1
|
Pathikonda S, Tian L, Arava CM, Cheng SH, Lam YW. Radiation-induced rescue effect on human breast carcinoma cells is regulated by macrophages. Biochem Biophys Rep 2025; 41:101936. [PMID: 40007574 PMCID: PMC11850746 DOI: 10.1016/j.bbrep.2025.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The susceptibility of cancer cells to DNA damages is influenced by their microenvironment. For example, unirradiated neighbors of irradiated cells can produce signals that reduce DNA damages. This phenomenon, known as Radiation-Induced Rescue Effect (RIRE), has profound implications on the efficacy of radiotherapy. Using bystander cells co-cultured with mock-irradiated cells as a control, we demonstrated, for the first time, two types of RIRE. Conditioned medium from naïve by stander cells, i.e., cells not exposed to irradiated cells, could mitigate UV-induced DNA damages in human breast carcinoma MCF7 cells, as judged by phospho-H2AX and 53BP1 immunostaining. This protective effect could be further enhanced by the prior treatment of bystander cells with factors from UV-irradiated cells. We named the former effect "basal RIRE" and the latter "active RIRE" which were cell type-dependent. As bystanders, MCF7 showed a significant active RIRE, whereas THP1-derived macrophages showed a strong basal RIRE but no active RIRE. Interestingly, RIRE of macrophages could further be modulated by polarisation. The basal RIRE of macrophages was abolished by M1 polarisation, while M2 and Tumour Associated Macrophages (TAM) demonstrated pronounced basal and active RIRE. When mixtures of MCF7 cells and polarised macrophages were used as bystanders, the overall RIRE was dictated by macrophage phenotypes: RIRE was suppressed by M1 macrophages but significantly enhanced by M2 and TAM. This study shows a previously unappreciated role of the innate immune system in RIRE. Depending on polarised phenotypes, macrophages in the tumour microenvironment can interfere with the effectiveness of radiotherapy by adjusting the RIRE magnitudes.
Collapse
Affiliation(s)
- Spoorthy Pathikonda
- Departments of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Li Tian
- Departments of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Clement Manohar Arava
- Laboratoire Sciences et Méthodes Séparatives, Université de Rouen Normandie, Rouen, France
| | - Shuk Han Cheng
- Departments of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Yun Wah Lam
- Departments of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
2
|
Lyng FM, Azzam EI. Abscopal Effects, Clastogenic Effects and Bystander Effects: 70 Years of Non-Targeted Effects of Radiation. Radiat Res 2024; 202:355-367. [PMID: 38986531 DOI: 10.1667/rade-24-00040.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 07/12/2024]
Abstract
In vitro and in vivo observations accumulated over several decades have firmly shown that the biological effects of ionizing radiation can spread from irradiated cells/tissues to non-targeted cells/tissues. Redox-modulated intercellular communication mechanisms that include a role for secreted factors and gap junctions, can mediate these non-targeted effects. Clearly, the expression of such effects and their transmission to progeny cells has implications for issues related to radiation protection. Their elucidation is also relevant towards enhancing the efficacy of cancer radiotherapy and reducing its impact on the development of normal tissue toxicities. In addition, the study of non-targeted effects is pertinent to our basic understanding of intercellular communications under conditions of oxidative stress. This review will trace the history of non-targeted effects of radiation starting with early reports of abscopal effects which described radiation induced effects in tissues distant from the site of radiation exposure. A related effect involved the production of clastogenic factors in plasma following irradiation which can induce chromosome damage in unirradiated cells. Despite these early reports suggesting non-targeted effects of radiation, the classical paradigm that a direct deposition of energy in the nucleus was required still dominated. This paradigm was challenged by papers describing radiation induced bystander effects. This review will cover mechanisms of radiation-induced bystander effects and the potential impacts on radiation protection and radiation therapy.
Collapse
Affiliation(s)
- Fiona M Lyng
- Radiation and Environmental Science Centre, FOCAS Research Institute
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Edouard I Azzam
- Department of Radiology, Rutgers New Jersey Medical School Cancer Center, Newark, New Jersey
| |
Collapse
|
3
|
Quan Y, Yu X. The Cytotoxic Effects of Human Mesenchymal Stem Cells Induced by Uranium. BIOLOGY 2024; 13:525. [PMID: 39056718 PMCID: PMC11274140 DOI: 10.3390/biology13070525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Bone is a major tissue for uranium deposition in human body. Considering mesenchymal stem cells (MSCs) play a vital role in bone formation and injury recovery, studying the mechanism of MSCs responding to uranium poisoning can benefit the understanding of bone damage and repair after uranium exposure. Cellular structural alterations were analyzed via transmission electron microscopy (TEM). Changes in cellular behaviors were assessed through cellular viability, apoptosis, and the production of DNA double-strand breaks (DSBs). In addition, the influence of gap junctional intercellular communication (GJIC) on uranium toxicity was assessed. The disruption of MSCs was elevated with the increase in uranyl nitrate concentration, as shown by TEM micrograph. This was verified by the results of cellular viability and DSB production. Interestingly, the results of apoptosis assay indicated significant apoptosis occurred, which was accompanied with an obvious disruption of cellular membranes. Furthermore, closely contacted cell confluence groups exhibited resistant to uranium poisoning in contrast to sparse growth groups, which can be eliminated with the pretreatment of a GJIC inhibitor in the close connection group. To verify the association between GJIC and cytotoxic effects of uranyl nitrate, GJIC function was evaluated by wound healing and cellular migration. The results showed an inhibition of the healing ratio and migration ability induced by the exposure of uranyl nitrate. The low transfer efficiency of the dye coupling experiment and depressed expression of gap functional protein connexins confirmed the impairment of GJIC function. These results suggest that uranium toxicity is involved with GJIC dysfunction.
