1
|
Das D, Teixeira ES, Morales JA. Recurrent Neural Network/Machine Learning Predictions of Reactive Channels in H + + C 2H 4 at E Lab = 30 eV: A Prototype of Ion Cancer Therapy Reactions. J Comput Chem 2025; 46:e70033. [PMID: 39936181 DOI: 10.1002/jcc.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 02/13/2025]
Abstract
We present a simplest-level electron nuclear dynamics/machine learning (SLEND/ML) approach to predict chemical properties in ion cancer therapy (ICT) reactions. SLEND is a time-dependent, variational, on-the-fly, and nonadiabatic method. In SLEND, nuclear and electronic parameters determine reactants-to-products trajectories in a quantum phase space; this establishes a mapping between reactants' initial conditions and products' properties. To accelerate simulations, SLEND/ML utilizes a modicum of SLEND trajectories to train ML methods on the aforesaid mapping and employs them to predict chemical properties. We employ SLEND/ML to predict reaction types and products' charges in H+ + C2H4 at ELab = 30 eV, a prototype of ICT reactions involving double-bonded compounds. For reaction predictions, a recurrent neural network (RNN) and k-nearest neighbor method are the best models with 98.23% and 95.13% accuracy. RNN correctly predicts frequent and infrequent reaction types and generalizes over data sets. For charge predictions, the RNN exhibits low mean absolute errors of 0.02-0.07.
Collapse
Affiliation(s)
- Debojyoti Das
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Jorge A Morales
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
2
|
Kong W, Huiskes M, Habraken SJM, Astreinidou E, Rasch CRN, Heijmen BJM, Breedveld S. Reducing the lateral dose penumbra in IMPT by incorporating transmission pencil beams. Radiother Oncol 2024; 198:110388. [PMID: 38897315 DOI: 10.1016/j.radonc.2024.110388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE In intensity-modulated proton therapy (IMPT), Bragg peaks result in steep distal dose fall-offs, while the lateral IMPT dose fall-off is often less steep than in photon therapy. High-energy pristine transmission ('shoot through') pencil beams have no Bragg peak in the patient, but show a sharp lateral penumbra at the target level. We investigated whether combining Bragg peaks with Transmission pencil beams ('IMPT&TPB') could improve head-and-neck plans by exploiting the steep lateral dose fall-off of transmission pencil beams. APPROACH Our system for automated multi-criteria IMPT plan optimisation was extended for combined optimisation of BPs and TPBs. The system generates for each patient a Pareto-optimal plan using a generic 'wish-list' with prioritised planning objectives and hard constraints. For eight nasopharynx cancer patients (NPC) and eight oropharynx cancer (OPC) patients, the IMPT&TPB plan was compared to the competing conventional IMPT plan with only Bragg peaks, which was generated with the same optimiser, but without transmission pencil beams. MAIN RESULTS Clinical OAR and target constraints were met in all plans. By allowing transmission pencil beams in the optimisation, on average 14 of the 25 investigated OAR plan parameters significantly improved for NPC, and 9 of the 17 for OPC, while only one OPC parameter showed small but significant deterioration. Non-significant differences were found in the remaining parameters. In NPC, cochlea Dmean reduced by up to 17.5 Gy and optic nerve D2% by up to 11.1 Gy. CONCLUSION Compared to IMPT, IMPT&TPB resulted in comparable target coverage with overall superior OAR sparing, the latter originating from steeper dose fall-offs close to OARs.
Collapse
Affiliation(s)
- W Kong
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - M Huiskes
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - S J M Habraken
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands; HollandPTC, Delft, the Netherlands
| | - E Astreinidou
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - C R N Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands; HollandPTC, Delft, the Netherlands
| | - B J M Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Dietrich KA, Klüter S, Dinkel F, Echner G, Brons S, Orzada S, Debus J, Ladd ME, Platt T. An essentially radiation-transparent body coil integrated with a patient rotation system for MR-guided particle therapy. Med Phys 2024; 51:4028-4043. [PMID: 38656549 DOI: 10.1002/mp.17065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/28/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND The pursuit of adaptive radiotherapy using MR imaging for better precision in patient positioning puts stringent demands on the hardware components of the MR scanner. Particularly in particle therapy, the dose distribution and thus the efficacy of the treatment is susceptible to beam attenuation from interfering materials in the irradiation path. This severely limits the usefulness of conventional imaging coils, which contain highly attenuating parts such as capacitors and preamplifiers in an unknown position, and requires development of a dedicated radiofrequency (RF) coil with close consideration of the materials and components used. PURPOSE In MR-guided radiation therapy in the human torso, imaging coils with a large FOV and homogeneous B1 field distribution are required for reliable tissue classification. In this work, an imaging coil for MR-guided particle therapy was developed with minimal ion attenuation while maintaining flexibility in treatment. METHODS A birdcage coil consisting of nearly radiation-transparent materials was designed and constructed for a closed-bore 1.5 T MR system. Additionally, the coil was mounted on a rotatable patient capsule for flexible positioning of the patient relative to the beam. The ion attenuation of the RF coil was investigated in theory and via measurements of the Bragg peak position. To characterize the imaging quality of the RF coil, transmit and receive field distributions were simulated and measured inside a homogeneous tissue-simulating phantom for various rotation angles of the patient capsule ranging from 0° to 345° in steps of 15°. Furthermore, simulations with a heterogeneous human voxel model were performed to better estimate the effect of real patient loading, and the RF coil was compared to the internal body coil in terms of SNR for a full rotation of the patient capsule. RESULTS The RF coil (total water equivalent thickness (WET) ≈ 420 µm, WET of conductor ≈ 210 µm) can be considered to be radiation-transparent, and a measured transmit power efficiency (B1 +/P $\sqrt {\mathrm{P}} $ ) between 0.17 µT/W $\sqrt {\mathrm{W}} $ and 0.26 µT/W $\sqrt {\mathrm{W}} $ could be achieved in a volume (Δz = 216 mm, complete x and y range) for the 24 investigated rotation angles of the patient capsule. Furthermore, homogeneous transmit and receive field distributions were measured and simulated in the transverse, coronal and sagittal planes in a homogeneous phantom and a human voxel model. In addition, the SNR of the radiation-transparent RF coil varied between 103 and 150, in the volume (Δz = 216 mm) of a homogeneous phantom and surpasses the SNR of the internal body coil for all rotation angles of the patient capsule. CONCLUSIONS A radiation-transparent RF coil was developed and built that enables flexible patient to beam positioning via full rotation capability of the RF coil and patient relative to the beam, with results providing promising potential for adaptive MR-guided particle therapy.
Collapse
Affiliation(s)
- Kilian A Dietrich
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Fabian Dinkel
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gernot Echner
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Orzada
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Physics, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Tanja Platt
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Wang K, Yuan S. Current status and prospect of particle therapy for esophageal cancer. PRECISION RADIATION ONCOLOGY 2024; 8:92-98. [PMID: 40336644 PMCID: PMC11935211 DOI: 10.1002/pro6.1232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 05/09/2025] Open
Abstract
Esophageal cancer is among the top causes of cancer-related mortality worldwide, and the main treatment modality for locally advanced esophageal cancer is concurrent chemoradiotherapy. The current photon-based radiotherapy modalities and procedures have increased the incidence of treatment-related cardiac and pulmonary complications. Additionally, anatomical changes in the esophagus resulting from diaphragmatic movement, weight loss, and tumor progression present challenges for radiotherapy. These challenges have spurred interest in particle therapies, such as proton beam therapy (PBT) and heavy-ion therapy, for esophageal cancer. This paper comprehensively reviews the dosimetric advantages, clinical efficacy, and limitations of PBT and heavy-ion therapy for esophageal cancer and discusses their prospects. This highlights the unique dosimetric benefits of these therapies, particularly their ability to deliver high-dose radiation precisely to the tumor while sparing the surrounding normal organs and tissues. Although PBT and heavy-ion therapy demonstrate superior clinical efficacy compared to photon therapy, they are not without limitations. Multiple studies are needed to further validate and supplement the existing clinical and preclinical data to better exploit the benefits of PBT and thereby provide improved survival advantages to these patients.
