1
|
Soto L, Pavez C, Pedreros J, Jain J, Moreno J, San Martín P, Castillo F, Zanelli D, Altamirano L. Development of a Miniaturized 2-Joule Pulsed Plasma Source Based on Plasma Focus Technology: Applications in Extreme Condition Materials and Nanosatellite Orientation. MICROMACHINES 2024; 15:1123. [PMID: 39337783 PMCID: PMC11433777 DOI: 10.3390/mi15091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 09/30/2024]
Abstract
Plasma focus devices represent a class of hot and dense plasma sources that serve a dual role in fundamental plasma research and practical applications. These devices allow the observation of various phenomena, including the z-pinch effect, nuclear fusion reactions, plasma filaments, bursts, shocks, jets, X-rays, neutron pulses, ions, and electron beams. In recent years, considerable efforts have been directed toward miniaturizing plasma focus devices, driven by the pursuit of both basic studies and technological advancements. In this paper, we present the design and construction of a compact, portable pulsed plasma source based on plasma focus technology, operating at the ~2-4 Joule energy range for versatile applications (PF-2J: 120 nF capacitance, 6-9 kV charging voltage, 40 nH inductance, 2.16-4.86 J stored energy, and 10-15 kA maximum current at short circuit). The components of the device, including capacitors, spark gaps, discharge chambers, and power supplies, are transportable within hand luggage. The electrical characteristics of the discharge were thoroughly characterized using voltage and current derivative monitoring techniques. A peak current of 15 kiloamperes was achieved within 110 nanoseconds in a short-circuit configuration at a 9 kV charging voltage. Plasma dynamics were captured through optical refractive diagnostics employing a pulsed Nd-YAG laser with a 170-picosecond pulse duration. Clear evidence of the z-pinch effect was observed during discharges in a deuterium atmosphere at 4 millibars and 6 kilovolts. The measured pinch length and radius were approximately 0.8 mm and less than 100 μm, respectively. Additionally, we explore the potential applications of this compact pulsed plasma source. These include its use as a plasma shock irradiation device for analyzing materials intended for the first wall of nuclear fusion reactors, its capability in material film deposition, and its utility as an educational tool in experimental plasma physics. We also show its potential as a pulsed plasma thruster for nanosatellites, showcasing the advantages of miniaturized plasma focus technology.
Collapse
Affiliation(s)
- Leopoldo Soto
- Center for Research and Applications on the Intersection of Plasma Physics, Matter and Complexity, P2mc, Comisión Chilena de Energía Nuclear, Santiago 7600713, Chile; (C.P.); (J.J.); (J.M.); (D.Z.)
- Departamento de Ciencias Físicas, Universidad Andres Bello, Republica 220, Santiago 8370134, Chile
| | - Cristian Pavez
- Center for Research and Applications on the Intersection of Plasma Physics, Matter and Complexity, P2mc, Comisión Chilena de Energía Nuclear, Santiago 7600713, Chile; (C.P.); (J.J.); (J.M.); (D.Z.)
- Departamento de Ciencias Físicas, Universidad Andres Bello, Republica 220, Santiago 8370134, Chile
| | - José Pedreros
- Departamento de Ingeniería Eléctrica, Universidad de Chile, Santiago 8370451, Chile;
| | - Jalaj Jain
- Center for Research and Applications on the Intersection of Plasma Physics, Matter and Complexity, P2mc, Comisión Chilena de Energía Nuclear, Santiago 7600713, Chile; (C.P.); (J.J.); (J.M.); (D.Z.)
| | - José Moreno
- Center for Research and Applications on the Intersection of Plasma Physics, Matter and Complexity, P2mc, Comisión Chilena de Energía Nuclear, Santiago 7600713, Chile; (C.P.); (J.J.); (J.M.); (D.Z.)
- Departamento de Ciencias Físicas, Universidad Andres Bello, Republica 220, Santiago 8370134, Chile
| | - Patricio San Martín
- Research Reactors and Nuclear Fuel Department, Comisión Chilena de Energía Nuclear, Santiago 7600713, Chile;
| | - Fermín Castillo
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Daniel Zanelli
- Center for Research and Applications on the Intersection of Plasma Physics, Matter and Complexity, P2mc, Comisión Chilena de Energía Nuclear, Santiago 7600713, Chile; (C.P.); (J.J.); (J.M.); (D.Z.)