Collapse
Affiliation(s)
- Yi Quan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China;
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000, China
| | - Xiaofang Yu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China;
| |
Collapse
|
4
|
Kobayashi A, Hiroyama Y, Mamiya T, Oikawa M, Konishi T. The COX-2/PGE2 Response Pathway Upregulates Radioresistance in A549 Human Lung Cancer Cells through Radiation-Induced Bystander Signaling. BIOLOGY 2023; 12:1368. [PMID: 37997966 PMCID: PMC10669009 DOI: 10.3390/biology12111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
This study aimed to determine the mechanism underlying the modulation of radiosensitivity in cancer cells by the radiation-induced bystander effect (RIBE). We hypothesized that the RIBE mediates cyclooxygenase-2 (COX-2) and its metabolite prostaglandin E2 (PGE2) in elevating radioresistance in unirradiated cells. In this study, we used the SPICE-QST microbeam irradiation system to target 0.07-0.7% cells by 3.4-MeV proton microbeam in the cell culture sample, such that most cells in the dish became bystander cells. Twenty-four hours after irradiation, we observed COX-2 protein upregulation in microbeam-irradiated cells compared to that of controls. Additionally, 0.29% of the microbeam-irradiated cells exhibited increased cell survival and a reduced micronucleus rate against X-ray irradiation compared to that of non-microbeam irradiated cells. The radioresistance response was diminished in both cell groups with the hemichannel inhibitor and in COX-2-knockout cells under cell-to-cell contact and sparsely distributed conditions. The results indicate that the RIBE upregulates the cell radioresistance through COX-2/PGE2 intercellular responses, thereby contributing to issues, such as the risk of cancer recurrence.
Collapse
Affiliation(s)
- Alisa Kobayashi
- Single Cell Radiation Biology Team, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
- Radiation Effect Research Group, Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
| | - Yota Hiroyama
- Single Cell Radiation Biology Team, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
- Department of Radiological Technology, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki-shi, Aomori 036-8564, Japan
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Taisei Mamiya
- Single Cell Radiation Biology Team, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
- Graduate School of Science, Rikkyo (St. Paul’s) University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masakazu Oikawa
- Electrostatic Accelerator Operation Section, Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
| | - Teruaki Konishi
- Single Cell Radiation Biology Team, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
- Department of Radiological Technology, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki-shi, Aomori 036-8564, Japan
- Graduate School of Science, Rikkyo (St. Paul’s) University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
5
|
Zhou M, Zheng M, Zhou X, Tian S, Yang X, Ning Y, Li Y, Zhang S. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 2023; 21:8. [PMID: 36639804 PMCID: PMC9837928 DOI: 10.1186/s12964-022-01009-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/03/2022] [Indexed: 01/15/2023] Open
Abstract
Gap junctions (GJs), which are composed of connexins (Cxs), provide channels for direct information exchange between cells. Cx expression has a strong spatial specificity; however, its influence on cell behavior and information exchange between cells cannot be ignored. A variety of factors in organisms can modulate Cxs and subsequently trigger a series of responses that have important effects on cellular behavior. The expression and function of Cxs and the number and function of GJs are in dynamic change. Cxs have been characterized as tumor suppressors in the past, but recent studies have highlighted the critical roles of Cxs and GJs in cancer pathogenesis. The complex mechanism underlying Cx and GJ involvement in cancer development is a major obstacle to the evolution of therapy targeting Cxs. In this paper, we review the post-translational modifications of Cxs, the interactions of Cxs with several chaperone proteins, and the effects of Cxs and GJs on cancer. Video Abstract.