Collapse
Affiliation(s)
- Kang Wang
- Department of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Shuanghu Yuan
- Department of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Department of Radiation OncologyFirst Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
5
|
Kim H, Morales JA. Testing standard basis sets for direct ionizations: H + + H at E Lab = 0.1-100 keV. J Comput Chem 2024; 45:671-682. [PMID: 38095321 PMCID: PMC10922339 DOI: 10.1002/jcc.27272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 03/02/2024]
Abstract
With the simplest-level electron nuclear dynamics (SLEND) method, we test standard Slater-type-orbital/contracted-Gaussian-functions (STO/CGFs) basis sets for the simulation of direct ionizations (DIs), charge transfers (CTs), and target excitations (TEs) in H+ + H at ELab = 0.1-100 keV. SLEND is a time-dependent, variational, on-the-fly, and nonadiabatic method that treats nuclei and electrons with classical dynamics and a Thouless single-determinantal state, respectively. While previous tests for CTs and TEs exist, this is the first SLEND/STO/CGFs test for challenging DIs. Spin-orbitals with negative/positive energies are treated as bound/unbound states for bound-to-bound (CT and TE) and bound-to-unbound (DI) transitions. SLEND/STO/CGFs simulations correctly reproduce all the features of DIs, CTs and TEs over all the considered impact parameters and energies. SLEND/STO/CGFs simulations correctly predict CT integrals cross-sections (ICSs) over all the considered energies and predict satisfactory DI and TE ICSs within some energy ranges. Strategies to improve SLEND/STO/CGFs for DI predictions are discussed.
Collapse
Affiliation(s)
| | - Jorge A. Morales
- Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409-1061, USA
| |
Collapse
|
6
|
Qubala A, Shafee J, Tessonnier T, Horn J, Winter M, Naumann J, Jäkel O. Characteristics of breathing-adapted gating using surface guidance for use in particle therapy: A phantom-based end-to-end test from CT simulation to dose delivery. J Appl Clin Med Phys 2024; 25:e14249. [PMID: 38128056 PMCID: PMC10795430 DOI: 10.1002/acm2.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
To account for intra-fractional tumor motion during dose delivery in radiotherapy, various treatment strategies are clinically implemented such as breathing-adapted gating and irradiating the tumor during specific breathing phases. In this work, we present a comprehensive phantom-based end-to-end test of breathing-adapted gating utilizing surface guidance for use in particle therapy. A commercial dynamic thorax phantom was used to reproduce regular and irregular breathing patterns recorded by the GateRT respiratory monitoring system. The amplitudes and periods of recorded breathing patterns were analysed and compared to planned patterns (ground-truth). In addition, the mean absolute deviations (MAD) and Pearson correlation coefficients (PCC) between the measurements and ground-truth were assessed. Measurements of gated and non-gated irradiations were also analysed with respect to dosimetry and geometry, and compared to treatment planning system (TPS). Further, the latency time of beam on/off was evaluated. Compared to the ground-truth, measurements performed with GateRT showed amplitude differences between 0.03 ± 0.02 mm and 0.26 ± 0.03 mm for regular and irregular breathing patterns, whilst periods of both breathing patterns ranged with a standard deviation between 10 and 190 ms. Furthermore, the GateRT software precisely acquired breathing patterns with a maximum MAD of 0.30 ± 0.23 mm. The PCC constantly ranged between 0.998 and 1.000. Comparisons between TPS and measured dose profiles indicated absolute mean dose deviations within institutional tolerances of ±5%. Geometrical beam characteristics also varied within our institutional tolerances of 1.5 mm. The overall time delays were <60 ms and thus within both recommended tolerances published by ESTRO and AAPM of 200 and 100 ms, respectively. In this study, a non-invasive optical surface-guided workflow including image acquisition, treatment planning, patient positioning and gated irradiation at an ion-beam gantry was investigated, and shown to be clinically viable. Based on phantom measurements, our results show a clinically-appropriate spatial, temporal, and dosimetric accuracy when using surface guidance in the clinical setting, and the results comply with international and institutional guidelines and tolerances.
Collapse
Affiliation(s)
- Abdallah Qubala
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- Faculty of MedicineUniversity of HeidelbergHeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Jehad Shafee
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- Saarland University of Applied SciencesSaarbrueckenGermany
| | - Thomas Tessonnier
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Julian Horn
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Marcus Winter
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Jakob Naumann
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Oliver Jäkel
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
- National Center for Radiation Research in Oncology (NCRO)Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
- Department of Medical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- National Center for Tumor Diseases (NCT)HeidelbergGermany
| |
Collapse
|
7
|
Thompson SJ, Prise KM, McMahon SJ. Investigating the potential contribution of inter-track interactions within ultra-high dose-rate proton therapy. Phys Med Biol 2023; 68. [PMID: 36731135 DOI: 10.1088/1361-6560/acb88a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Objective. Laser-accelerated protons offer an alternative delivery mechanism for proton therapy. This technique delivers dose-rates of ≥109Gy s-1, many orders of magnitude greater than used clinically. Such ultra-high dose-rates reduce delivery time to nanoseconds, equivalent to the lifetime of reactive chemical species within a biological medium. This leads to the possibility of inter-track interactions between successive protons within a pulse, potentially altering the yields of damaging radicals if they are in sufficient spatial proximity. This work investigates the temporal evolution of chemical species for a range of proton energies and doses to quantify the circumstances required for inter-track interactions, and determine any relevance within ultra-high dose-rate proton therapy.Approach. The TOPAS-nBio Monte Carlo toolkit was used to investigate possible inter-track interactions. Firstly, protons between 0.5 and 100 MeV were simulated to record the radial track dimensions throughout the chemical stage from 1 ps to 1μs. Using the track areas, the geometric probability of track overlap was calculated for various exposures and timescales. A sample of irradiations were then simulated in detail to compare any change in chemical yields for independently and instantaneously delivered tracks, and validate the analytic model.Main results. Track overlap for a clinical 2 Gy dose was negligible for biologically relevant timepoints for all energies. Overlap probability increased with time after irradiation, proton energy and dose, with a minimum 23 Gy dose required before significant track overlap occurred. Simulating chemical interactions confirmed these results with no change in radical yields seen up to 8 Gy for independently and instantaneously delivered tracks.Significance. These observations suggest that the spatial separation between incident protons is too large for physico-chemical inter-track interactions, regardless of the delivery time, indicating such interactions would not play a role in any potential changes in biological response between laser-accelerated and conventional proton therapy.
