1
|
Guzman-Castillo A, Vicente B, Schmidt K, Moraga-Escobar E, Rojas-Ponce R, Lagos P, Macaya X, Castillo-Navarrete JL. Interaction of Val66Met Brain-Derived Neurotrophic Factor and 5-HTTLPR Serotonin Transporter Gene Polymorphisms with Lifetime Prevalence of Post-Traumatic Stress Disorder in Primary Care Patients. Genes (Basel) 2024; 15:1355. [PMID: 39596555 PMCID: PMC11593576 DOI: 10.3390/genes15111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Post-traumatic stress disorder (PTSD) is a complex condition influenced by both genetic and environmental factors. This longitudinal study aimed to explore the connection between two specific genetic polymorphisms, Val66Met and 5-HTTLPR, and the lifetime prevalence of PTSD in patients from primary care settings. We also examined the role of sociodemographic and psychosocial factors to provide a more comprehensive view of PTSD risk. Methods: We recruited a cohort of primary care patients and diagnosed PTSD using a standardized diagnostic interview. Genetic analyses focused on Val66Met and 5-HTTLPR polymorphisms. We applied logistic regression to assess the association between these genetic markers and PTSD, considering factors such as gender, family history of depression, and experiences of childhood maltreatment. Results: Our findings show that women, individuals with a family history of depression, and those exposed to childhood maltreatment have a higher risk of developing PTSD. While the Val66Met polymorphism was not significantly associated with PTSD, the 5-HTTLPR polymorphism showed a marginal relationship. No significant interaction was found between the two polymorphisms in relation to PTSD. Conclusions: This study underscores the multifactorial nature of PTSD, influenced by both genetic and environmental factors. The findings point to the importance of further research on genetic predispositions and highlight the value of early interventions for high-risk populations in primary care settings.
Collapse
Affiliation(s)
- Alejandra Guzman-Castillo
- Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Av. Alonso de Ribera 2850, Concepción 4090541, Chile;
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Barrio Universitario s/n, Casilla 160-C, Concepción 4070386, Chile; (B.V.); (K.S.); (E.M.-E.); (R.R.-P.); (X.M.)
| | - Benjamín Vicente
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Barrio Universitario s/n, Casilla 160-C, Concepción 4070386, Chile; (B.V.); (K.S.); (E.M.-E.); (R.R.-P.); (X.M.)
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Av. Juan Bosco s/n 3er Piso, Box 160-C, Concepción 4070529, Chile
| | - Kristin Schmidt
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Barrio Universitario s/n, Casilla 160-C, Concepción 4070386, Chile; (B.V.); (K.S.); (E.M.-E.); (R.R.-P.); (X.M.)
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Av. Juan Bosco s/n 3er Piso, Box 160-C, Concepción 4070529, Chile
| | - Esteban Moraga-Escobar
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Barrio Universitario s/n, Casilla 160-C, Concepción 4070386, Chile; (B.V.); (K.S.); (E.M.-E.); (R.R.-P.); (X.M.)
| | - Romina Rojas-Ponce
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Barrio Universitario s/n, Casilla 160-C, Concepción 4070386, Chile; (B.V.); (K.S.); (E.M.-E.); (R.R.-P.); (X.M.)
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Box 160-C, Concepción 4070386, Chile;
| | - Paola Lagos
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Box 160-C, Concepción 4070386, Chile;
| | - Ximena Macaya
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Barrio Universitario s/n, Casilla 160-C, Concepción 4070386, Chile; (B.V.); (K.S.); (E.M.-E.); (R.R.-P.); (X.M.)
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Av. Juan Bosco s/n 3er Piso, Box 160-C, Concepción 4070529, Chile
| | - Juan-Luis Castillo-Navarrete
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Barrio Universitario s/n, Casilla 160-C, Concepción 4070386, Chile; (B.V.); (K.S.); (E.M.-E.); (R.R.-P.); (X.M.)