| | | |
Collapse
|
6
|
Buontempo F, Orsini E, Zironi I, Isolan L, Cappellini A, Rapino S, Tartari A, Mostacci D, Cucchi G, Martelli AM, Sumini M, Castellani G. Enhancing radiosensitivity of melanoma cells through very high dose rate pulses released by a plasma focus device. PLoS One 2018; 13:e0199312. [PMID: 29958291 PMCID: PMC6025851 DOI: 10.1371/journal.pone.0199312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/05/2018] [Indexed: 12/19/2022] Open
Abstract
Radiation therapy is a useful and standard tumor treatment strategy. Despite recent advances in delivery of ionizing radiation, survival rates for some cancer patients are still low because of recurrence and radioresistance. This is why many novel approaches have been explored to improve radiotherapy outcome. Some strategies are focused on enhancement of accuracy in ionizing radiation delivery and on the generation of greater radiation beams, for example with a higher dose rate. In the present study we proposed an in vitro research of the biological effects of very high dose rate beam on SK-Mel28 and A375, two radioresistant human melanoma cell lines. The beam was delivered by a pulsed plasma device, a "Mather type" Plasma Focus for medical applications. We hypothesized that this pulsed X-rays generator is significantly more effective to impair melanoma cells survival compared to conventional X-ray tube. Very high dose rate treatments were able to reduce clonogenic efficiency of SK-Mel28 and A375 more than the X-ray tube and to induce a greater, less easy-to-repair DNA double-strand breaks. Very little is known about biological consequences of such dose rate. Our characterization is preliminary but is the first step toward future clinical considerations.
Collapse
Affiliation(s)
- Francesca Buontempo
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Ester Orsini
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Isabella Zironi
- University of Bologna, Department of Physics and Astronomy, Bologna, Italy
- University of Bologna, Department of Chemistry “G. Ciamician”, Bologna, Italy
- Interdepartmental Centre “L. Galvani” (CIG) for integrated studies of bioinformatics, biophysics and biocomplexity, Bologna, Italy
| | - Lorenzo Isolan
- European Institute of Oncology and Monzino Cardiac Center Foundation (IEO-CCM), Milano, Italy
- University of Bologna, Department of Industrial Engineering, Bologna, Italy
| | - Alessandra Cappellini
- University of Cassino and Southern Lazio, Department of Human Social and Health Sciences, Cassino, Italy
| | - Stefania Rapino
- Interdepartmental Centre “L. Galvani” (CIG) for integrated studies of bioinformatics, biophysics and biocomplexity, Bologna, Italy
- National Institute for Nuclear Physics (INFN), Bologna, Italy
| | - Agostino Tartari
- European Institute of Oncology and Monzino Cardiac Center Foundation (IEO-CCM), Milano, Italy
| | - Domiziano Mostacci
- European Institute of Oncology and Monzino Cardiac Center Foundation (IEO-CCM), Milano, Italy
| | - Giorgio Cucchi
- European Institute of Oncology and Monzino Cardiac Center Foundation (IEO-CCM), Milano, Italy
| | | | - Marco Sumini
- University of Bologna, Department of Chemistry “G. Ciamician”, Bologna, Italy
- European Institute of Oncology and Monzino Cardiac Center Foundation (IEO-CCM), Milano, Italy
| | - Gastone Castellani
- University of Bologna, Department of Physics and Astronomy, Bologna, Italy
- University of Bologna, Department of Chemistry “G. Ciamician”, Bologna, Italy
- Interdepartmental Centre “L. Galvani” (CIG) for integrated studies of bioinformatics, biophysics and biocomplexity, Bologna, Italy
| |
Collapse
|
7
|
The effect of well-characterized, very low-dose x-ray radiation on fibroblasts. PLoS One 2018; 13:e0190330. [PMID: 29300773 PMCID: PMC5754078 DOI: 10.1371/journal.pone.0190330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study is to determine the effects of low-dose radiation on fibroblast cells irradiated by spectrally and dosimetrically well-characterized soft x-rays. To achieve this, a new cell culture x-ray irradiation system was designed. This system generates characteristic fluorescent x-rays to irradiate the cell culture with x-rays of well-defined energies and doses. 3T3 fibroblast cells were cultured in cups with Mylar® surfaces and were irradiated for one hour with characteristic iron (Fe) K x-ray radiation at a dose rate of approximately 550 μGy/hr. Cell proliferation, total protein analysis, flow cytometry, and cell staining were performed on fibroblast cells to determine the various effects caused by the radiation. Irradiated cells demonstrated increased proliferation and protein production compared to control samples. Flow cytometry revealed that a higher percentage of irradiated cells were in the G0/G1 phase of the cell cycle compared to control counterparts, which is consistent with other low-dose studies. Cell staining results suggest that irradiated cells maintained normal cell functions after radiation exposure, as there were no qualitative differences between the images of the control and irradiated samples. The result of this study suggest that low-dose soft x-ray radiation might cause an initial pause, followed by a significant increase, in proliferation. An initial “pause” in cell proliferation could be a protective mechanism of the cells to minimize DNA damage caused by radiation exposure. The new cell irradiation system developed here allows for unprecedented control over the properties of the x-rays given to the cell cultures. This will allow for further studies on various cell types with known spectral distribution and carefully measured doses of radiation, which may help to elucidate the mechanisms behind varied cell responses to low-dose x-rays reported in the literature.
Collapse
|