1
|
Azizova TV, Bannikova MV, Grigoryeva ES, Briks KV, Hamada N. Mortality from various diseases of the circulatory system in the Russian Mayak nuclear worker cohort: 1948-2018. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:021511. [PMID: 35023506 DOI: 10.1088/1361-6498/ac4ae3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
This paper reports on the findings from the study of mortality from diseases of the circulatory system (DCS) in Russian nuclear workers of the Mayak Production Association (22 377 individuals, 25.4% female) who were hired at the facility between 1948 and 1982 and followed up until the end of 2018. Using the AMFIT module of the EPICURE software, relative risks (RRs) and excess RRs per unit absorbed dose (ERR/Gy) for the entire Mayak cohort, the subcohort of workers who were residents of the dormitory town of Ozyorsk and the subcohort of migrants from Ozyorsk were calculated based on maximum likelihood. The mean cumulative liver absorbed gamma-ray dose from external exposure was 0.45 (0.65) Gy (mean (standard deviation)) for men and 0.37 (0.56) Gy for women. The mean cumulative liver absorbed alpha dose from internal exposure to incorporated plutonium was 0.18 (0.65) Gy for men and 0.40 (1.92) Gy for women. By the end of the follow-up, 6019 deaths with DCS as the main cause of death were registered among Mayak Production Association workers (including 3828 deaths in the subcohort of residents and 2191 deaths in the subcohort of migrants) over 890 132 (622 199/267 933) person-years of follow-up. The linear model that took into account non-radiation factors (sex, attained age, calendar period, smoking status and alcohol drinking status) and alpha radiation dose (via adjusting) did not demonstrate significant associations of mortality from DCS, ischaemic heart disease (IHD) and cerebrovascular disease with gamma-ray exposure dose in the entire cohort, the resident subcohort or the migrant subcohort (either in men or women). For the subcohort of residents, a significant association with gamma dose was observed for mortality from ischaemic stroke in men with ERR/Gy = 0.43 (95% CI 0.08; 0.99); there were no significant associations with liver absorbed gamma dose for any other considered outcomes. As for internal exposure, for men no significant associations of mortality from any DCS with liver absorbed alpha dose were observed, but for women positive associations were found for mortality from DCS (the entire cohort and the resident subcohort) and IHD (the entire cohort). No significant associations of mortality from various types of DCS with neutron dose were observed either in men or women, although neutron absorbed doses were recorded in only 18% of the workers.
Collapse
Affiliation(s)
- Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk Chelyabinsk Region, Russia
| | - Maria V Bannikova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk Chelyabinsk Region, Russia
| | - Evgeniya S Grigoryeva
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk Chelyabinsk Region, Russia
| | - Ksenia V Briks
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk Chelyabinsk Region, Russia
| | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
2
|
Stram DO, Sokolnikov M, Napier BA, Vostrotin VV, Efimov A, Preston DL. Lung Cancer in the Mayak Workers Cohort: Risk Estimation and Uncertainty Analysis. Radiat Res 2021; 195:334-346. [PMID: 33471905 DOI: 10.1667/rade-20-00094.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/18/2020] [Indexed: 11/03/2022]
Abstract
The workers at the Mayak nuclear facility near Ozyorsk, Russia are a primary source of information about exposure to radiation at low-dose rates, since they were subject to protracted exposures to external gamma rays and to internal exposures from plutonium inhalation. Here we re-examine lung cancer mortality rates and assess the effects of external gamma and internal plutonium exposures using recently developed Monte Carlo dosimetry systems. Using individual lagged mean annual lung doses computed from the dose realizations, we fit excess relative risk (ERR) models to the lung cancer mortality data for the Mayak Workers Cohort using risk-modeling software. We then used the corrected-information matrix (CIM) approach to widen the confidence intervals of ERR by taking into account the uncertainty in doses represented by