1
|
Ledda RE, Silva M, McMichael N, Sartorio C, Branchi C, Milanese G, Nayak SM, Sverzellati N. The diagnostic value of grey-scale inversion technique in chest radiography. Radiol Med 2022; 127:294-304. [PMID: 35041136 PMCID: PMC8960630 DOI: 10.1007/s11547-022-01453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/03/2022] [Indexed: 12/01/2022]
Abstract
Purpose We investigated whether the additional use of grey-scale inversion technique improves the interpretation of eight chest abnormalities, in terms of diagnostic performance and interobserver variability. Material and methods A total of 507 patients who underwent a chest computed tomography (CT) examination and a chest radiography (CXR) within 24 h were enrolled. CT was the standard of reference. Images were retrospectively reviewed for the presence of atelectasis, consolidation, interstitial abnormality, nodule, mass, pleural effusion, pneumothorax and rib fractures. Four CXR reading settings, involving 3 readers were organized: only standard; only inverted; standard followed by inverted; and inverted followed by standard. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy, assessed with the area under the curve (AUC), and their 95% confidence interval were calculated for each reader and setting. Interobserver agreement was tested by Cohen’s K test with quadratic weights (Kw) and its 95%CI.
Results CXR sensitivity % for any finding was 35.1 (95% CI: 33 to 37) for setting 1, 35.9 (95% CI: 33 to 37), for setting 2, 32.59 (95% CI: 30 to 34) for setting 3, and 35.56 (95% CI: 33 to 37) for setting 4; specificity % 93.78 (95% CI: 91 to 95), 93.92 (95% CI: 91 to 95), 94.43 (95% CI: 92 to 96), 93.86 (95% CI: 91 to 95); PPV % 56.22 (95% CI: 54.2 to 58.2), 56.49 (95% CI: 54.5 to 58.5), 57.15 (95% CI: 55 to 59), 56.75 (95% CI: 54 to 58); NPV % 85.66 (95% CI: 83 to 87), 85.74 (95% CI: 83 to 87), 85.29 (95% CI: 83 to 87), 85.73 (95% CI: 83 to 87); AUC values 0.64 (95% CI: 0.62 to 0.66), 0.65 (95% CI: 0.63 to 0.67), 0.64 (95% CI: 0.62 to 0.66), 0.65 (95% CI: 0.63 to 0.67); Kw values 0.42 (95% CI: 0.4 to 0.44), 0.40 (95% CI: 0.38 to 0.42), 0.42 (95% CI: 0.4 to 0.44), 0.41 (95% CI: 0.39 to 0.43) for settings 1, 2, 3 and 4, respectively.
Conclusions No significant advantages were observed in the use of grey-scale inversion technique neither over standard display mode nor in combination at the detection of eight chest abnormalities. Supplementary Information The online version contains supplementary material available at 10.1007/s11547-022-01453-0.
Collapse
Affiliation(s)
- Roberta Eufrasia Ledda
- Department of Medicine and Surgery, University of Parma, Scienze Radiologiche, University Hospital of Parma, Padiglione Barbieri, Via Gramsci 14, 43126, Parma, Italy
| | - Mario Silva
- Department of Medicine and Surgery, University of Parma, Scienze Radiologiche, University Hospital of Parma, Padiglione Barbieri, Via Gramsci 14, 43126, Parma, Italy
| | - Nicole McMichael
- Department of Radiology Diagnostics, Skåne University Hospital of Malmö, Malmö, Sweden
| | - Carlotta Sartorio
- Department of Medicine and Surgery, University of Parma, Scienze Radiologiche, University Hospital of Parma, Padiglione Barbieri, Via Gramsci 14, 43126, Parma, Italy
| | - Cristina Branchi
- Department of Medicine and Surgery, University of Parma, Scienze Radiologiche, University Hospital of Parma, Padiglione Barbieri, Via Gramsci 14, 43126, Parma, Italy
| | - Gianluca Milanese
- Department of Medicine and Surgery, University of Parma, Scienze Radiologiche, University Hospital of Parma, Padiglione Barbieri, Via Gramsci 14, 43126, Parma, Italy.
