1
|
Long M, Albeshan S, Alashban Y, England A, Moore N, Young R, Bezzina P, McEntee MF. The effect of contact radiation shielding on breast dose during CT abdomen-pelvis: a phantom study. RADIATION PROTECTION DOSIMETRY 2023; 199:2104-2111. [PMID: 37551012 DOI: 10.1093/rpd/ncad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 08/09/2023]
Abstract
This study aims to investigate if contact shielding reduces breast radiation dose during computed tomography (CT) abdomen-pelvis examinations using automatic tube current modulation to protect one of the four most radiosensitive organs during CT examinations. Dose measurements were taken with and without contact shielding across the anterior and lateral aspects of the breasts and with and without organ dose modulation (ODM) to quantify achievable dose reductions. Although there are no statistically significant findings, when comparing with and without shielding, the mean breast surface dose was reduced by 0.01 μSv without ODM (1.92-1.91 μSv, p = 0.49) and increased by 0.03 μSv with ODM (1.53-1.56 μSv, p = 0.44). Comparing with and without ODM, the mean breast surface dose was reduced by 0.35 μSv with shielding (1.91-1.56 μSv, p = 0.24) and by 0.39 μSv without shielding (1.92-1.53 μSv, p = 0.17). The addition of contact shielding does not provide significant breast surface radiation dose reduction during CT abdomen-pelvis.
Collapse
Affiliation(s)
- Maria Long
- Medical Imaging and Radiation Therapy Department, School of Medicine, UG Assert, Brookfield Health Sciences, University College Cork, Cork T12 AK54, Ireland
| | - Salman Albeshan
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, PO Box 145111, Riyadh 4545, Saudi Arabia
| | - Yazeed Alashban
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, PO Box 145111, Riyadh 4545, Saudi Arabia
| | - Andrew England
- Medical Imaging and Radiation Therapy Department, School of Medicine, UG Assert, Brookfield Health Sciences, University College Cork, Cork T12 AK54, Ireland
| | - Niamh Moore
- Medical Imaging and Radiation Therapy Department, School of Medicine, UG Assert, Brookfield Health Sciences, University College Cork, Cork T12 AK54, Ireland
| | - Rena Young
- Medical Imaging and Radiation Therapy Department, School of Medicine, UG Assert, Brookfield Health Sciences, University College Cork, Cork T12 AK54, Ireland
| | - Paul Bezzina
- Department of Radiography, Faculty of Health Sciences, University of Malta, Msida MSD 2080, Malta
| | - Mark F McEntee
- Medical Imaging and Radiation Therapy Department, School of Medicine, UG Assert, Brookfield Health Sciences, University College Cork, Cork T12 AK54, Ireland
| |
Collapse
|
2
|
Rautiainen J, Juntunen MAK, Kotiaho AO. THE EFFECT OF OUT-OF-PLANE PATIENT SHIELDING ON CT RADIATION EXPOSURE AND TUBE CURRENT MODULATIONS: A PHANTOM STUDY ACROSS THREE VENDORS. RADIATION PROTECTION DOSIMETRY 2022; 198:229-237. [PMID: 35313335 DOI: 10.1093/rpd/ncac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to evaluate how out-of-plane patient shielding affects radiation exposure parameters and tube current modulation on different vendors' computed tomography (CT) scanners. Helical CT scans were performed using two homogenous phantoms to mimic patient attenuation. Four CT scanners from three vendors were investigated by varying the distance of the patient shield from the border of the imaging volume. Scans were performed with a shield placed before and after the localizer. Changes in volume computed tomography dose index (CTDIvol), dose-length product (DLP) and tube current-time products were studied. Out-of-field lead shield increased the CTDIvol and DLP values for each scanner at least for one scan setting when the shield was present in the localizer. The most notable changes were recorded with >1.3 pitch values when the shield was closest to the scanned volume (2.5 cm), and the scan direction was towards the shield. The usage of patient shields in the localizer CT scans can disturb TCM even when placed 7.5 cm away from the edge of the scan.