Collapse
Affiliation(s)
- Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
8
|
Domínguez JC, Kim H, Silva ED, Pimbi D, Morales JA. Electron nuclear dynamics of time-dependent symmetry breaking in H + + H 2O at ELab = 28.5-200.0 eV: a prototype for ion cancer therapy reactions. Phys Chem Chem Phys 2023; 25:2019-2034. [PMID: 36545768 PMCID: PMC10824558 DOI: 10.1039/d2cp04854j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Following our preceding research [P. M. McLaurin, R. Merritt, J. C. Domínguez, E. S. Teixeira and J. A. Morales, Phys. Chem. Chem. Phys., 2019, 21, 5006], we present an electron nuclear dynamics (END) investigation of H+ + H2O at ELab = 28.5-200.0 eV in conjunction with a computational procedure to induce symmetry breaking during evolution. The investigated system is a computationally feasible prototype to simulate water radiolysis reactions in ion cancer therapy. END is a time-dependent, variational, non-adiabatic, and on-the-fly method, which utilizes classical mechanics for nuclei and a Thouless single-determinantal state for electrons. In this study, a procedure inherent to END introduces low degrees of symmetry breaking into the reactants' restricted Hartree-Fock (RHF) state to induce a higher symmetry breaking during evolution. Specifically, the Thouless exponential operator acting on the RHF reference generates an axial spin density wave (ASDW) state according to Fukutome's analysis of HF symmetry breaking; this state exhibits spatial and spin symmetry breaking. By varying a Thouless parameter, low degrees of symmetry breaking are introduced into ASDW states. After starting the dynamics from those states, higher degrees of symmetry breaking may subsequently emerge as dictated by the END equations without ad hoc interventions. Simulations starting from symmetry-conforming states preserve the symmetry features during dynamics, whereas simulations starting from symmetry-broken states display an upsurge of symmetry breaking once the reactants collide. Present simulations predict three types of reactions: (I) projectile scattering, (II) hydrogen substitution, and (III) water radiolysis into H + OH and 2H + O fragments. Remarkably, symmetry breaking considerably increases the extent of the target-to-projectile electron transfers (ETs) occurring during the above reactions. Then, with symmetry breaking, 1-ET differential and integral cross sections increase in value, whereas 0-ET differential cross sections and primary rainbow scattering angles decrease. More importantly, END properties calculated from symmetry-breaking simulations exhibit better agreement with the experimental data. Notably, END 1-ET integral cross sections with symmetry breaking compare better with their experimental counterparts than 1-ET integral cross sections from high-level close-coupling calculations; moreover, END validates an undetected rainbow scattering peak inferred from the experimental data. A discussion of our symmetry-breaking procedure in the context of Fukutome's analysis of HF symmetry breaking is also presented.
Collapse
Affiliation(s)
- Juan C Domínguez
- Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409-1061, USA.
| | - Hyunsik Kim
- Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409-1061, USA.
| | - Eivson D Silva
- Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409-1061, USA.
| | - Daniel Pimbi
- Department of Electrical and Computer Engineering, Texas Tech University, Box 43102, Lubbock, TX 79409, USA
| | - Jorge A Morales
- Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409-1061, USA.
| |
Collapse
|
9
|
Qubala A, Schwahofer A, Jersemann S, Eskandarian S, Harrabi S, Naumann P, Winter M, Ellerbrock M, Shafee J, Abtehi S, Herfarth K, Debus J, Jäkel O. Optimizing the Patient Positioning Workflow of Patients with Pelvis, Limb, and Chest/Spine Tumors at an Ion-Beam Gantry based on Optical Surface Guidance. Adv Radiat Oncol 2022; 8:101105. [PMID: 36624871 PMCID: PMC9822948 DOI: 10.1016/j.adro.2022.101105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/01/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Surface-guided radiation therapy (SGRT) has been investigated intensively to ensure correct patient positioning during a radiation therapy course. Although the implementation is well defined for photon-beam facilities, only a few analyses have been published for ion-beam therapy centers. To investigate the accuracy, reliability, and efficiency of SGRT used in ion-beam treatments against the conventional skin marks, a retrospective study of a unique SGRT installation in an ion gantry treatment room was conducted, where the environment is quite different to conventional radiation therapy. Methods and Materials There were 32 patients, divided into 3 cohorts-pelvis, limb, and chest/spine tumors-and treated with ion-beams. Two patient positioning workflows based on 300 fractions were compared: workflow with skin marks and workflow with SGRT. Position verification was followed by planar kilo voltage imaging. After image matching, 6 degrees of freedom corrections were recorded to assess interfraction positioning errors. In addition, the time required for patient positioning, image matching, and the number of repeated kilo voltage imaging also were gathered. Results SGRT decreased the translational magnitude shifts significantly (P < .05) by 0.5 ± 1.4 mm for pelvis and 1.9 ± 0.5 mm for limb, whereas for chest/spine, it increased by 0.7 ± 0.3 mm. Rotational corrections were predominantly lowered with SGRT for all cohorts with significant differences in pitch for pelvis (P = .002) and chest/spine (P = .009). The patient positioning time decreased by 18%, 9%, and 15% for pelvis, limb, and chest/spine, respectively, compared with skin marks. By using SGRT, 53% of all studied patients had faster positioning time, and 87.5% had faster matching time. Repositioning and consequent reimaging decreased from about 7% to 2% with a statistically significant difference of .042. Conclusions The quality of patient positioning before ion-beam treatments has been optimized by using SGRT without additional imaging dose. SGRT clearly reduced inefficiencies in the patient positioning workflow.
Collapse
Affiliation(s)
- Abdallah Qubala
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany,Corresponding author: Abdallah Qubala, MSc
| | - Andrea Schwahofer
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Jersemann
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Saleh Eskandarian
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Semi Harrabi
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Patrick Naumann
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Marcus Winter
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Malte Ellerbrock
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Jehad Shafee
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,Saarland University of Applied Sciences, Saarbruecken, Germany
| | - Samira Abtehi
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Klaus Herfarth
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
10
|
Hyer DE, Bennett LC, Geoghegan TJ, Bues M, Smith BR. Innovations and the Use of Collimators in the Delivery of Pencil Beam Scanning Proton Therapy. Int J Part Ther 2021; 8:73-83. [PMID: 34285937 PMCID: PMC8270095 DOI: 10.14338/ijpt-20-00039.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose The development of collimating technologies has become a recent focus in pencil beam scanning (PBS) proton therapy to improve the target conformity and healthy tissue sparing through field-specific or energy-layer–specific collimation. Given the growing popularity of collimators for low-energy treatments, the purpose of this work was to summarize the recent literature that has focused on the efficacy of collimators for PBS and highlight the development of clinical and preclinical collimators. Materials and Methods The collimators presented in this work were organized into 3 categories: per-field apertures, multileaf collimators (MLCs), and sliding-bar collimators. For each case, the system design and planning methodologies are summarized and intercompared from their existing literature. Energy-specific collimation is still a new paradigm in PBS and the 2 specific collimators tailored toward PBS are presented including the dynamic collimation system (DCS) and the Mevion Adaptive Aperture. Results Collimation during PBS can improve the target conformity and associated healthy tissue and critical structure avoidance. Between energy-specific collimators and static apertures, static apertures have the poorest dose conformity owing to collimating only the largest projection of a target in the beam's eye view but still provide an improvement over uncollimated treatments. While an external collimator increases secondary neutron production, the benefit of collimating the primary beam appears to outweigh the risk. The greatest benefit has been observed for low- energy treatment sites. Conclusion The consensus from current literature supports the use of external collimators in PBS under certain conditions, namely low-energy treatments or where the nominal spot size is large. While many recent studies paint a supportive picture, it is also important to understand the limitations of collimation in PBS that are specific to each collimator type. The emergence and paradigm of energy-specific collimation holds many promises for PBS proton therapy.
