1
|
Kudrevicius L, Jaselskė E, Stankus G, Arslonova S, Adliene D. Post-Irradiation Behavior of Colored PVA-Based Films Containing Ag Nanoparticles as Radiation Detectors/Exposure Indicators. Gels 2024; 10:290. [PMID: 38786207 PMCID: PMC11121668 DOI: 10.3390/gels10050290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Ionizing radiation covers a broad spectrum of applications. Since radioactive/radiation pollution is directly related to radiation risk, radiation levels should be strictly controlled. Different detection methods can be applied for radiation registration and monitoring. In this paper, radiation-induced variations in the optical properties of silver-enriched PVA-based hydrogel films with and without azo dye (Toluidine blue O, TBO, and Methyl red, MR) additives were investigated, and the feasibility of these free-standing films to serve as radiation detectors/exposure indicators was assessed. AgNO3 admixed with PVA gel was used as a source for the radiation-induced synthesis of silver nanoparticles (AgNPs) in irradiated gel films. Three types of sensors were prepared: silver-enriched PVA films containing a small amount of glycerol (AgPVAGly); silver-enriched PVA films with toluidine blue adducts (AgPVAGlyTBO); and silver-enriched PVA films with methyl red additives (AgPVAGlyMR). The selection of TBO and MR was based on their sensitivity to irradiation. The irradiation of the samples was performed in TrueBeam2.1 (VARIAN) using 6 MeV photons. Different doses up to 10 Gy were delivered to the films. The sensitivity of the films was assessed by analyzing the characteristic UV-Vis absorbance peaks on the same day as irradiation and 7, 30, 45, 90, and 180 days after irradiation. It was found that the addition of azo dyes led to an enhanced radiation sensitivity of the AgNPs containing films (0.6 Gy-1 for AgPVAGlyTBO and 0.4 Gy-1 for AgPVAGlyMR) irradiated with <2 Gy doses, indicating their applicability as low-dose exposure indicators. The irradiated films were less sensitive to higher doses. Almost no dose fading was detected between the 7th and 45th day after irradiation. Based on the obtained results, competing AgNP formation and color-bleaching effects in the AgPVAGly films with dye additives are discussed.
Collapse
Affiliation(s)
- Linas Kudrevicius
- Physics Department, Kaunas University of Technology, 51368 Kaunas, Lithuania;
| | - Evelina Jaselskė
- Neurosurgery Department, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Gabrielius Stankus
- Physics Department, Kaunas University of Technology, 51368 Kaunas, Lithuania;
| | - Shirin Arslonova
- Tashkent City Branch of Republican Specialized Scientific-Practical Medical Centre of Oncology and Radiology, Boguston Str. 1, Tashkent P.O. Box 100070, Uzbekistan
| | - Diana Adliene
- Physics Department, Kaunas University of Technology, 51368 Kaunas, Lithuania;
| |
Collapse
|
2
|
Bottenheft C, Groen EL, Mol D, Valk PJL, Houben MMJ, Kingma BRM, van Erp JBF. Effects of heat load and hypobaric hypoxia on cognitive performance: a combined stressor approach. ERGONOMICS 2023; 66:2148-2164. [PMID: 36916391 DOI: 10.1080/00140139.2023.2190062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
This study investigates how cognitive performance is affected by the combination of two stressors that are operationally relevant for helicopter pilots: heat load and hypobaric hypoxia. Fifteen participants were exposed to (1) no stressors, (2) heat load, (3) hypobaric hypoxia, and (4) combined heat load and hypobaric hypoxia. Hypobaric hypoxia (13,000 ft) was achieved in a hypobaric chamber. Heat load was induced by increasing ambient temperature to ∼28 °C. Cognitive performance was measured using two multitasks, and a vigilance task. Subjective and physiological data (oxygen saturation, heart rate, core- and skin temperature) were also collected. Mainly heat load caused cognitive performance decline. This can be explained by high subjective heat load and increased skin temperature, which takes away cognitive resources from the tasks. Only the arithmetic subtask was sensitive to hypobaric hypoxia, whereby hypobaric hypoxia caused a further performance decline in addition to the decline caused by heat load.Practitioner summary: Little is known about how multiple environmental stressors interact. This study investigates the combined effects of heat load and hypobaric hypoxia on cognitive performance. An additive effect of heat load and hypobaric hypoxia was found on a arithmetic task, which may be attributed to independent underlying mechanisms.
