1
|
Herr L, Friedrich T, Durante M, Scholz M. Investigation of the Impact of Temporal Dose Delivery Patterns of Ion Irradiation with the Local Effect Model. Radiat Res 2024; 201:275-286. [PMID: 38453644 DOI: 10.1667/rade-23-00074.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
We present an extension of the Local Effect Model (LEM) to include time-dose relationships for predicting effects of protracted and split-dose ion irradiation at arbitrary LET. With this kinetic extension, the spatial and temporal induction and processing of DNA double strand breaks (DSB) in cellular nuclei can be simulated for a wide range of ion radiation qualities, doses and dose rates. The key concept of the extension is based on the joint spatial and temporal coexistence of initial DSB, leading to the formation of clustered DNA damage on the µm scale (as defined e.g., by the size scale of Mbp chromatin loops), which is considered to have an increased cellular lethality as compared to isolated, single DSB. By simulating the time dependent induction and repair of DSB and scoring of isolated and clustered DSB upon irradiation, the impact of dose rate and split dose on the cell survival probability can be computed. In a first part of this work, we systematically analyze the predicted impact of protraction in dependence of factors like dose, LET, ion species and radiosensitivity as characterized by the photon LQ-parameters. We establish links to common concepts that describe dose rate effects for low LET radiation. We also compare the model predictions to experimental data and find agreement with the general trends observed in the experiments. The relevant concepts of our approach are compared to other models suitable for predicting time effects. We investigate an apparent analogy between spatial and temporal concentration of radiation delivery, both leading to increased effectiveness, and discuss similarities and differences between the general dependencies of these clustering effects on their impacting factors. Finally, we conclude that the findings give additional support for the general concept of the LEM, i.e. the characterization of high LET radiation effects based on the distinction of just two classes of DSB (isolated DSB and clustered DSB).
Collapse
Affiliation(s)
- Lisa Herr
- GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics, Darmstadt, Germany
- Technische Universität Darmstadt, Institut für Physik kondensierter Materie, Darmstadt, Germany
| | - Thomas Friedrich
- GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics, Darmstadt, Germany
- Technische Universität Darmstadt, Institut für Physik kondensierter Materie, Darmstadt, Germany
| | - Michael Scholz
- GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics, Darmstadt, Germany
| |
Collapse
|
2
|
Feiveson A, George K, Shavers M, Moreno-Villanueva M, Zhang Y, Babiak-Vazquez A, Crucian B, Semones E, Wu H. Predicting chromosome damage in astronauts participating in international space station missions. Sci Rep 2021; 11:5293. [PMID: 33674665 PMCID: PMC7935859 DOI: 10.1038/s41598-021-84242-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 02/12/2021] [Indexed: 01/12/2023] Open
Abstract
Space radiation consists of energetic protons and other heavier ions. During the International Space Station program, chromosome aberrations in lymphocytes of astronauts have been analyzed to estimate received biological doses of space radiation. More specifically, pre-flight blood samples were exposed ex vivo to varying doses of gamma rays, while post-flight blood samples were collected shortly and several months after landing. Here, in a study of 43 crew-missions, we investigated whether individual radiosensitivity, as determined by the ex vivo dose-response of the pre-flight chromosome aberration rate (CAR), contributes to the prediction of the post-flight CAR incurred from the radiation exposure during missions. Random-effects Poisson regression was used to estimate subject-specific radiosensitivities from the preflight dose-response data, which were in turn used to predict post-flight CAR and subject-specific relative biological effectiveness (RBEs) between space radiation and gamma radiation. Covariates age, gender were also considered. Results indicate that there is predictive value in background CAR as well as radiosensitivity determined preflight for explaining individual differences in post-flight CAR over and above that which could be explained by BFO dose alone. The in vivo RBE for space radiation was estimated to be approximately 3 relative to the ex vivo dose response to gamma irradiation. In addition, pre-flight radiosensitivity tended to be higher for individuals having a higher background CAR, suggesting that individuals with greater radiosensitivity can be more sensitive to other environmental stressors encountered in daily life. We also noted that both background CAR and radiosensitivity tend to increase with age, although both are highly variable. Finally, we observed no significant difference between the observed CAR shortly after mission and at > 6 months post-mission.
Collapse
Affiliation(s)
| | | | | | - Maria Moreno-Villanueva
- NASA Johnson Space Center, Houston, TX, 77058, USA.,Human Performance Research Centre, Department of Sport Science, University of Konstanz, Box 30, 78457, Konstanz, Germany
| | - Ye Zhang
- Kennedy Space Center, Cape Canaveral, Florida, USA
| | | | | | | | - Honglu Wu
- NASA Johnson Space Center, Houston, TX, 77058, USA.
| |
Collapse
|