Collapse
Affiliation(s)
- Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Laura C Bennett
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | | | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Blake R Smith
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
11
|
Senirkentli GB, Ekinci F, Bostanci E, Güzel MS, Dağli Ö, Karim AM, Mishra A. Proton Therapy for Mandibula Plate Phantom. Healthcare (Basel) 2021; 9:healthcare9020167. [PMID: 33557337 PMCID: PMC7915841 DOI: 10.3390/healthcare9020167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose: In this study, the required dose rates for optimal treatment of tumoral tissues when using proton therapy in the treatment of defective tumours seen in mandibles has been calculated. We aimed to protect the surrounding soft and hard tissues from unnecessary radiation as well as to prevent complications of radiation. Bragg curves of therapeutic energized protons for two different mandible (molar and premolar) plate phantoms were computed and compared with similar calculations in the literature. The results were found to be within acceptable deviation values. Methods: In this study, mandibular tooth plate phantoms were modelled for the molar and premolar areas and then a Monte Carlo simulation was used to calculate the Bragg curve, lateral straggle/range and recoil values of protons remaining in the therapeutic energy ranges. The mass and atomic densities of all the jawbone layers were selected and the effect of layer type and thickness on the Bragg curve, lateral straggle/range and the recoil were investigated. As protons move through different layers of density, lateral straggle and increases in the range were observed. A range of energies was used for the treatment of tumours at different depths in the mandible phantom. Results: Simulations revealed that as the cortical bone thickness increased, Bragg peak position decreased between 0.47–3.3%. An increase in the number of layers results in a decrease in the Bragg peak position. Finally, as the proton energy increased, the amplitude of the second peak and its effect on Bragg peak position decreased. Conclusion: These findings should guide the selection of appropriate energy levels in the treatment of tumour structures without damaging surrounding tissues.
Collapse
Affiliation(s)
| | - Fatih Ekinci
- Department of Physics, Gazi University, Ankara 06500, Turkey;
| | - Erkan Bostanci
- Computer Engineering Department, Ankara University, Ankara 06830, Turkey; (E.B.); (M.S.G.)
| | - Mehmet Serdar Güzel
- Computer Engineering Department, Ankara University, Ankara 06830, Turkey; (E.B.); (M.S.G.)
| | - Özlem Dağli
- Department of Neurosurgery Gamma Knife Unit, Gazi University, Ankara 06850, Turkey;
| | - Ahmad M. Karim
- Computer Engineering Department, Ankara Yıldırım Beyazıt University, Ankara 06830, Turkey;
| | - Alok Mishra
- Faculty of Logistics, Molde University College-Specialized University in Logistics, 6402 Molde, Norway
- Software Engineering Department, Atilim University, Ankara 06830, Turkey
- Correspondence:
| |
Collapse
|
12
|
Hamad MK. Bragg-curve simulation of carbon-ion beams for particle-therapy applications: A study with the GEANT4 toolkit. NUCLEAR ENGINEERING AND TECHNOLOGY 2021. [DOI: 10.1016/j.net.2021.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Radiation, a two-edged sword: From untoward effects to fractionated radiotherapy. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.108994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Kang M, Hasan S, Press RH, Yu F, Abdo M, Xiong W, Choi JI, Simone CB, Lin H. Using patient-specific bolus for pencil beam scanning proton treatment of periorbital disease. J Appl Clin Med Phys 2020; 22:203-209. [PMID: 33369041 PMCID: PMC7856513 DOI: 10.1002/acm2.13134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/01/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose A unique mantle cell lymphoma case with bilateral periorbital disease unresponsive to chemotherapy and with dosimetry not conducive to electron therapy was treated with pencil beam scanning (PBS) proton therapy. This patient presented treatment planning challenges due to the thin target, immediately adjacent organs at risk (OAR), and nonconformal orbital surface anatomy. Therefore, we developed a patient‐specific bolus and hypothesized that it would provide superior setup robustness, dose uniformity and dose conformity. Materials/Methods A blue‐wax patient‐specific bolus was generated from the patient's face contour to conform to his face and eliminate air gaps. A relative stopping power ratio (RSP) of 0.972 was measured for the blue‐wax, and the HUs were overridden accordingly in the treatment planning system (TPS). Orthogonal kV images were used for bony alignment and then to ensure positioning of the bolus through fiducial markers attached to the bolus and their contours in TPS. Daily CBCT was used to confirm the position of the bolus in relation to the patient's surface. Dosimetric characteristics were compared between (a) nonbolus, (b) conventional gel bolus and (c) patient‐specific bolus plans. An in‐house developed workflow for assessment of daily treatment dose based on CBCT images was used to evaluate inter‐fraction dose accumulation. Results The patient was treated to 24 cobalt gray equivalent (CGE) in 2 CGE daily fractions to the bilateral periorbital skin, constraining at least 50% of each lacrimal gland to under 20 Gy. The bolus increased proton beam range by adding 2–3 energy layers of different fields to help achieve better dose uniformity and adequate dose coverage. In contrast to the plan with conventional gel bolus, dose uniformity was significantly improved with patient‐specific bolus. The global maximum dose was reduced by 7% (from 116% to 109%). The max and mean doses were reduced by 6.0% and 7.7%, respectively, for bilateral retinas, and 3.0% and 13.9% for bilateral lacrimal glands. The max dose of the lens was reduced by 2.1%. The rigid shape, along with lightweight, and smooth fit to the patient face was well tolerated and reported as “very comfortable” by the patient. The daily position accuracy of the bolus was within 1 mm based on IGRT marker alignment. The daily dose accumulation indicates that the target coverage and OAR doses were highly consistent with the planning intention. Conclusion Our patient‐specific blue‐wax bolus significantly increased dose uniformity, reduced OAR doses, and maintained consistent setup accuracy compared to conventional bolus. Quality PBS proton treatment for periorbital tumors and similar challenging thin and shallow targets can be achieved using such patient‐specific bolus with robustness on both setup and dosimetry.
Collapse
Affiliation(s)
| | | | | | - Francis Yu
- New York Proton Center, New York, NY, USA
| | | | | | | | | | - Haibo Lin
- New York Proton Center, New York, NY, USA
| |
Collapse
|
15
|
Ristic-Fira AM, Keta OD, Petković VD, Cammarata FP, Petringa G, Cirrone PG, Cuttone G, Incerti S, Petrović IM. DNA damage assessment of human breast and lung carcinoma cells irradiated with protons and carbon ions. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1825035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Otilija D. Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana D. Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Francesco P. Cammarata
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
- CNR-IBFM, UOS, Cefalù, Italy
| | - Giada Petringa
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | - Pablo G.A. Cirrone
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | - Giacomo Cuttone
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | | | - Ivan M. Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Aricò G, Battistoni G, Cerutti F, Horst F, Mairani A, Schuy C, Weber U, Ferrari A. Benchmarking of FLUKA production cross sections of positron emission tomography isotopes for in-vivo range verification in hadron therapy. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023924001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protons and carbon ions have been extensively used for radiotherapy treatments, and in comparison to conventional radiotherapy, they allow a more conformal dose to the target tumor, especially in case of deep-seated tumors. However, the accuracy of hadron therapy treatments is affected by uncertainties in the particle range calculations. Several techniques are under development for in-vivo range verification, one of which consists on measuring the activity distributions of positron emitters, such as 10C, 11C and 15O, which are produced in the patient body during proton and carbon ion treatments. A comparison between measured and expected positron emitter activity distributions can provide information on the quality of the delivered treatment and accuracy of the particle range calculations. In this work the FLUKA production cross sections for 10C, 11C and 15O originated from proton and carbon ion beams in carbon and oxygen targets were compared with experimental data, at low and therapeutic energies.