| | - Sundeep M Nayak
- Department of Radiology, Kaiser Permanente Northern California, San Leandro, CA, USA
| | - Nicola Sverzellati
- Department of Medicine and Surgery, University of Parma, Scienze Radiologiche, University Hospital of Parma, Padiglione Barbieri, Via Gramsci 14, 43126, Parma, Italy
| |
Collapse
|
2
|
Meltzer C, Gilljam M, Vikgren J, Norrlund RR, Vult von Steyern K, Båth M, Johnsson ÅA. QUANTIFICATION OF PULMONARY PATHOLOGY IN CYSTIC FIBROSIS-COMPARISON BETWEEN DIGITAL CHEST TOMOSYNTHESIS AND COMPUTED TOMOGRAPHY. RADIATION PROTECTION DOSIMETRY 2021; 195:434-442. [PMID: 33683309 PMCID: PMC8507459 DOI: 10.1093/rpd/ncab017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 09/18/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE Digital tomosynthesis (DTS) is currently undergoing validation for potential clinical implications. The aim of this study was to investigate the potential for DTS as a low-dose alternative to computed tomography (CT) in imaging of pulmonary pathology in patients with cystic fibrosis (CF). METHODS DTS and CT were performed as part of the routine triannual follow-up in 31 CF patients. Extent of disease was quantified according to modality-specific scoring systems. Statistical analysis included Spearman's rank correlation coefficient (r) and Krippendorff's alpha (α). MAJOR FINDINGS The median effective dose was 0.14 for DTS and 2.68 for CT. Intermodality correlation was very strong for total score and the subscores regarding bronchiectasis and bronchial wall-thickening (r = 0.82-0.91, P < 0.01). Interobserver reliability was high for total score, bronchiectasis and mucus plugging (α = 0.83-0.93) in DTS. CONCLUSION Chest tomosynthesis could be a low-dose alternative to CT in quantitative estimation of structural lung disease in CF.
Collapse
Affiliation(s)
| | - M Gilljam
- Gothenburg CF-Center, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg Sweden
| | - J Vikgren
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Bruna stråket 11b V 2 SU/Sahlgrenska, 413 45 Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Bruna stråket 11b V 2 SU/Sahlgrenska, 413 45 Gothenburg, Sweden
| | - R R Norrlund
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Bruna stråket 11b V 2 SU/Sahlgrenska, 413 45 Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Bruna stråket 11b V 2 SU/Sahlgrenska, 413 45 Gothenburg, Sweden
| | - K Vult von Steyern
- Center for Medical Imaging and Physiology, Skåne University Hospital, Getingevägen 4, 22185 Lund, Sweden
| | - M Båth
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gula stråket 2B, Plan 3, 413 45 Gothenburg, Sweden
- Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Gula stråket 2B, Plan 3, 413 45 Gothenburg, Sweden
| | - Å A Johnsson
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Bruna stråket 11b V 2 SU/Sahlgrenska, 413 45 Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Bruna stråket 11b V 2 SU/Sahlgrenska, 413 45 Gothenburg, Sweden
| |
Collapse
|
4
|
Meltzer C, Fagman E, Vikgren J, Molnar D, Borna E, Beni MM, Brandberg J, Bergman B, Båth M, Johnsson ÅA. Surveillance of small, solid pulmonary nodules at digital chest tomosynthesis: data from a cohort of the pilot Swedish CArdioPulmonary bioImage Study (SCAPIS). Acta Radiol 2021; 62:348-359. [PMID: 32438877 PMCID: PMC7930602 DOI: 10.1177/0284185120923106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Digital tomosynthesis (DTS) might be a low-dose/low-cost alternative to computed tomography (CT). Purpose To investigate DTS relative to CT for surveillance of incidental, solid pulmonary nodules. Material and Methods Recruited from a population study, 106 participants with indeterminate solid pulmonary nodules on CT underwent surveillance with concurrently performed CT and DTS. Nodule size on DTS was assessed by manual diameter measurements and semi-automatic nodule segmentations were independently performed on CT. Measurement agreement was analyzed according to Bland–Altman with 95% limits of agreement (LoA). Detection of nodule volume change > 25% by DTS in comparison to CT was evaluated with receiver operating characteristics (ROC). Results A total of 81 nodules (76%) were assessed as measurable on DTS by two independent observers. Inter- and intra-observer LoA regarding change in average diameter were ± 2 mm. Calculation of relative volume change on DTS resulted in wide inter- and intra-observer LoA in the order of ± 100% and ± 50%. Comparing relative volume change between DTS and CT resulted in LoA of –58% to 67%. The area under the ROC curve regarding the ability of DTS to detect volumetric changes > 25% on CT was 0.58 (95% confidence interval [CI] = 0.40–0.76) and 0.50 (95% CI = 0.35–0.66) for the two observers. Conclusion The results of the present study show that measurement variability limits the agreement between DTS and CT regarding nodule size change for small solid nodules.