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Concepción, Barrio Universitario s/n, Box 160-C, Concepción 4070386, Chile
| |
Collapse
|
2
|
Balada F, Aluja A, García Ó, Aymamí N, García LF. Gender Differences in Prefrontal Cortex Response to Negative Emotional Stimuli in Drivers. Brain Sci 2024; 14:884. [PMID: 39335380 PMCID: PMC11430552 DOI: 10.3390/brainsci14090884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Road safety improvement is a governmental priority due to driver-caused accidents. Driving style variation affects safety, with emotional regulation being pivotal. However, functional near-infrared spectroscopy (fNIRS) studies show inconsistent prefrontal cortex activity during emotion processing. This study examines prefrontal cortex response to negative emotional stimuli, particularly traffic accident images, across drivers diverse in age and gender. METHOD The study involved 118 healthy males (44.38 ± 12.98 years) and 84 females (38.89 ± 10.60 years). The Multidimensional Driving Style Inventory (MDSI) was used to assess driving behavior alongside fNIRS recordings. Participants viewed traffic accident and neutral images while prefrontal oxygenation was monitored. RESULTS Women rated traffic accidents (t-test = 2.43; p < 0.016) and neutral images (t-test = 2.19; p < 0.030) lower in valence than men. Arousal differences were significant for traffic accident images (t-test = -3.06; p < 0.002). correlational analysis found an inverse relationship between Dissociative scale scores and oxygenation (all p-values ≤ 0.013). Greater prefrontal oxygenation occurred with neutral images compared to traffic accidents. Left hemisphere differences (t-test = 3.23; p < 0.001) exceeded right hemisphere differences (t-test = 2.46; p < 0.015). Subgroup analysis showed male participants to be driving these disparities. Among adaptive drivers, significant oxygenation differences between neutral and accident images were evident in both hemispheres (left: t-test = 2.72, p < 0.009; right: t-test = 2.22, p < 0.030). CONCLUSIONS Male drivers with maladaptive driving styles, particularly dissociative ones, exhibit reduced prefrontal oxygenation when exposed to neutral and traffic accident images. This response was absent in female drivers, with no notable age-related differences.
Collapse
Affiliation(s)
- Ferran Balada
- Lleida Institute for Biomedical Research, Dr. Pifarré Foundation, 25198 Lleida, Spain; (F.B.); (Ó.G.); (N.A.); (L.F.G.)
- Departamento de Psicobiologia i Metodología CCSS, Facultad de Psicologia, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Anton Aluja
- Lleida Institute for Biomedical Research, Dr. Pifarré Foundation, 25198 Lleida, Spain; (F.B.); (Ó.G.); (N.A.); (L.F.G.)
- Departamento de Psicología, Faculdat de Psicología, University of Lleida, 25001 Lleida, Spain
| | - Óscar García
- Lleida Institute for Biomedical Research, Dr. Pifarré Foundation, 25198 Lleida, Spain; (F.B.); (Ó.G.); (N.A.); (L.F.G.)
- Department of Psychology, European University of Madrid, 28670 Madrid, Spain
| | - Neus Aymamí
- Lleida Institute for Biomedical Research, Dr. Pifarré Foundation, 25198 Lleida, Spain; (F.B.); (Ó.G.); (N.A.); (L.F.G.)
- Psychiatry, Mental Health and Addictions Service, Santa Maria Hospital of Lleida, 25198 Lleida, Spain
| | - Luis F. García
- Lleida Institute for Biomedical Research, Dr. Pifarré Foundation, 25198 Lleida, Spain; (F.B.); (Ó.G.); (N.A.); (L.F.G.)
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Autonomous University of Madrid, 28049 Madrid, Spain
| |
Collapse
|
3
|
Zhi S, Zhao W, Huang Y, Li Y, Wang X, Li J, Liu S, Xu Y. Neuroticism and openness exhibit an anti-correlation pattern to dissociable default mode network: using resting connectivity and structural equation modeling analysis. Brain Imaging Behav 2024; 18:753-763. [PMID: 38409462 DOI: 10.1007/s11682-024-00869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
The default mode network (DMN) can be subdivided into ventral and dorsal subsystems, which serve affective cognition and mental sense construction, respectively. An internally dissociated pattern of anti-correlations was observed between these two subsystems. Although numerous studies on neuroticism and openness have demonstrated the neurological functions of the DMN, little is known about whether different subsystems and hubs regions within the network are engaged in different functions in response to the two traits. We recruited 223 healthy volunteers in this study and collected their resting-state functional magnetic resonance imaging (fMRI) and NEO Five-Factor Inventory scores. We used independent component analysis (ICA) to obtain the DMN, before further decomposing it into the ventral and dorsal subsystems. Then, the network coherence of hubs regions within subsystems was extracted to construct two structural equation models (SEM) to explore the relationship between neuroticism and openness traits and DMN. We observed that the ventral DMN could significantly predict positive openness and negative neuroticism. The dorsal DMN was diametrically opposed. Additionally, the medial prefrontal cortex (mPFC) and middle temporal gyrus (MTG), both of which are core hubs of the subnetworks within the DMN, are significantly positively correlated with neuroticism and openness. These findings may point to a biological basis that neuroticism and openness are engaged in opposite mechanisms and support the hypothesis about the functional dissociation of the DMN.