Collapse
Affiliation(s)
- Charelle Bottenheft
- Department of Human Performance, Unit Defence, Safety and Security, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
- Human Media Interaction, Computer Science, University of Twente, Enschede, Netherlands
| | - Eric L Groen
- Department of Human Performance, Unit Defence, Safety and Security, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Douwe Mol
- Department of Human Performance, Unit Defence, Safety and Security, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Pierre J L Valk
- Department of Human Performance, Unit Defence, Safety and Security, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Mark M J Houben
- Department of Human Performance, Unit Defence, Safety and Security, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Boris R M Kingma
- Department of Human Performance, Unit Defence, Safety and Security, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Jan B F van Erp
- Human Media Interaction, Computer Science, University of Twente, Enschede, Netherlands
- Department of Human Machine Teaming, Unit Defence, Safety and Security, Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| |
Collapse
|
3
|
Liang R, Wang L, Yang Q, Xu Q, Sun S, Zhou H, Zhao M, Gao J, Zheng C, Yang J, Ming D. Time-course adaptive changes in hippocampal transcriptome and synaptic function induced by simulated microgravity associated with cognition. Front Cell Neurosci 2023; 17:1275771. [PMID: 37868195 PMCID: PMC10585108 DOI: 10.3389/fncel.2023.1275771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction The investigation of cognitive function in microgravity, both short-term and long-term, remains largely descriptive. And the underlying mechanisms of the changes over time remain unclear. Methods Behavioral tests, electrophysiological recording, and RNA sequencing were used to observe differences in behavior, synaptic plasticity, and gene expression. Results Initially, we measured the performance of spatial cognition exposed to long-term simulated microgravity (SM). Both working memory and advanced cognitive abilities were enhanced. Somewhat surprisingly, the synaptic plasticity of the hippocampal CA3-CA1 synapse was impaired. To gain insight into the mechanism of changing regularity over time, transcriptome sequencing in the hippocampus was performed. The analysis identified 20 differentially expressed genes (DEGs) in the hippocampus after short-term modeling, 19 of which were up-regulated. Gene Ontology (GO) analysis showed that these up-regulated genes were mainly enriched in synaptic-related processes, such as Stxbp5l and Epha6. This might be related to the enhancement of working memory performance under short-term SM exposure. Under exposure to long-term SM, 7 DEGs were identified in the hippocampus, all of which were up-regulated and related to oxidative stress and metabolism, such as Depp1 and Lrg1. Compensatory effects occurred with increased modeling time. Discussion To sum up, our current research indicates that the cognitive function under SM exposure is consistently maintained or potentially even being enhanced over both short and long durations. The underlying mechanisms are intricate and potentially linked to the differential expression of hippocampal-associated genes and alterations in synaptic function, with these effects being time-dependent. The present study will lay the experimental and theoretical foundation of the multi-level mechanism of cognitive function under space flight.
Collapse
Affiliation(s)
- Rong Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ling Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Qing Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qing Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shufan Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Haichen Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Meiling Zhao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jing Gao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chenguang Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Jiajia Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| |
Collapse
|
4
|
Marques L, Vale A, Vaz P. State-of-the-Art Mobile Radiation Detection Systems for Different Scenarios. SENSORS 2021; 21:s21041051. [PMID: 33557104 PMCID: PMC7913838 DOI: 10.3390/s21041051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 11/26/2022]
Abstract
In the last decade, the development of more compact and lightweight radiation detection systems led to their application in handheld and small unmanned systems, particularly air-based platforms. Examples of improvements are: the use of silicon photomultiplier-based scintillators, new scintillating crystals, compact dual-mode detectors (gamma/neutron), data fusion, mobile sensor networks, cooperative detection and search. Gamma cameras and dual-particle cameras are increasingly being used for source location. This study reviews and discusses the research advancements in the field of gamma-ray and neutron measurements using mobile radiation detection systems since the Fukushima nuclear accident. Four scenarios are considered: radiological and nuclear accidents and emergencies; illicit traffic of special nuclear materials and radioactive materials; nuclear, accelerator, targets, and irradiation facilities; and naturally occurring radioactive materials monitoring-related activities. The work presented in this paper aims to: compile and review information on the radiation detection systems, contextual sensors and platforms used for each scenario; assess their advantages and limitations, looking prospectively to new research and challenges in the field; and support the decision making of national radioprotection agencies and response teams in respect to adequate detection system for each scenario. For that, an extensive literature review was conducted.