Collapse
|
17
|
Horita R, Yamamoto S, Yogo K, Komori M, Toshito T. Three-dimensional (3D) dose distribution measurements of proton beam using a glass plate. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab169e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Koom WS, Mori S, Furuich W, Yamada S. Beam direction arrangement using a superconducting rotating gantry in carbon ion treatment for pancreatic cancer. Br J Radiol 2019; 92:20190101. [PMID: 30943057 DOI: 10.1259/bjr.20190101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Carbon ion radiotherapy provides a concentrated dose distribution to the target and has several advantages over photon radiotherapy. This study aimed to evaluate the optimal beam direction in carbon ion pencil beam scanning and compare dose distributions between the rotating gantry system (RGS) and fixed-beam port system (FBPS). METHODS Patients with locally advanced pancreatic cancer were randomly selected. First, dose-volume parameters of 7-beam directions in the prone position were evaluated. Second, a composite plan developed using 4-beam directions in RGS was compared with that developed using FBPS, with a total prescribed dose of 55.2 Gy (relative biological effectiveness, RBE) in 12 fractions. RESULTS Target coverages in the composite plan did not widely differ. For the first and second segments of the duodenum, the mean dose of D2cc was not significantly changed (23.80 ± 11.90 Gy [RBE] and 25.63 ± 10.41 Gy [RBE] for RGS and FBPS, respectively). However, the dose-volume histogram curve in RGS showed a prominent dose reduction in the low-dose region. No significant differences were observed in the stomach, third and fourth segments of the duodenum, and spinal cord. The mean dose of the total kidney was similar between RGS and FBPS. CONCLUSIONS Compared with that of FBPS, the 4-beam arrangement in the prone position using RGS provides comparable or superior dose distribution in the surrounding normal organ while achieving the same target coverage. In addition, RGS allows for single-patient positioning. ADVANCES IN KNOWLEDGE RGS is beneficial in delivering radiotherapy doses to the duodenum and allows for single-patient positioning and a simple planning process.
Collapse
Affiliation(s)
- Woong Sub Koom
- 1 Department of Radiation Oncology, Yonsei University College of Medicine , Seoul , South Korea.,2 Research Center for Charged Particle Therapy, National Institute of Radiological Sciences , Chiba , Japan
| | - Shinichiro Mori
- 2 Research Center for Charged Particle Therapy, National Institute of Radiological Sciences , Chiba , Japan
| | | | - Shigeru Yamada
- 2 Research Center for Charged Particle Therapy, National Institute of Radiological Sciences , Chiba , Japan
| |
Collapse
|
19
|
Schuemann J, Bassler N, Inaniwa T. Computational models and tools. Med Phys 2018; 45:e1073-e1085. [PMID: 30421814 DOI: 10.1002/mp.12521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
In this chapter, we describe two different methods, analytical (pencil beam) algorithms and Monte Carlo simulations, used to obtain the intended dose distributions in patients and evaluate their strengths and shortcomings. We discuss the difference between the prescribed physical dose and the biologically effective dose, the relative biological effectiveness (RBE) between ions and photons and the dependence of RBE on the linear energy transfer (LET). Lastly, we show how LET- or RBE-based optimization can be used to improve treatment plans and explore how the availability of multimodality ion beam facilities can be used to design a tumor-specific optimal treatment.
Collapse
Affiliation(s)
- Jan Schuemann
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Niels Bassler
- Medical Radiation Physics, Dept. of Physics, Stockholm University, Sweden
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, QST, Chiba, Japan
| |
Collapse
|
20
|
Yabe T, Sasano M, Hirano Y, Toshito T, Akagi T, Yamashita T, Hayashi M, Azuma T, Sakamoto Y, Komori M, Yamamoto S. Addition of luminescence process in Monte Carlo simulation to precisely estimate the light emitted from water during proton and carbon-ion irradiation. Phys Med Biol 2018; 63:125019. [PMID: 29923503 DOI: 10.1088/1361-6560/aac74b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although luminescence of water lower in energy than the Cerenkov-light threshold during proton and carbon-ion irradiation has been found, the phenomenon has not yet been implemented for Monte Carlo simulations. The results provided by the simulations lead to misunderstandings of the physical phenomenon in optical imaging of water during proton and carbon-ion irradiation. To solve the problems, as well as to clarify the light production of the luminescence of water, we modified a Monte Carlo simulation code to include the light production from the luminescence of water and compared them with the experimental results of luminescence imaging of water. We used GEANT4 for the simulation of emitted light from water during proton and carbon-ion irradiation. We used the light production from the luminescence of water using the scintillation process in GEANT4 while those of Cerenkov light from the secondary electrons and prompt gamma photons in water were also included in the simulation. The modified simulation results showed similar depth profiles to those of the measured data for both proton and carbon-ion. When the light production of 0.1 photons/MeV was used for the luminescence of water in the simulation, the simulated depth profiles showed the best match to those of the measured results for both the proton and carbon-ion compared with those used for smaller and larger numbers of photons/MeV. We could successively obtain the simulated depth profiles that were basically the same as the experimental data by using GEANT4 when we assumed the light production by the luminescence of water. Our results confirmed that the inclusion of the luminescence of water in Monte Carlo simulation is indispensable to calculate the precise light distribution in water during irradiation of proton and carbon-ion.
Collapse
Affiliation(s)
- Takuya Yabe
- Department of Radiological Sciences, Nagoya University Graduate School of Medicine, Nagoya-shi, Aichi, Japan. These two authors contributed equally to this paper
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schellhammer SM, Gantz S, Lühr A, Oborn BM, Bussmann M, Hoffmann AL. Technical Note: Experimental verification of magnetic field-induced beam deflection and Bragg peak displacement for MR-integrated proton therapy. Med Phys 2018; 45:3429-3434. [PMID: 29763970 DOI: 10.1002/mp.12961] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Given its sensitivity to anatomical variations, proton therapy is expected to benefit greatly from integration with magnetic resonance imaging for online anatomy monitoring during irradiation. Such an integration raises several challenges, as both systems mutually interact. The proton beam will experience quasi-continuous energy loss and energy-dependent electromagnetic deflection at the same time, giving rise to a deflected beam trajectory and an altered dose distribution with a displaced Bragg peak. So far, these effects have only been predicted using Monte Carlo and analytical models, but no clear consensus has been reached and experimental benchmark data are lacking. We measured proton beam trajectories and Bragg peak displacement in a homogeneous phantom placed inside a magnetic field and compared them to simulations. METHODS Planar dose distributions of proton pencil beams (80-180 MeV) traversing the field of a 0.95 T NdFeB permanent magnet while depositing energy in a PMMA slab phantom were measured using EBT3 radiochromic films and simulated using the Geant4 toolkit. Deflected beam trajectories and the Bragg peak displacement were extracted from the measured planar dose distributions and compared against the simulations. RESULTS The lateral beam deflection was clearly visible on the EBT3 films and ranged from 1 to 10 mm for 80 to 180 MeV, respectively. Simulated and measured beam trajectories and Bragg peak displacement agreed within 0.8 mm for all studied proton energies. CONCLUSIONS These results prove that the magnetic field-induced Bragg peak displacement is both measurable and accurately predictable in a homogeneous phantom at 0.95 T, and allows Monte Carlo simulations to be used as gold standard for proton beam trajectory prediction in similar frameworks for MR-integrated proton therapy.