multiple realizations from the Monte Carlo dosimetry systems. Findings of this work revealed that there were 930 lung cancer deaths during follow-up. Plutonium lung doses (but not gamma doses) were generally higher in the new dosimetry systems than those used in the previous analysis. This led to a reduction in the risk per unit dose compared to prior estimates. The estimated ERR/Gy for external gamma-ray exposure was 0.19 (95% CI: 0.07 to 0.31) for both sexes combined, while the ERR/Gy for internal exposures based on mean plutonium doses were 3.5 (95% CI: 2.3 to 4.6) and 8.9 (95% CI: 3.4 to 14) for males and females at attained age 60. Accounting for uncertainty in dose had little effect on the confidence intervals for the ERR associated with gamma-ray exposure, but had a marked impact on confidence intervals, particularly the upper bounds, for the effect of plutonium exposure [adjusted 95% CIs: 1.5 to 8.9 for males and 2.7 to 28 for females]. In conclusion, lung cancer rates increased significantly with both external gamma-ray and internal plutonium exposures. Accounting for the effects of dose uncertainty markedly increased the width of the confidence intervals for the plutonium dose response but had little impact on the external gamma dose effect estimate. Adjusting risk estimate confidence intervals using CIM provides a solution to the important problem of dose uncertainty. This work demonstrates, for the first time, that it is possible and practical to use our recently developed CIM method to make such adjustments in a large cohort study.
Collapse
Affiliation(s)
- Daniel O Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | | | - Alexander Efimov
- Southern Urals Biophysics Institute, Ozyorsk, Russian Federation
| | | |
Collapse
|
3
|
Zhdanov А, Vostrotin V, Efimov А, Birchall A, Puncher M. The Mayak Worker Dosimetry System (MWDS-2013): Implementation of the Dose Calculations. RADIATION PROTECTION DOSIMETRY 2017; 176:163-165. [PMID: 27421475 DOI: 10.1093/rpd/ncw148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The calculation of internal doses for the Mayak Worker Dosimetry System (MWDS-2013) involved extensive computational resources due to the complexity and sheer number of calculations required. The required output consisted of a set of 1000 hyper-realizations: each hyper-realization consists of a set (1 for each worker) of probability distributions of organ doses. This report describes the hardware components and computational approaches required to make the calculation tractable. Together with the software, this system is referred to here as the 'PANDORA system'. It is based on a commercial SQL server database in a series of six work stations. A complete run of the entire Mayak worker cohort entailed a huge amount of calculations in PANDORA and due to the relatively slow speed of writing the data into the SQL server, each run took about 47 days. Quality control was monitored by comparing doses calculated in PANDORA with those in a specially modified version of the commercial software 'IMBA Professional Plus'. Suggestions are also made for increasing calculation and storage efficiency for future dosimetry calculations using PANDORA.
Collapse
Affiliation(s)
- А Zhdanov
- Southern Urals Biophysics Institute, Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, Russia
| | - V Vostrotin
- Southern Urals Biophysics Institute, Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, Russia
| | - А Efimov
- Southern Urals Biophysics Institute, Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, Russia
| | - A Birchall
- Global Dosimetry Ltd. 1 Macdonald Close, Didcot, Oxon OX11 7BH, UK
| | - M Puncher
- Department of Toxicology, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxon OX11 0RQ, UK
| |
Collapse
|
4
|
Vostrotin V, Birchall A, Zhdanov A, Puncher M, Efimov A, Napier B, Sokolova A, Miller S, Suslova K. The Mayak Worker Dosimetry System (MWDS-2013): Internal Dosimetry Results. RADIATION PROTECTION DOSIMETRY 2017; 176:190-201. [PMID: 27664431 DOI: 10.1093/rpd/ncw268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