Collapse
Affiliation(s)
- Jari Rautiainen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90220, Finland
- Department of Radiology, Lapland Central Hospital, Rovaniemi 96101, Finland
| | - Mikael A K Juntunen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90220, Finland
- Research Unit of Medical Imaging, Physics and Technology, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu 90220 Finland
| | - Antti O Kotiaho
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90220, Finland
- Terveystalo Healthcare, Helsinki 00100, Finland
| |
Collapse
|
3
|
Trožić Š, Mekiš N, Zalokar N. The efficiency of lead and non-lead shielding on breast dose in head CT. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:816-826. [PMID: 32460255 DOI: 10.1088/1361-6498/ab96d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of the study was to assess the effect of the shielding material and its thickness on the measured skin dose to the breasts during the CT examination of the head. The helical and axial head CT was performed on an anthropomorphic phantom (PBU 60). Two types of shielding were tested-lead and non-lead (antimony-bismuth) shielding. Measurements with different thicknesses were performed and the shielding efficiency of the materials was compared. Skin dose to the breasts was measured with an educational direct dosimeter (EDD-30). The shielding efficiency during both scanning protocols indicated an increased dose reduction with the thicker equivalent thickness in both shielding materials. Dose reduction was the highest at 0.5 mm equivalent thickness for both materials; lead shielding reduced the dose by 91% and 83%, the antimony-bismuth shielding by 90% and 86%, during the axial and helical head CT protocols, respectively. Statistically significant differences were found between the materials of the same equivalent thickness (0.175, 0.25 and 0.5 mm) during the helical protocol in favor of the antimony-bismuth shielding. During the axial protocol there were no statistically significant differences. Shielding of radiosensitive organs can prevent unnecessary exposure of radiosensitive organs outside the primary beam. Due to the significant decrease in radiation dose to the breasts, and many other positive attributes, use of the antimony-bismuth shielding instead of the lead shielding should be considered, especially during the helical CT scan of the head.
Collapse
Affiliation(s)
- Šejla Trožić
- Faculty of Health Sciences, Medical Imaging and Radiotherapy Department, University of Ljubljana, Zdravstvena pot 5, Ljubljana 1000, Slovenia
| | | | | |
Collapse
|
4
|
Zalokar N, Mekis N. Efficacy of breast shielding during head computed tomography examination. Radiol Oncol 2020; 55:116-120. [PMID: 33885233 PMCID: PMC7877269 DOI: 10.2478/raon-2020-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Female breasts are exposed to scattered radiation regardless of not being included in the primary field during head CT. This study aimed to investigate whether the use of lead shielding is beneficial in dose reduction to the breasts during head CT. PATIENTS AND METHODS The study was performed in two different hospitals on two different CT units and included 120 patients. Half of the measurements (n = 60) was conducted without the use of lead shielding and the other half (n = 60) with the use of lead shielding of 0.5 mm equivalent thickness. RESULTS Significant skin dose reduction to the breasts during head CT in both hospitals with the use of lead shielding was discovered; 81% (338.2 ± 43.7 μGy to 64.3 ± 18.8 μGy) in Hospital A and 74% (from 253.1 ± 35.1 μGy to 65.3 ± 16.9 μGy) in Hospital B. CONCLUSIONS Considering the assumed carcinogenic effect of low doses of radiation, high frequency of the head CT scans and the significant reduction of radiation doses to the highly radiosensitive breasts, the use of lead shielding is highly recommendable.
Collapse
Affiliation(s)
- Nika Zalokar
- University of Ljubljana, Faculty of Health Sciences, Medical Imaging and Radiotherapy Department, Ljubljana, Slovenia
| | - Nejc Mekis
- University of Ljubljana, Faculty of Health Sciences, Medical Imaging and Radiotherapy Department, Ljubljana, Slovenia
| |
Collapse
|