Collapse
Affiliation(s)
- Sonja M Schellhammer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01307, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01328, Germany
| | - Sebastian Gantz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01307, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01328, Germany
| | - Armin Lühr
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01307, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01328, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Bradley M Oborn
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, 2522, Australia.,Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, 2522, Australia
| | - Michael Bussmann
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01328, Germany
| | - Aswin L Hoffmann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01307, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, 01328, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| |
Collapse
|
22
|
Hall WA, Bergom C, Thompson RF, Baschnagel AM, Vijayakumar S, Willers H, Li XA, Schultz CJ, Wilson GD, West CML, Capala J, Coleman CN, Torres-Roca JF, Weidhaas J, Feng FY. Precision Oncology and Genomically Guided Radiation Therapy: A Report From the American Society for Radiation Oncology/American Association of Physicists in Medicine/National Cancer Institute Precision Medicine Conference. Int J Radiat Oncol Biol Phys 2018; 101:274-284. [PMID: 28964588 DOI: 10.1016/j.ijrobp.2017.05.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/19/2017] [Accepted: 05/30/2017] [Indexed: 01/18/2023]
Abstract
PURPOSE To summarize important talking points from a 2016 symposium focusing on real-world challenges to advancing precision medicine in radiation oncology, and to help radiation oncologists navigate the practical challenges of precision, radiation oncology. METHODS AND MATERIALS The American Society for Radiation Oncology, American Association of Physicists in Medicine, and National Cancer Institute cosponsored a meeting on precision medicine in radiation oncology. In June 2016 numerous scientists, clinicians, and physicists convened at the National Institutes of Health to discuss challenges and future directions toward personalized radiation therapy. Various breakout sessions were held to discuss particular components and approaches to the implementation of personalized radiation oncology. This article summarizes the genomically guided radiation therapy breakout session. RESULTS A summary of existing genomic data enabling personalized radiation therapy, ongoing clinical trials, current challenges, and future directions was collected. The group attempted to provide both a current overview of data that radiation oncologists could use to personalize therapy, along with data that are anticipated in the coming years. It seems apparent from the provided review that a considerable opportunity exists to truly bring genomically guided radiation therapy into clinical reality. CONCLUSIONS Genomically guided radiation therapy is a necessity that must be embraced in the coming years. Incorporating these data into treatment recommendations will provide radiation oncologists with a substantial opportunity to improve outcomes for numerous cancer patients. More research focused on this topic is needed to bring genomic signatures into routine standard of care.
Collapse
Affiliation(s)
- William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Radiation Oncology, Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin.
| | - Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Radiation Oncology, Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin
| | - Reid F Thompson
- Department of Radiation Medicine and Computational Biology Program, Oregon Health & Science University, Portland, Oregon; Division of Hospital and Specialty Medicine, VA Portland Health Care System, Portland, Oregon
| | - Andrew M Baschnagel
- Department of Human Oncology, University of Wisconsin Madison, Madison, Wisconsin
| | - Srinivasan Vijayakumar
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Radiation Oncology, Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin
| | - Christopher J Schultz
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Radiation Oncology, Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin
| | - George D Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - Catharine M L West
- Translational Radiation Biology, University of Manchester, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jacek Capala
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Joanne Weidhaas
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Felix Y Feng
- Departments of Radiation Oncology, Urology, and Medicine and the Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
23
|
Komori M, Sekihara E, Yabe T, Horita R, Toshito T, Yamamoto S. Luminescence imaging of water during uniform-field irradiation by spot scanning proton beams. Phys Med Biol 2018; 63:11NT01. [PMID: 29722295 DOI: 10.1088/1361-6560/aac223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Luminescence was found during pencil-beam proton irradiation to water phantom and range could be estimated from the luminescence images. However, it is not yet clear whether the luminescence imaging is applied to the uniform fields made of spot-scanning proton-beam irradiations. For this purpose, imaging was conducted for the uniform fields having spread out Bragg peak (SOBP) made by spot scanning proton beams. We designed six types of the uniform fields with different ranges, SOBP widths and irradiation fields. One of the designed fields was irradiated to water phantom and a cooled charge coupled device camera was used to measure the luminescence image during irradiations. We estimated the ranges, field widths, and luminescence intensities from the luminescence images and compared those with the dose distribution calculated by a treatment planning system. For all types of uniform fields, we could obtain clear images of the luminescence showing the SOBPs. The ranges and field widths evaluated from the luminescence were consistent with those of the dose distribution calculated by a treatment planning system within the differences of -4 mm and -11 mm, respectively. Luminescence intensities were almost proportional to the SOBP widths perpendicular to the beam direction. The luminescence imaging could be applied to uniform fields made of spot scanning proton beam irradiations. Ranges and widths of the uniform fields with SOBP could be estimated from the images. The luminescence imaging is promising for the range and field width estimations in proton therapy.
Collapse
Affiliation(s)
- Masataka Komori
- Department of Radiological Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Teixeira ES, Uppulury K, Privett AJ, Stopera C, McLaurin PM, Morales JA. Electron Nuclear Dynamics Simulations of Proton Cancer Therapy Reactions: Water Radiolysis and Proton- and Electron-Induced DNA Damage in Computational Prototypes. Cancers (Basel) 2018; 10:E136. [PMID: 29734786 PMCID: PMC5977109 DOI: 10.3390/cancers10050136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/22/2018] [Accepted: 04/28/2018] [Indexed: 11/16/2022] Open
Abstract
Proton cancer therapy (PCT) utilizes high-energy proton projectiles to obliterate cancerous tumors with low damage to healthy tissues and without the side effects of X-ray therapy. The healing action of the protons results from their damage on cancerous cell DNA. Despite established clinical use, the chemical mechanisms of PCT reactions at the molecular level remain elusive. This situation prevents a rational design of PCT that can maximize its therapeutic power and minimize its side effects. The incomplete characterization of PCT reactions is partially due to the health risks associated with experimental/clinical techniques applied to human subjects. To overcome this situation, we are conducting time-dependent and non-adiabatic computer simulations of PCT reactions with the electron nuclear dynamics (END) method. Herein, we present a review of our previous and new END research on three fundamental types of PCT reactions: water radiolysis reactions, proton-induced DNA damage and electron-induced DNA damage. These studies are performed on the computational prototypes: proton + H₂O clusters, proton + DNA/RNA bases and + cytosine nucleotide, and electron + cytosine nucleotide + H₂O. These simulations provide chemical mechanisms and dynamical properties of the selected PCT reactions in comparison with available experimental and alternative computational results.