The distribution of calculated internal doses has been determined for 8043 Mayak Production Associate (Mayak PA) workers. This is a subset of the entire cohort of 25 757 workers, for whom monitoring data are available. Statistical characteristics of point estimates of accumulated doses to 17 different tissues and organs and the uncertainty ranges were calculated. Under the MWDS-2013 dosimetry system, the mean accumulated lung dose was 185 ± 594 mGy (geometric mean = 28 mGy; geometric standard deviation = 9.32; median value = 31 mGy; maximum value = 8980 mGy). The ranges of relative standard uncertainty were from 40 to 2200% for accumulated lung dose, from 25-90% to 2600-3000% for accumulated dose to different regions of respiratory tract, from 13-22% to 2300-2500% for systemic organs and tissues. The Mayak PA workers accumulated internal plutonium lung dose is shown to be close to log normal. The accumulated internal plutonium dose to systemic organs was close to a log triangle. The dependency of uncertainty of accumulated absorbed lung and liver doses on the dose estimates itself is also shown. The accumulated absorbed doses to lung, alveolar-interstitial region, liver, bone surface cells and red bone marrow calculated both with MWDS-2013 and MWDS-2008 have been compared. In general, the accumulated lung doses increased by a factor of 1.8 in median value, while the accumulated doses to systemic organs decreased by factor of 1.3-1.4 in median value. For the cases with identical initial data, accumulated lung doses increased by a factor of 2.1 in median value, while accumulated doses to systemic organs decreased by 8-13% in median value. For the cases with both identical initial data and all of plutonium activity in urine measurements above the decision threshold, accumulated lung doses increased by a factor of 2.7 in median value, while accumulated doses to systemic organs increased by 6-12% in median value.
Collapse
Affiliation(s)
- Vadim Vostrotin
- Southern Urals Biophysics Institute, Ozersk, Chelyabinsk Region, Russia
| | - Alan Birchall
- Global Dosimetry Ltd. 1 Macdonald Close, Didcot, Oxfordshire, OX11 7BH, UK
| | - Alexey Zhdanov
- Southern Urals Biophysics Institute, Ozersk, Chelyabinsk Region, Russia
| | - Matthew Puncher
- Public Health England (PHE), Chilton, Didcot, Oxfordshire, OX11 0RQ, UK
| | - Alexander Efimov
- Southern Urals Biophysics Institute, Ozersk, Chelyabinsk Region, Russia
| | - Bruce Napier
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | - Klara Suslova
- Southern Urals Biophysics Institute, Ozersk, Chelyabinsk Region, Russia
| |
Collapse
|
5
|
Birchall A, Puncher M, Vostrotin V. THE MAYAK WORKER DOSIMETRY SYSTEM (MWDS-2013): TREATMENT OF UNCERTAINTY IN MODEL PARAMETERS. RADIATION PROTECTION DOSIMETRY 2017; 176:144-153. [PMID: 27574321 DOI: 10.1093/rpd/ncw248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 05/20/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Different dose estimates have been produced for the Mayak PA workforce over recent years (DOSES-2000, DOSES-2005, MWDS-2008). The dosimetry system MWDS-2013 described here differs from previous analyses, in that it deals directly with uncertainty in the assumed model parameters. This paper details the way in which uncertainty is dealt with within MWDS-2013 to produce the final output represented by a multiple hyper-realisation of organ doses. More specifically, the paper describes: Application of the WeLMoS method to calculate Bayesian posterior probability distributions of organ doses.Extension of the WeLMoS method for dealing with multiple intake regimes.How shared and unshared parameters are dealt with using a multiple realisation method.A practical algorithm for the generation of multiple hyper-realisations.How to deal with uncertainty in the intake and the intake regime. The resulting multiple hyper-realisation contains all of the information required to take account of model parameter uncertainty and the effects of shared and unshared parameters in any epidemiological analysis, which uses this information, although it is acknowledged that in practice, certain data simplifications may be required to make such analyses tractable, and comparable to previous analyses. Such simplifications are outside the scope of this paper.
Collapse
Affiliation(s)
- Alan Birchall
- Global Dosimetry, 1 MacDonald Close, Didcot, Oxon OX11 7BH, UK
| | - Matthew Puncher
- Department of Toxicology, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot OX11 0RQ, UK
| | - Vadim Vostrotin
- Southern Urals Biophysics Institute (SUBI), Ozersk, Chelyabinsk Region, Russia
| |
Collapse
|