Collapse
Affiliation(s)
- Mingming Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| | - Xinyue Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
6
|
Yang Z, Zhang Q, Luo H, Shao L, Liu R, Kong Y, Zhao X, Geng Y, Li C, Wang X. Effect of Carbon Ion Radiation Induces Bystander Effect on Metastasis of A549 Cells and Metabonomic Correlation Analysis. Front Oncol 2021; 10:601620. [PMID: 33738244 PMCID: PMC7962605 DOI: 10.3389/fonc.2020.601620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/31/2020] [Indexed: 01/18/2023] Open
Abstract
Objective To analyze the effect of carbon ion (12C6+) radiation may induce bystander effect on A549 cell metastasis and metabonomics. Methods A549 cell was irradiated with carbon ion to establish the clone survival model and the transwell matrix assay was applied to measure the effect of carbon ion on cell viability, migration, and invasion, respectively. Normal human embryonic lung fibroblasts (WI-38) were irradiated with carbon ions of 0 and 2 Gy and then transferred to A549 cell co-culture medium for 24 h. The migration and invasion of A549 cells were detected by the Transwell chamber. The analysis of metabonomic information in transfer medium by liquid phase mass spectrometry (LC-MS), The differential molecules were obtained by principal pomponent analysis (PCA) and the target proteins of significant differences (p = 1.7 × 10−3) obtained by combining with the STICH database. KEGG pathway was used to analyze the enrichment of the target protein pathway. Results Compared with 0 Gy, the colony formation, migration, and invasion of A549 cells were significantly inhibited by carbon ion 2 and 4 Gy irradiation, while the inhibitory effect was not significant after 1 Gy irradiation. Compared with 0 Gy, the culture medium 24 h after carbon ion 2 Gy irradiation significantly inhibited the metastasis of tumor cells (p = 0.03). LC-MS analysis showed that 23 differential metabolites were obtained in the cell culture medium 24 h after carbon ion 0 and 2 Gy irradiation (9 up-regulated and 14 down-regulated). Among them, two were up-regulated and two down-regulated (p = 2.9 × 10−3). 41 target proteins were corresponding to these four differential molecules. Through the analysis of the KEGG signal pathway, it was found that these target molecules were mainly enriched in purine metabolism, tyrosine metabolism, cysteine and methionine metabolism, peroxisome, and carbon metabolism. Neuroactive ligand-receptor interaction, calcium signaling pathway, arachidonic acid metabolism, and Fc epsilon RI signaling pathway. Conclusion The bystander effect induced by 2 Gy carbon ion radiation inhibits the metastasis of tumor cells, which indicates that carbon ions may change the metabolites of irradiated cells, so that it may indirectly affect the metabolism of tumor cell growth microenvironment, thus inhibiting the metastasis of malignant tumor cells.
Collapse
Affiliation(s)
- Zhen Yang
- The Basic Medical College of Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Oncology, Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lihua Shao
- Department of Oncology, Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yarong Kong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xueshan Zhao
- Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yichao Geng
- Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Chengcheng Li
- Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaohu Wang
- The Basic Medical College of Lanzhou University, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Oncology, Lanzhou Heavy Ion Hospital, Lanzhou, China.,Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Kurinnyi DA, Rushkovsky SR, Demchenko OM, Sholoiko VV, Pilinska MA. Evaluation of the Interaction between Malignant and Normal Human Peripheral Blood Lymphocytes Under Cocultivation and Separate Cultivation. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720020103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Dong C, Tu W, He M, Fu J, Kobayashi A, Konishi T, Shao C. Role of Endoplasmic Reticulum and Mitochondrion in Proton Microbeam Radiation-Induced Bystander Effect. Radiat Res 2019; 193:63-72. [PMID: 31714866 DOI: 10.1667/rr15469.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is well known that mitochondria and the endoplasmic reticulum (ER) play important roles in radiation response, but their functions in radiation-induced bystander effect (RIBE) are largely unclear. In this study, we found that when a small portion of cells in a population of human lung fibroblast MRC-5 cells were precisely irradiated through either the nuclei or cytoplasm with counted microbeam protons, the yield of micronuclei (MN) and the levels of intracellular reactive oxygen species (ROS) in nonirradiated cells neighboring irradiated cells were significantly increased. Mito/ER-tracker staining demonstrated that the mitochondria were clearly activated after nuclear irradiation and ER mass approached a higher level after cytoplasmic irradiation. Moreover, the radiation-induced ROS was diminished by rotenone, an inhibitor of mitochondria activation, but it was not influenced by siRNA interference of BiP, an ER regulation protein. While for nuclear irradiation, rotenone-enhanced radiation-induced ER expression, and BiP siRNA eliminated radiation-induced activation of mitochondria, these phenomena were not observed for cytoplasmic irradiation. Bystander MN was reduced by rotenone but enhanced by BiP siRNA. When the cells were treated with both rotenone and BiP siRNA, the MN yield was reduced for nuclear irradiation but was enhanced for cytoplasmic irradiation. Our results suggest that the organelles of mitochondria and ER have different roles in RIBE with respect to nuclear and cytoplasmic irradiation, and the function of ER is a prerequisite for mitochondrial activation.
Collapse
Affiliation(s)
- Chen Dong
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Wenzhi Tu
- The Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Mingyuan He
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jiamei Fu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Alisa Kobayashi
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences
| | - Teruaki Konishi
- Department of Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage, Chiba 263-8555, Japan
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| |
Collapse
|