Collapse
Affiliation(s)
- Erico S Teixeira
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Karthik Uppulury
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Austin J Privett
- Department of Chemistry and Biochemistry, Lipscomb University, Nashville, TN 37204, USA.
| | - Christopher Stopera
- Department of Chemistry and Industrial Hygiene, University of North Alabama, Florence, AL 35632, USA.
| | - Patrick M McLaurin
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Jorge A Morales
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
25
|
Exploring water radiolysis in proton cancer therapy: Time-dependent, non-adiabatic simulations of H+ + (H2O)1-6. PLoS One 2017; 12:e0174456. [PMID: 28376128 PMCID: PMC5380356 DOI: 10.1371/journal.pone.0174456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/09/2017] [Indexed: 11/23/2022] Open
Abstract
To elucidate microscopic details of proton cancer therapy (PCT), we apply the simplest-level electron nuclear dynamics (SLEND) method to H+ + (H2O)1-6 at ELab = 100 keV. These systems are computationally tractable prototypes to simulate water radiolysis reactions—i.e. the PCT processes that generate the DNA-damaging species against cancerous cells. To capture incipient bulk-water effects, ten (H2O)1-6 isomers are considered, ranging from quasi-planar/multiplanar (H2O)1-6 to “smallest-drop” prism and cage (H2O)6 structures. SLEND is a time-dependent, variational, non-adiabatic and direct method that adopts a nuclear classical-mechanics description and an electronic single-determinantal wavefunction in the Thouless representation. Short-time SLEND/6-31G* (n = 1–6) and /6-31G** (n = 1–5) simulations render cluster-to-projectile 1-electron-transfer (1-ET) total integral cross sections (ICSs) and 1-ET probabilities. In absolute quantitative terms, SLEND/6-31G* 1-ET ICS compares satisfactorily with alternative experimental and theoretical results only available for n = 1 and exhibits almost the same accuracy of the best alternative theoretical result. SLEND/6-31G** overestimates 1-ET ICS for n = 1, but a comparable overestimation is also observed with another theoretical method. An investigation on H+ + H indicates that electron direct ionization (DI) becomes significant with the large virtual-space quasi-continuum in large basis sets; thus, SLEND/6-31G** 1-ET ICS is overestimated by DI contributions. The solution to this problem is discussed. In relative quantitative terms, both SLEND/6-31* and /6-31G** 1-ET ICSs precisely fit into physically justified scaling formulae as a function of the cluster size; this indicates SLEND’s suitability for predicting properties of water clusters with varying size. Long-time SLEND/6-31G* (n = 1–4) simulations predict the formation of the DNA-damaging radicals H, OH, O and H3O. While “smallest-drop” isomers are included, no early manifestations of bulk water PCT properties are observed and simulations with larger water clusters will be needed to capture those effects. This study is the largest SLEND investigation on water radiolysis to date.
Collapse
|
26
|
Yamamoto S, Komori M, Akagi T, Yamashita T, Koyama S, Morishita Y, Sekihara E, Toshito T. Luminescence imaging of water during carbon-ion irradiation for range estimation. Med Phys 2017; 43:2455. [PMID: 27147356 DOI: 10.1118/1.4946821] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. METHODS The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. RESULTS The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom's luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. CONCLUSIONS Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.
Collapse
Affiliation(s)
- Seiichi Yamamoto
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Masataka Komori
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | | | | | - Shuji Koyama
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Yuki Morishita
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Eri Sekihara
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508, Japan
| |
Collapse
|
27
|
Schellhammer SM, Hoffmann AL. Prediction and compensation of magnetic beam deflection in MR-integrated proton therapy: a method optimized regarding accuracy, versatility and speed. Phys Med Biol 2017; 62:1548-1564. [DOI: 10.1088/1361-6560/62/4/1548] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Yamamoto S, Toshito T, Okumura S, Komori M. Luminescence imaging of water during proton-beam irradiation for range estimation. Med Phys 2016; 42:6498-506. [PMID: 26520739 DOI: 10.1118/1.4932630] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. METHODS To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. RESULTS The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. CONCLUSIONS Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.
Collapse
Affiliation(s)
- Seiichi Yamamoto
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya 462-8508, Japan
| | - Satoshi Okumura
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Masataka Komori
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| |
Collapse
|
29
|
Orlandi E, Iacovelli NA, Bonora M, Cavallo A, Fossati P. Salivary Gland. Photon beam and particle radiotherapy: Present and future. Oral Oncol 2016; 60:146-56. [PMID: 27394087 DOI: 10.1016/j.oraloncology.2016.06.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022]
Abstract
Salivary gland cancers (SGCs) are rare diseases and their treatment depends upon histology, stage and site of origin. Radical surgery is the mainstay of treatment but radiotherapy (RT) plays a key role in both the postoperative and the inoperable setting, as well as in recurrent disease. In the absence of prospective randomized trials, a wide retrospective literature suggests postoperative RT (PORT) in patients with high risk pathological features. SGCs, and adenoid cystic carcinoma (ACC) in particular, are known to be radio-resistant tumors and should therefore respond well to particle beam therapy. Recently, excellent outcome has been reported with radical carbon ion RT (CIRT) in particular for ACC. Both modern photon- and hadron-based treatments are effective and are characterized by a favourable toxicity profile. But it is not clear whether one modality is superior to the other for disease control, due to the differences in patients' selection, techniques, fractionation schedules and outcome measurements among clinical experiences. In this paper, we review the role of photon and particle RT for malignant SGCs, discussing the difference between modalities in terms of biological and technical characteristics. RT dose and target volumes for different histologies (ACC versus non-ACC) have also been taken into consideration.
Collapse
Affiliation(s)
- Ester Orlandi
- Radiotherapy 2 Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | | | - Maria Bonora
- Clinical Department, CNAO (National Center for Oncological Hadrontherapy), Pavia, Italy
| | - Anna Cavallo
- Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Piero Fossati
- Clinical Department, CNAO (National Center for Oncological Hadrontherapy), Pavia, Italy; Radiotherapy Division, European Institute of Oncology, Milan, Italy
| |
Collapse
|
30
|
Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, Richter C, Zips D, Bortfeld T. Radiation oncology in the era of precision medicine. Nat Rev Cancer 2016; 16:234-49. [PMID: 27009394 DOI: 10.1038/nrc.2016.18] [Citation(s) in RCA: 562] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Technological advances and clinical research over the past few decades have given radiation oncologists the capability to personalize treatments for accurate delivery of radiation dose based on clinical parameters and anatomical information. Eradication of gross and microscopic tumours with preservation of health-related quality of life can be achieved in many patients. Two major strategies, acting synergistically, will enable further widening of the therapeutic window of radiation oncology in the era of precision medicine: technology-driven improvement of treatment conformity, including advanced image guidance and particle therapy, and novel biological concepts for personalized treatment, including biomarker-guided prescription, combined treatment modalities and adaptation of treatment during its course.