Collapse
Affiliation(s)
- Luís Marques
- Centro de Investigação da Academia da Força Aérea, Academia da Força Aérea, Instituto Universitário Militar, Granja do Marquês, 2715-021 Pêro Pinheiro, Portugal
- Correspondence:
| | - Alberto Vale
- Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;
| | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal;
| |
Collapse
|
5
|
Robbins AS, Pathak SR, Webber BJ, Erich RA, Escobar JD, Simon AA, Stahlman SL, Gambino-Shirley KJ. Malignancy in U.S. Air Force fighter pilots and other officers, 1986-2017: A retrospective cohort study. PLoS One 2020; 15:e0239437. [PMID: 32960918 PMCID: PMC7508357 DOI: 10.1371/journal.pone.0239437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/05/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE This study sought to determine the incidence rates of cancer, overall and by site, among active component U.S. Air Force fighter pilots, and to compare the rates with those in other active component Air Force officers. METHODS Using a matched retrospective cohort design, U.S. Air Force fighter pilots were compared with other commissioned officers who entered active component service between 1 January 1986 and 31 December 2006. The cohort was followed for cancer diagnoses in TRICARE and the Veterans Health Administration from 1 October 1995 through 31 December 2017. Fighter pilots and non-fighter pilot officers were compared after matching on sex, age at first observation (15 age groups), and age at last observation (15 age groups). Sex-stratified overall and site-specific cancer rates were compared with matched Poisson regression to determine incidence rate ratios with 95% confidence intervals. RESULTS During 1,412,590 person-years of follow-up, among the study population of 88,432 service members (4,949 fighter pilots and 83,483 matched officers), 977 incident cancer cases were diagnosed (86 in fighter pilots and 891 in matched officers). Male fighter pilots and matched officers had similar rates of all malignant cancers (RR = 1.04; 95% CI: 0.83-1.31) and of each cancer site. Female fighter pilots and matched officers also had similar rates of all malignant cancers (RR = 0.99; 95% CI: 0.25-4.04). DISCUSSION In the active component U.S. Air Force, fighter pilots and their officer peers had similar overall and site-specific cancer rates.
Collapse
Affiliation(s)
- Anthony S Robbins
- Public Health and Preventive Medicine Department, U.S. Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Sonal R Pathak
- DataRev LLC, Atlanta, Georgia, United States of America.,Solutions Through Innovative Technologies, Inc., Fairborn, Ohio, United States of America
| | - Bryant J Webber
- Public Health and Preventive Medicine Department, U.S. Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Roger A Erich
- Aerospace Medicine Department, U.S. Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, Ohio, United States of America
| | - James D Escobar
- Public Health and Preventive Medicine Department, U.S. Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Alisa A Simon
- Public Health and Preventive Medicine Department, U.S. Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Shauna L Stahlman
- Armed Forces Health Surveillance Branch, Silver Spring, Maryland, United States of America
| | - Kelly J Gambino-Shirley
- Public Health and Preventive Medicine Department, U.S. Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, Ohio, United States of America
| |
Collapse
|
6
|
Pereira MA, Federico CA, Gonçalez OL. DETERMINATION OF THE RESPONSE TO THE ATMOSPHERIC COSMIC RADIATION OF A NEUTRON DOSIMETER ASSISTED BY MONTE CARLO SIMULATION. RADIATION PROTECTION DOSIMETRY 2018; 181:142-148. [PMID: 29378015 DOI: 10.1093/rpd/ncx309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/23/2017] [Indexed: 06/07/2023]
Abstract
A TLD-based dosimeter of polyethylene-lead-polyethylene, was developed and characterized with Monte Carlo simulations, using the MCNPX code. This passive system for the determination of the ambient dose equivalent (H*(10)) for neutrons over a wide energy range can be used for the dosimetry of neutrons from atmospheric cosmic radiation, on the ground, and onboard aircraft. A method assisted by Monte Carlo simulations that improves the calibration of fast neutron dosimeters based on moderation and thermalization of the incident fast flux and the measurement of the thermal flux by a sensor, which respond mainly to thermal neutrons, is presented in this work. The H*(10) energy response of this dosimeter was obtained from simulations for monoenergetic neutrons from 10-10 to 104 MeV. The validation of the modeling was done with irradiations for ISO standard neutron fields of 241Am-Be, 252Cf and 252Cf(D2O) at Instituto de Radioproteção e Dosimetria (IRD, Brazil) and at CERN-EU high-energy reference field (CERF).
