data, a general picture is emerging that excessive stimulation of WNT signaling adversely affects cardiovascular pathology. The rapidly increasing collection of drugs interfering at different levels of WNT signaling will allow the evaluation of therapeutic interventions in the pathway in relevant animal models of cardiovascular diseases and eventually in patients in the near future, translating the outcomes of the many preclinical studies into a clinically relevant context.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Gentian Lluri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Arjun Deb
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| |
Collapse
|
22
|
Weber A, Chan PMB, Wen C. Do immune cells lead the way in subchondral bone disturbance in osteoarthritis? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 148:21-31. [PMID: 29277342 DOI: 10.1016/j.pbiomolbio.2017.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023]
Abstract
Osteoarthritis (OA) is a whole-joint disorder, and non-cartilage articular pathologies, e.g. subchondral bone disturbance, contribute substantially to the onset and progression of the disease. In the early stage of OA, abnormal mechanical loading leads to micro-cracks or micro-fractures that trigger a reparative process with angiogenesis and inflammatory response. With the progression of disease, cystic lesion, sclerosis and osteophytosis occur at tissue level, and osteoblast dysfunction at cellular level. Osteoblasts derived from OA sclerotic bone produce increased amount of type I collagen with aberrant Col1A1/A2 ratio and poor mineralization capability. The coupling mechanism of bone resorption with formation is also impaired with elevated osteoclastic activities. All these suggest a view that OA subchondral bone presents a defective fracture repair process in a chronic course. It has been found that T and B cells, the major effectors in the adaptive immunity, take part in the hard callus formation at fracture site in addition to the initial phase of haematoma and inflammation. Infiltration of lymphocytes could interplay with osteoclasts and osteoblasts via a direct physical cell-to-cell contact. Several lines of evidence have consistently shown the involvement of T and B cells in osteoclastogenesis and bone erosion in arthritic joints. Yet the biological link between immune cells and osteoblastic function remains ambiguous. This review will discuss the current knowledge regarding the role of immune cells in bone remodelling, and address its implications in emerging basic and clinical investigations into the pathogenesis and management of subchondral bone pathologies in OA.
Collapse
Affiliation(s)
- Adrian Weber
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Pok Man Boris Chan
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
23
|
Mobasheri A, Rayman MP, Gualillo O, Sellam J, van der Kraan P, Fearon U. The role of metabolism in the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2017; 13:302-311. [PMID: 28381830 DOI: 10.1038/nrrheum.2017.50] [Citation(s) in RCA: 467] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metabolism is important for cartilage and synovial joint function. Under adverse microenvironmental conditions, mammalian cells undergo a switch in cell metabolism from a resting regulatory state to a highly metabolically activate state to maintain energy homeostasis. This phenomenon also leads to an increase in metabolic intermediates for the biosynthesis of inflammatory and degradative proteins, which in turn activate key transcription factors and inflammatory signalling pathways involved in catabolic processes, and the persistent perpetuation of drivers of pathogenesis. In the past few years, several studies have demonstrated that metabolism has a key role in inflammatory joint diseases. In particular, metabolism is drastically altered in osteoarthritis (OA) and aberrant immunometabolism may be a key feature of many phenotypes of OA. This Review focuses on aberrant metabolism in the pathogenesis of OA, summarizing the current state of knowledge on the role of impaired metabolism in the cells of the osteoarthritic joint. We also highlight areas for future research, such as the potential to target metabolic pathways and mediators therapeutically.
Collapse
Affiliation(s)
- Ali Mobasheri
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences University of Surrey, Guildford GU2 7AL, UK.,Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis and MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Margaret P Rayman
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesia da Choupana S/N, Santiago de Compostela 15706, Spain
| | - Jérémie Sellam
- Department of Rheumatology, Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (APHP), 184 Rue de Faubourg Saint-Antoine, 75012 Paris, France.,Inflammation-Immunopathology-Biotherapy Department (DHU i2B), INSERM, UMR S938, Sorbonne University, University of Paris 6, 75005 Paris, France
| | - Peter van der Kraan
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 26-28, 6500 HB Nijmegen, Netherlands
| | - Ursula Fearon
- Department of Molecular Rheumatology, Trinity College Dublin, University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
24
|
Meulenbelt IM, Bhutani N, den Hollander W, Gay S, Oppermann U, Reynard LN, Skelton AJ, Young DA, Beier F, Loughlin J. The first international workshop on the epigenetics of osteoarthritis. Connect Tissue Res 2017; 58:37-48. [PMID: 27028588 DOI: 10.3109/03008207.2016.1168409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteoarthritis (OA) is a major clinical problem across the world, in part due to the lack of disease-modifying drugs resulting, to a significant degree, from our incomplete understanding of the underlying molecular mechanisms of the disease. Emerging evidence points to a role of epigenetics in the pathogenesis of OA, but research in this area is still in its early stages. In order to summarize current knowledge and to facilitate the potential coordination of future research activities, the first international workshop on the epigenetics of OA was held in Amsterdam in October 2015. Recent findings on DNA methylation and hydroxymethylation, histone modifications, noncoding RNAs, and other epigenetic mechanisms were presented and discussed. The workshop demonstrated the advantage of bringing together those working in this nascent field and highlights from the event are summarized in this report in the form of summaries from invited speakers and organizers.
Collapse
Affiliation(s)
- Ingrid M Meulenbelt
- a Department of Medical Statistics and Bioinformatics, Section of Molecular Epidemiology , Leiden University Medical Center , Leiden , The Netherlands
| | - Nidhi Bhutani
- b Department of Orthopaedic Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Wouter den Hollander
- a Department of Medical Statistics and Bioinformatics, Section of Molecular Epidemiology , Leiden University Medical Center , Leiden , The Netherlands
| | - Steffen Gay
- c Department of Rheumatology , Center of Experimental Rheumatology, University Hospital Zurich , Zurich , Switzerland
| | - Udo Oppermann
- d Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics , Rheumatology and Musculoskeletal Sciences, University of Oxford , Oxford , UK.,e Structural Genomics Consortium , University of Oxford , Oxford , UK
| | - Louise N Reynard
- f Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University , Newcastle-upon-Tyne , UK
| | - Andrew J Skelton
- f Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University , Newcastle-upon-Tyne , UK.,g Faculty of Medical Sciences, Bioinformatics Support Unit , Newcastle University , Newcastle-upon-Tyne , UK
| | - David A Young
- f Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University , Newcastle-upon-Tyne , UK
| | - Frank Beier
- h Department of Physiology and Pharmacology , Schulich School of Medicine and Dentistry, University of Western Ontario , London , ON , Canada
| | - John Loughlin
- f Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University , Newcastle-upon-Tyne , UK
| |
Collapse
|