Collapse
Affiliation(s)
- Michael Baumann
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden
- OncoRay - National Center for Radiation Research in Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, 01307 Dresden
- National Center for Tumor Diseases (NCT), Fetscherstrasse 74, 01307 Dresden
- German Cancer Consortium (DKTK) Dresden, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Oncology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Mechthild Krause
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden
- OncoRay - National Center for Radiation Research in Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, 01307 Dresden
- National Center for Tumor Diseases (NCT), Fetscherstrasse 74, 01307 Dresden
- German Cancer Consortium (DKTK) Dresden, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Oncology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Jürgen Debus
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg
- Heidelberg Ion Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Im Neuenheimer Feld 400, 69120 Heidelberg
- German Cancer Consortium (DKTK) Heidelberg, Germany
| | - Søren M Bentzen
- Department of Epidemiology and Public Health and Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene Street S9a03, Baltimore, Maryland 21201, USA
| | - Juliane Daartz
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital and Harvard Medical School, 1000 Blossom Street Cox 362, Boston, Massachusetts 02114, USA
| | - Christian Richter
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden
- OncoRay - National Center for Radiation Research in Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, 01307 Dresden
- National Center for Tumor Diseases (NCT), Fetscherstrasse 74, 01307 Dresden
- German Cancer Consortium (DKTK) Dresden, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Daniel Zips
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium Tübingen, Postfach 2669, 72016 Tübingen
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Strasse 3, 72016 Tübingen, Germany
| | - Thomas Bortfeld
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital and Harvard Medical School, 1000 Blossom Street Cox 362, Boston, Massachusetts 02114, USA
| |
Collapse
|
31
|
Proton beam radiotherapy: report of the first ten patients treated at the "Centro Nazionale di Adroterapia Oncologica (CNAO)" for skull base and spine tumours. Radiol Med 2013; 119:277-82. [PMID: 24337759 DOI: 10.1007/s11547-013-0345-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/20/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE The Italian National Centre for Oncological Hadrontherapy (Centro Nazionale di Adroterapia Oncologica, CNAO), equipped with a proton and ion synchrotron, started clinical activity in September 2011. The clinical and technical characteristics of the first ten proton beam radiotherapy treatments are reported. MATERIALS AND METHODS Ten patients, six males and four females (age range 27-73 years, median 55.5), were treated with proton beam radiotherapy. After one to two surgical procedures, seven patients received a histological diagnosis of chordoma (of the skull base in three cases, the cervical spine in one case and the sacrum in three cases) and three of low-grade chondrosarcoma (skull base). Prescribed doses were 74 GyE for chordoma and 70 GyE for chondrosarcoma at 2 GyE/fraction delivered 5 days per week. RESULTS Treatment was well tolerated without toxicity-related interruptions. The maximal acute toxicity was grade 2, with oropharyngeal mucositis, nausea and vomiting for the skull base tumours, and grade 2 dermatitis for the sacral tumours. After 6-12 months of follow-up, no patient developed tumour progression. CONCLUSIONS The analysis of the first ten patients treated with proton therapy at CNAO showed that this treatment was feasible and safe. Currently, patient accrual into these as well as other approved protocols is continuing, and a longer follow-up period is needed to assess tumour control and late toxicity.
Collapse
|
32
|
Anaesthetic techniques for unique cancer surgery procedures. Best Pract Res Clin Anaesthesiol 2013; 27:513-26. [DOI: 10.1016/j.bpa.2013.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022]
|
33
|
Grabham P, Sharma P. The effects of radiation on angiogenesis. Vasc Cell 2013; 5:19. [PMID: 24160185 PMCID: PMC3895662 DOI: 10.1186/2045-824x-5-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 12/31/2022] Open
Abstract
The average human body contains tens of thousands of miles of vessels that permeate every tissue down to the microscopic level. This makes the human vasculature a prime target for an agent like radiation that originates from a source and passes through the body. Exposure to radiation released during nuclear accidents and explosions, or during cancer radiotherapy, is well known to cause vascular pathologies because of the ionizing effects of electromagnetic radiations (photons) such as gamma rays. There is however, another type of less well-known radiation - charged ion particles, and these atoms stripped of electrons, have different physical properties to the photons of electromagnetic radiation. They are either found in space or created on earth by particle collider facilities, and are of significant recent interest due to their enhanced effectiveness and increasing use in cancer radiotherapy, as well as a health risk to the growing number of people spending time in the space environment. Although there is to date, relatively few studies on the effects of charged particles on the vascular system, a very different picture of the biological effects of these particles compared to photons is beginning to emerge. These under researched biological effects of ion particles have a large impact on the health consequences of exposure. In this short review, we will discuss the effects of charged particles on an important biological process of the vascular system, angiogenesis, which creates and maintains the vasculature and is highly important in tumor vasculogenesis.
Collapse
Affiliation(s)
- Peter Grabham
- Center for Radiological research, Columbia University, VC 11-243, 630 West 168th street, New York, NY 10032, USA
| | - Preety Sharma
- Center for Radiological research, Columbia University, VC 11-243, 630 West 168th street, New York, NY 10032, USA
| |
Collapse
|
34
|
Abstract
PURPOSE This Monte Carlo simulation work aims at studying a new radiotherapy approach called proton-minibeam radiation therapy (pMBRT). The main objective of this proof of concept was the evaluation of the possible gain in tissue sparing, thanks to the spatial fractionation of the dose, which could be used to deposit higher and potentially curative doses in clinical cases where tissue tolerances are a limit for conventional methods. METHODS Monte Carlo simulations (GATE v.6) have been used as a method to calculate the ratio of the peak-to-valley doses (PVDR) for arrays of proton minibeams of 0.7 mm width and several center-to-center distances, at different depths in a water phantom. The beam penumbras were also evaluated as an important parameter for tissue sparing, for example, in the treatment of non-cancer diseases like epilepsy. Two proton energies were considered in this study: a clinically relevant energy (105 MeV) and a very high energy (1 GeV), to benefit from a reduced lateral scattering. For the latter case, an interlaced geometry was also evaluated. RESULTS Higher or similar PVDR than the ones obtained in x-rays minibeam radiation therapy were achieved in several pMBRT configurations. In addition, for the two energies studied, the beam penumbras are smaller than in the case of Gamma Knife radiosurgery. CONCLUSIONS The high PVDR obtained for some configurations and the small penumbras in comparison with existing radiosurgery techniques, suggest a potential gain in healthy tissue sparing in this new technique. Biological studies are warranted to assess the effects of pMBRT on both normal and tumoral tissues.
Collapse
Affiliation(s)
- Y Prezado
- IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, Orsay, France.
| | | |
Collapse
|
35
|
Nairz O, Winter M, Heeg P, Jäkel O. Accuracy of robotic patient positioners used in ion beam therapy. Radiat Oncol 2013; 8:124. [PMID: 23692666 PMCID: PMC3749753 DOI: 10.1186/1748-717x-8-124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/10/2013] [Indexed: 12/04/2022] Open
Abstract
Background In this study we investigate the accuracy of industrial six axes robots employed for patient positioning at the Heidelberg Ion Beam Therapy Center. Methods In total 1018 patient setups were monitored with a laser tracker and subsequently analyzed. The measurements were performed in the two rooms with a fixed horizontal beam line. Both, the 3d translational errors and the rotational errors around the three table axes were determined. Results For the first room the 3d error was smaller than 0.72 mm in 95 percent of all setups. The standard deviation of the rotational errors was at most 0.026° for all axes. For the second room Siemens implemented an improved approach strategy to the final couch positions. The 95 percent quantile of the 3d error could in this room be reduced to 0.53 mm; the standard deviation of the rotational errors was also at most 0.026°. Conclusions Robots are very flexible tools for patient positioning in six degrees of freedom. This study proved that the robots are able to achieve clinically acceptable accuracy in real patient setups, too.
Collapse
Affiliation(s)
- Olaf Nairz
- Heidelberger Ionenstrahl-Therapiezentrum, Im Neuenheimer Feld 450, Heidelberg 69120, Germany.
| | | | | | | |
Collapse
|
36
|
Girdhani S, Sachs R, Hlatky L. Biological Effects of Proton Radiation: What We Know and Don't Know. Radiat Res 2013; 179:257-72. [DOI: 10.1667/rr2839.1] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Franceschi F, Bonan R, Khairy P, Dubuc M, Thibault B, Macle L, Talajic M, Roy D, Koutbi L, Virmani R, Guerra PG. Histopathological effects and evolution of transvenous -radiation applications in right and left atria: an animal study. Europace 2011; 14:745-51. [DOI: 10.1093/europace/eur351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
38
|
Greilich S, Grzanka L, Bassler N, Andersen C, Jäkel O. Amorphous track models: A numerical comparison study. RADIAT MEAS 2010. [DOI: 10.1016/j.radmeas.2010.05.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|