1
|
Sosin DV, Baranovskii DS, Nechaev DN, Sosina MA, Shaposhnikov AV, Trusov GA, Titova AG, Krasnikov BF, Lomov AN, Makarov VV, Yudin VS, Keskinov AA, Yudin SM, Klabukov ID. Population Studies and Molecular Mechanisms of Human Radioadaptive Capabilities: Is It Time to Rethink Radiation Safety Standards? Int J Mol Sci 2024; 25:13543. [PMID: 39769306 PMCID: PMC11676322 DOI: 10.3390/ijms252413543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The evolution of man on Earth took place under conditions of constant exposure to background ionizing radiation (IR). From this point of view, it would be reasonable to hypothesize the existence of adaptive mechanisms that enable the human organism to safely interact with IR at levels approximating long-term natural background levels. In some situations, the successful operation of molecular mechanisms of protection against IR is observed at values significantly exceeding the natural background level, for example, in cancer cells. In 15-25% of cancer patients, cancer cells develop a phenotype that is resistant to high doses of IR. While further investigations are warranted, the current evidence suggests a strong probability of observing positive health effects, including an increased lifespan, a reduced cancer risk, and a decreased incidence of congenital pathologies, precisely at low doses of ionizing radiation. This review offers arguments primarily based on a phenomenological approach and critically reconsidering existing methodologies for assessing the biological risks of IR to human health. Currently, in the most economically developed countries, there are radiation safety rules that interpret low-dose radiation as a clearly negative environmental factor. Nowadays, this approach may pose significant challenges to the advancement of radiomedicine and introduce complexities in the regulation of IR sources. The review also examines molecular mechanisms that may play a key role in the formation of the positive effects of low-dose IR on human radioadaptive capabilities.
Collapse
Affiliation(s)
- Dmitry Vitalievich Sosin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Denis S. Baranovskii
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia;
| | - Denis Nikolaevich Nechaev
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Mariya Aleksandrovna Sosina
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department, 127051 Moscow, Russia;
| | - Alexander Vladimirovich Shaposhnikov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Georgy Aleksandrovich Trusov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Anastasia Germanovna Titova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Boris Fedorovich Krasnikov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Alexey Nikolaevich Lomov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Valentin Vladimirovich Makarov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Vladimir Sergeevich Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Anton Arturovich Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Sergey Mihailovich Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Ilya Dmitrievich Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia;
| |
Collapse
|
2
|
Mothersill C, Seymour C, Cocchetto A, Williams D. Factors Influencing Effects of Low-dose Radiation Exposure. HEALTH PHYSICS 2024; 126:296-308. [PMID: 38526248 DOI: 10.1097/hp.0000000000001816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
ABSTRACT It is now well accepted that the mechanisms induced by low-dose exposures to ionizing radiation (LDR) are different from those occurring after high-dose exposures. However, the downstream effects of these mechanisms are unclear as are the quantitative relationships between exposure, effect, harm, and risk. In this paper, we will discuss the mechanisms known to be important with an overall emphasis on how so-called "non-targeted effects" (NTE) communicate and coordinate responses to LDR. Targeted deposition of ionizing radiation energy in cells causing DNA damage is still regarded as the dominant trigger leading to all downstream events whether targeted or non-targeted. We regard this as an over-simplification dating back to formal target theory. It ignores that last 100 y of biological research into stress responses and signaling mechanisms in organisms exposed to toxic substances, including ionizing radiation. We will provide evidence for situations where energy deposition in cellular targets alone cannot be plausible as a mechanism for LDR effects. An example is where the energy deposition takes place in an organism not receiving the radiation dose. We will also discuss how effects after LDR depend more on dose rate and radiation quality rather than actual dose, which appears rather irrelevant. Finally, we will use recent evidence from studies of cataract and melanoma induction to suggest that after LDR, post-translational effects, such as protein misfolding or defects in energy metabolism or mitochondrial function, may dominate the etiology and progression of the disease. A focus on such novel pathways may open the way to successful prophylaxis and development of new biomarkers for better risk assessment after low dose exposures.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, 1280 Main St., Hamilton, ON, Canada L8S 4L8
| | - Colin Seymour
- Department of Biology, McMaster University, 1280 Main St., Hamilton, ON, Canada L8S 4L8
| | - Alan Cocchetto
- The National CFIDS Foundation, 285 Beach Ave., Hull, MA 02045
| | - David Williams
- Cambridge University, The Old Schools, Trinity Lane, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
3
|
Matarèse BFE, Rusin A, Seymour C, Mothersill C. Quantum Biology and the Potential Role of Entanglement and Tunneling in Non-Targeted Effects of Ionizing Radiation: A Review and Proposed Model. Int J Mol Sci 2023; 24:16464. [PMID: 38003655 PMCID: PMC10671017 DOI: 10.3390/ijms242216464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
It is well established that cells, tissues, and organisms exposed to low doses of ionizing radiation can induce effects in non-irradiated neighbors (non-targeted effects or NTE), but the mechanisms remain unclear. This is especially true of the initial steps leading to the release of signaling molecules contained in exosomes. Voltage-gated ion channels, photon emissions, and calcium fluxes are all involved but the precise sequence of events is not yet known. We identified what may be a quantum entanglement type of effect and this prompted us to consider whether aspects of quantum biology such as tunneling and entanglement may underlie the initial events leading to NTE. We review the field where it may be relevant to ionizing radiation processes. These include NTE, low-dose hyper-radiosensitivity, hormesis, and the adaptive response. Finally, we present a possible quantum biological-based model for NTE.