Collapse
Affiliation(s)
- M A Pereira
- Instituto Tecnológico de Aeronáutica, Praça Marechal do Ar Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, São Paulo, Brazil
- Instituto de Estudos Avançados, Trevo Coronel Aviador José Alberto Albano do Amarante, 1, São José dos Campos, São Paulo, Brazil
| | - C A Federico
- Instituto Tecnológico de Aeronáutica, Praça Marechal do Ar Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, São Paulo, Brazil
- Instituto de Estudos Avançados, Trevo Coronel Aviador José Alberto Albano do Amarante, 1, São José dos Campos, São Paulo, Brazil
| | - O L Gonçalez
- Instituto Tecnológico de Aeronáutica, Praça Marechal do Ar Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, São Paulo, Brazil
- Instituto de Estudos Avançados, Trevo Coronel Aviador José Alberto Albano do Amarante, 1, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
7
|
Frey B, Rückert M, Deloch L, Rühle PF, Derer A, Fietkau R, Gaipl US. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol Rev 2018; 280:231-248. [PMID: 29027224 DOI: 10.1111/imr.12572] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ionizing radiation is often regarded as an element of danger. But, danger responses on the cellular and molecular level are often beneficial with regard to the induction of anti-tumor immunity and for amelioration of inflammation. We outline how in dependence of radiation dose and fraction, radiation itself-and especially in combination with immune modulators-impacts on the innate and adaptive immune system. Focus is set on radiation-induced changes of the tumor cell phenotype and the cellular microenvironment including immunogenic cancer cell death. Mechanisms how anti-tumor immune responses are triggered by radiotherapy in combination with hyperthermia, inhibition of apoptosis, the adjuvant AnnexinA5, or vaccination with high hydrostatic pressure-killed autologous tumor cells are discussed. Building on this, feasible multimodal radio-immunotherapy concepts are reviewed including overcoming immune suppression by immune checkpoint inhibitors and by targeting TGF-β. Since radiation-induced tissue damage, inflammation, and anti-tumor immune responses are interconnected, the impact of lower doses of radiation on amelioration of inflammation is outlined. Closely meshed immune monitoring concepts based on the liquid biopsy blood are suggested for prognosis and prediction of cancer and non-cancer inflammatory diseases. Finally, challenges and visions for the design of cancer radio-immunotherapies and for treatment of benign inflammatory diseases are given.
Collapse
Affiliation(s)
- Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paul F Rühle
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anja Derer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
8
|
Effect of Oxidative Stress on Cardiovascular System in Response to Gravity. Int J Mol Sci 2017; 18:ijms18071426. [PMID: 28677649 PMCID: PMC5535917 DOI: 10.3390/ijms18071426] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
Long-term habitation in space leads to physiological alterations such as bone loss, muscle atrophy, and cardiovascular deconditioning. Two predominant factors—namely space radiation and microgravity—have a crucial impact on oxidative stress in living organisms. Oxidative stress is also involved in the aging process, and plays important roles in the development of cardiovascular diseases including hypertension, left ventricular hypertrophy, and myocardial infarction. Here, we discuss the effects of space radiation, microgravity, and a combination of these two factors on oxidative stress. Future research may facilitate safer living in space by reducing the adverse effects of oxidative stress.
Collapse
|