1
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
2
|
Satyamitra MM, DiCarlo AL, Hollingsworth BA, Winters TA, Taliaferro LP. Development of Biomarkers for Radiation Biodosimetry and Medical Countermeasures Research: Current Status, Utility, and Regulatory Pathways. Radiat Res 2021; 197:514-532. [PMID: 34879151 DOI: 10.1667/rade-21-00157.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/03/2022]
Abstract
Biomarkers are important indicators of biological processes in health or disease. For this reason, they play a critical role in advanced development of radiation biodosimetry tools and medical countermeasures (MCMs). They can aid in the assessment of radiation exposure level, extent of radiation-induced injury, and/or efficacy of an MCM. This meeting report summarizes the presentations and discussions from the 2020 workshop titled, "Biomarkers in Radiation Biodosimetry and Medical Countermeasures," sponsored by the Radiation and Nuclear Countermeasures Program (RNCP) at the National Institute of Allergy and Infectious Diseases (NIAID). The main goals of this meeting were to: 1. Provide an overview on biomarkers and to focus on the state of science with regards to biomarkers specific to radiation biodosimetry and MCMs; 2. Understand developmental challenges unique to the role of biomarkers in the fields of radiation biodosimetry and MCM development; and 3. Identify existing gaps and needs for translational application.
Collapse
Affiliation(s)
- Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Brynn A Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
3
|
Giovanetti A, Marconi R, Awad N, Abuzied H, Agamy N, Barakat M, Bartoleschi C, Bossi G, Canfora M, Elsaid AA, Ioannilli L, Ismail HM, Issa YA, Novelli F, Pardini MC, Pioli C, Pinnarò P, Sanguineti G, Tahoun MM, Turchi R, Strigari L. Validation of a biomarker tool capable of measuring the absorbed dose soon after exposure to ionizing radiation. Sci Rep 2021; 11:8118. [PMID: 33854097 PMCID: PMC8047015 DOI: 10.1038/s41598-021-87173-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 03/19/2021] [Indexed: 01/17/2023] Open
Abstract
A radiological or nuclear attack could involve such a large number of subjects as to overwhelm the emergency facilities in charge. Resources should therefore be focused on those subjects needing immediate medical attention and care. In such a scenario, for the triage management by first responders, it is necessary to count on efficient biological dosimetry tools capable of early detection of the absorbed dose. At present the validated assays for measuring the absorbed dose are dicentric chromosomes and micronuclei counts, which require more than 2–3 days to obtain results. To overcome this limitation the NATO SPS Programme funded an Italian–Egyptian collaborative project aimed at validating a fast, accurate and feasible tool for assessing the absorbed dose early after radiation exposure. Biomarkers as complete blood cell counts, DNA breaks and radio-inducible proteins were investigated on blood samples collected before and 3 h after the first fraction of radiotherapy in patients treated in specific target areas with doses/fraction of about: 2, 3.5 or > 5 Gy and compared with the reference micronuclei count. Based on univariate and multivariate multiple linear regression correlation, our results identify five early biomarkers potentially useful for detecting the extent of the absorbed dose 3 h after the exposure.
Collapse
Affiliation(s)
- Anna Giovanetti
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123, Rome, Italy.
| | - Raffaella Marconi
- Scientific Direction, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149, Rome, Italy
| | - Noha Awad
- Epidemiology Department, High Institute of Public Health, Alexandria University, Alexandria, 21561, Egypt
| | - Hala Abuzied
- Alexandria University Cancer Research Cluster, Alexandria, 21561, Egypt
| | - Neveen Agamy
- Nutrition Department, High Institute of Public Health, Alexandria University, Alexandria, 21561, Egypt
| | - Mohamed Barakat
- Alexandria University Cancer Research Cluster, Alexandria, 21561, Egypt
| | - Cecilia Bartoleschi
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123, Rome, Italy
| | - Gianluca Bossi
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Marco Canfora
- Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Amr A Elsaid
- Oncology Department, Faculty of Medicine, Alexandria University, Alexandria, 21561, Egypt
| | - Laura Ioannilli
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Horeya M Ismail
- Alexandria University Cancer Research Cluster, Alexandria, 21561, Egypt
| | - Yasmine Amr Issa
- Medical Biochemistry Department, Faculty of Medicine, University of Alexandria, Alexandria, 21561, Egypt
| | - Flavia Novelli
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123, Rome, Italy
| | - Maria Chiara Pardini
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123, Rome, Italy
| | - Claudio Pioli
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123, Rome, Italy
| | - Paola Pinnarò
- Departments of Radiation Oncology, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Giuseppe Sanguineti
- Departments of Radiation Oncology, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Mohamed M Tahoun
- Epidemiology Department, High Institute of Public Health, Alexandria University, Alexandria, 21561, Egypt
| | - Riccardo Turchi
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Lidia Strigari
- IRCCS Azienda Ospedaliera Universitaria di Bologna, 40138, Bologna, Italy
| |
Collapse
|