Collapse
Affiliation(s)
- Carin Meltzer
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden
- Department of Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Erika Fagman
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jenny Vikgren
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - David Molnar
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eivind Borna
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Maral Mirzai Beni
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - John Brandberg
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bengt Bergman
- Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden
- Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Magnus Båth
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Åse A Johnsson
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
Meltzer C, Vikgren J, Bergman B, Molnar D, Norrlund RR, Hassoun A, Gottfridsson B, Båth M, Johnsson ÅA. Detection and Characterization of Solid Pulmonary Nodules at Digital Chest Tomosynthesis: Data from a Cohort of the Pilot Swedish Cardiopulmonary Bioimage Study. Radiology 2018; 287:1018-1027. [PMID: 29613826 DOI: 10.1148/radiol.2018171481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose To investigate the performance of digital tomosynthesis (DTS) for detection and characterization of incidental solid lung nodules. Materials and Methods This prospective study was based on a population study with 1111 randomly selected participants (age range, 50-64 years) who underwent a medical evaluation that included chest computed tomography (CT). Among these, 125 participants with incidental nodules 5 mm or larger were included in this study, which added DTS in conjunction with the follow-up CT and was performed between March 2012 and October 2014. DTS images were assessed by four thoracic radiologists blinded to the true number of nodules in two separate sessions according to the 5-mm (125 participants) and 6-mm (55 participants) cut-off for follow-up of incidental nodules. Pulmonary nodules were directly marked on the images by the readers and graded regarding confidence of presence and recommendation for follow-up. Statistical analyses included jackknife free-response receiver operating characteristic, receiver operating characteristic, and Cohen κ coefficient. Results Overall detection rate ranges of CT-proven nodules 5 mm or larger and 6 mm or larger were, respectively, 49%-58% and 48%-62%. Jackknife free-response receiver operating characteristics figure of merit for detection of CT-proven nodules 5 mm or larger and 6 mm or larger was 0.47 and 0.51, respectively, and area under the receiver operating characteristic curve regarding recommendation for follow-up was 0.62 and 0.65, respectively. Conclusion Routine use of DTS would result in lower detection rates and reduced number of small nodules recommended for follow-up. © RSNA, 2018.
Collapse
Affiliation(s)
- Carin Meltzer
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - Jenny Vikgren
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - Bengt Bergman
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - David Molnar
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - Rauni Rossi Norrlund
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - Asmaa Hassoun
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - Bengt Gottfridsson
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - Magnus Båth
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| | - Åse A Johnsson
- From the Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (C.M., J.V., D.M., R.R.N., Å.A.J.), Department of Radiology and Nuclear Medicine at Oslo University Hospital, Ullevål, Norway (C.M.), Department of Radiology, Sahlgrenska University Hospital, Sweden (J.V., D.M., R.R.N., A.H., B.G., Å.A.J.), Department of Respiratory Medicine, Sahlgrenska University Hospital, Sweden (B.B.), Department of Respiratory Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Sweden (B.B.), Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden (M.B.), Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Sweden (M.B.)
| |
Collapse
|