Collapse
Affiliation(s)
- Bruno F. E. Matarèse
- Department of Haematology, University of Cambridge, Cambridge CB2 1TN, UK;
- Department of Physics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrej Rusin
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| |
Collapse
|
4
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
5
|
Cocchetto A, Seymour C, Mothersill C. A Proposed New Model to Explain the Role of Low Dose Non-DNA Targeted Radiation Exposure in Chronic Fatigue and Immune Dysfunction Syndrome. Int J Mol Sci 2023; 24:ijms24076022. [PMID: 37046994 PMCID: PMC10094351 DOI: 10.3390/ijms24076022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic Fatigue and Immune Dysfunction Syndrome (CFIDS) is considered to be a multidimensional illness whose etiology is unknown. However, reports from Chernobyl, as well as those from the United States, have revealed an association between radiation exposure and the development of CFIDS. As such, we present an expanded model using a systems biology approach to explain the etiology of CFIDS as it relates to this cohort of patients. This paper proposes an integrated model with ionizing radiation as a suggested trigger for CFIDS mediated through UVA induction and biophoton generation inside the body resulting from radiation-induced bystander effects (RIBE). Evidence in support of this approach has been organized into a systems view linking CFIDS illness markers with the initiating events, in this case, low-dose radiation exposure. This results in the formation of reactive oxygen species (ROS) as well as important immunologic and other downstream effects. Furthermore, the model implicates melanoma and subsequent hematopoietic dysregulation in this underlying process. Through the identification of this association with melanoma, clinical medicine, including dermatology, hematology, and oncology, can now begin to apply its expansive knowledge base to provide new treatment options for an illness that has had few effective treatments.
Collapse
Affiliation(s)
- Alan Cocchetto
- National CFIDS Foundation Inc., Hull, MA 02045-1602, USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
6
|
Moro C, Valverde A, Dole M, Hoh Kam J, Hamilton C, Liebert A, Bicknell B, Benabid AL, Magistretti P, Mitrofanis J. The effect of photobiomodulation on the brain during wakefulness and sleep. Front Neurosci 2022; 16:942536. [PMID: 35968381 PMCID: PMC9366035 DOI: 10.3389/fnins.2022.942536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Over the last seventy years or so, many previous studies have shown that photobiomodulation, the use of red to near infrared light on body tissues, can improve central and peripheral neuronal function and survival in both health and in disease. These improvements are thought to arise principally from an impact of photobiomodulation on mitochondrial and non-mitochondrial mechanisms in a range of different cell types, including neurones. This impact has downstream effects on many stimulatory and protective genes. An often-neglected feature of nearly all of these improvements is that they have been induced during the state of wakefulness. Recent studies have shown that when applied during the state of sleep, photobiomodulation can also be of benefit, but in a different way, by improving the flow of cerebrospinal fluid and the clearance of toxic waste-products from the brain. In this review, we consider the potential differential effects of photobiomodulation dependent on the state of arousal. We speculate that the effects of photobiomodulation is on different cells and systems depending on whether it is applied during wakefulness or sleep, that it may follow a circadian rhythm. We speculate further that the arousal-dependent photobiomodulation effects are mediated principally through a biophoton – ultra-weak light emission – network of communication and repair across the brain.
Collapse
Affiliation(s)
- Cecile Moro
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Audrey Valverde
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Marjorie Dole
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Jaimie Hoh Kam
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | | | - Ann Liebert
- Governance and Research Department, Sydney Adventist Hospital, Sydney, NSW, Australia
| | - Brian Bicknell
- Faculty of Health Sciences, Australian Catholic University, Sydney, NSW, Australia
| | | | - Pierre Magistretti
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - John Mitrofanis
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Institute of Ophthalmology, University College London, London, United Kingdom
- *Correspondence: John Mitrofanis,
| |
Collapse
|
7
|
Mothersill C, Seymour C. Low dose radiation mechanisms: The certainty of uncertainty. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503451. [PMID: 35483782 DOI: 10.1016/j.mrgentox.2022.503451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
This paper reviews the current understanding of low dose radiobiology, and how it has evolved from classical target theory. It highlights the uncertainty around low dose effects, which is due in part to the complexity of "context" surrounding the ultimate expression of biological effects following low dose exposure. The paper makes special reference to low dose non-targeted effects which, are currently ignored in radiation protection and population level risk assessment, because it is unclear what they mean for risk. The view of the authors is that this "lack of clarity" about what the effects mean is precisely the point. It indicates the uncertainty of outcomes after a given exposure. The uncertainty stems from multiple outcome options resulting from the intrinsic uncertainty of the stochastic interaction of low dose radiation with matter. This uncertainty should be embraced rather than eschewed. The impacts of the uncertainties identified in this paper is explored and an approach to quantifying mutation probability in relation to dose is presented.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
8
|
Mothersill C, Seymour C. Current Opinion in Toxicology "Hormesis and Dose-Response 2022” Title: Radiation hormesis and dose response: are our current concepts meaningful or useful? CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Moro C, Liebert A, Hamilton C, Pasqual N, Jeffery G, Stone J, Mitrofanis J. The code of light: do neurons generate light to communicate and repair? Neural Regen Res 2021; 17:1251-1252. [PMID: 34782559 PMCID: PMC8643059 DOI: 10.4103/1673-5374.327332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Cecile Moro
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | - Ann Liebert
- Department of Anatomy, University of Sydney, Sydney, Australia
| | | | | | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, UK
| | - Jonathan Stone
- Department of Physiology, University of Sydney, Sydney, Australia
| | - John Mitrofanis
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France; Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
10
|
Petushkova VV, Pelevina II, Kogarko IN, Neifakh EA, Kogarko BS, Ktitorova OV. Some Aspects Related to Transmission of Radiation-Induced Alterations due to the Bystander Effect. BIOL BULL+ 2021. [DOI: 10.1134/s1062359020120079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Matarèse BFE, Lad J, Seymour C, Schofield PN, Mothersill C. Bio-acoustic signaling; exploring the potential of sound as a mediator of low-dose radiation and stress responses in the environment. Int J Radiat Biol 2020; 98:1083-1097. [DOI: 10.1080/09553002.2020.1834162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bruno F. E. Matarèse
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Jigar Lad
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | - Paul N. Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
12
|
Miranda S, Correia M, Dias AG, Pestana A, Soares P, Nunes J, Lima J, Máximo V, Boaventura P. Evaluation of the role of mitochondria in the non-targeted effects of ionizing radiation using cybrid cellular models. Sci Rep 2020; 10:6131. [PMID: 32273537 PMCID: PMC7145863 DOI: 10.1038/s41598-020-63011-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/18/2020] [Indexed: 01/21/2023] Open
Abstract
Radiobiology is moving towards a better understanding of the intercellular signaling that occurs upon radiation and how its effects relate to the dose applied. The mitochondrial role in orchestrating this biological response needs to be further explored. Cybrids (cytoplasmic hybrids) are useful cell models for studying the involvement of mitochondria in cellular processes. In the present study we used cybrid cell lines to investigate the role of mitochondria in the response to radiation exposure. Cybrid cell lines, derived from the osteosarcoma human cell line 143B, harboring, either wild-type mitochondrial DNA (Cy143Bwt), cells with mitochondria with mutated DNA that causes mitochondrial dysfunction (Cy143Bmut), as well as cells without mitochondrial DNA (mtDNA) (143B-Rho0), were irradiated with 0.2 Gy and 2.0 Gy. Evaluation of the non-targeted (or bystander) effects in non-irradiated cells were assessed by using conditioned media from the irradiated cells. DNA double stranded breaks were assessed with the γH2AX assay. Both directly irradiated cells and cells treated with the conditioned media, showed increased DNA damage. The effect of the irradiated cells media was different according to the cell line it derived from: from Cy143Bwt cells irradiated with 0.2 Gy (low dose) and from Cy143Bmut irradiated with 2.0 Gy (high dose) induced highest DNA damage. Notably, media obtained from cells without mtDNA, the143B-Rho0 cell line, produced no effect in DNA damage. These results point to a possible role of mitochondria in the radiation-induced non-targeted effects. Furthermore, it indicates that cybrid models are valuable tools for radiobiological studies.
Collapse
Affiliation(s)
- Silvana Miranda
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal.,Radiotherapy Department, Portuguese Institute of Oncology of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Marcelo Correia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal
| | - Anabela G Dias
- Medical Physics Department, Portuguese Institute of Oncology of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Medical Physics, Radiobiology and Radiation Protection Group. Research Center, Portuguese Institute of Oncology of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Ana Pestana
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal.,Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal.,Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal
| | - Joana Nunes
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jorge Lima
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal.,Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal
| | - Valdemar Máximo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal.,Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal
| | - Paula Boaventura
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45 4200-135, Porto, Portugal. .,Department of Pathology, Faculty of Medicine, University of Porto, 4200 - 319, Porto, Portugal.
| |
Collapse
|