Collapse
Affiliation(s)
- Shengwen Zhi
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, P.R. China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wentao Zhao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, P.R. China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yifei Huang
- School of Humanities and Social Sciences, Shanxi Medical University, Taiyuan, China
| | - Yue Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, P.R. China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao Wang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, P.R. China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, P.R. China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, 030001, Taiyuan, P.R. China.
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Yong Xu
- Department of Psychiatry, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
4
|
Armand S, Langley C, Johansen A, Ozenne B, Overgaard-Hansen O, Larsen K, Jensen PS, Knudsen GM, Sahakian BJ, Stenbæk DS, Fisher PM. Functional brain responses to emotional faces after three to five weeks of intake of escitalopram in healthy individuals: a double-blind, placebo-controlled randomised study. Sci Rep 2024; 14:3149. [PMID: 38326352 PMCID: PMC10850508 DOI: 10.1038/s41598-024-51448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Short-term intake of selective serotonin reuptake inhibitors (SSRIs) modulates threat-related amygdala responses in healthy individuals. However, how SSRI intake over a clinically relevant time period modulates threat-related amygdala responses is less clear. In a semi-randomised, double-blind, placebo-controlled study of 64 healthy individuals (SSRI n = 32, placebo n = 32), we examined the effect of 3-5 weeks of SSRI escitalopram (20 mg daily) on brain response to angry, fearful and neutral faces using BOLD fMRI. Data was analysed using a whole-brain region-wise approach extracting standardised effects (i.e., Cohen's D). The study was conducted at the Copenhagen University Hospital. A priori, we hypothesised that SSRI would attenuate amygdala responses to angry and fearful faces but not to neutral ones. Whether SSRI modulates correlations between amygdala responses to emotional faces and negative mood states was also explored. Compared to placebo, 3-5 weeks of SSRI intake did not significantly affect the amygdala response to angry, fearful, or neutral faces (|Cohen's D|< 0.2, PFWER = 1). Whole-brain, region-wise analyses revealed significant differences in frontal (|Cohen's D|< 0.6, PFWER < .01) and occipital regions (|Cohen's D|< 0.5, PFWER < .01). SSRI did not modulate correlations between amygdala responses to emotional faces and negative mood states. Our findings indicate that a 3-5 week SSRI intake impacts cortical responses to emotional stimuli, an effect possibly involved in SSRI's therapeutic efficacy.Trial registration Clinical Trials NCT04239339.
Collapse
Affiliation(s)
- Sophia Armand
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Overgaard-Hansen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kristian Larsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Steen Jensen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Dea Siggard Stenbæk
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Bruzzone SEP, Nasser A, Aripaka SS, Spies M, Ozenne B, Jensen PS, Knudsen GM, Frokjaer VG, Fisher PM. Genetic contributions to brain serotonin transporter levels in healthy adults. Sci Rep 2023; 13:16426. [PMID: 37777558 PMCID: PMC10542378 DOI: 10.1038/s41598-023-43690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023] Open
Abstract
The serotonin transporter (5-HTT) critically shapes serotonin neurotransmission by regulating extracellular brain serotonin levels; it remains unclear to what extent 5-HTT levels in the human brain are genetically determined. Here we applied [11C]DASB positron emission tomography to image brain 5-HTT levels and evaluated associations with five common serotonin-related genetic variants that might indirectly regulate 5-HTT levels (BDNF rs6265, SLC6A4 5-HTTLPR, HTR1A rs6295, HTR2A rs7333412, and MAOA rs1137070) in 140 healthy volunteers. In addition, we explored whether these variants could predict in vivo 5-HTT levels using a five-fold cross-validation random forest framework. MAOA rs1137070 T-carriers showed significantly higher brain 5-HTT levels compared to C-homozygotes (2-11% across caudate, putamen, midbrain, thalamus, hippocampus, amygdala and neocortex). We did not observe significant associations for the HTR1A rs6295 and HTR2A rs7333412 genotypes. Our previously observed lower subcortical 5-HTT availability for rs6265 met-carriers remained in the presence of these additional variants. Despite this significant association, our prediction models showed that genotype moderately improved prediction of 5-HTT in caudate, but effects were not statistically significant after adjustment for multiple comparisons. Our observations provide additional evidence that serotonin-related genetic variants modulate adult human brain serotonin neurotransmission.
Collapse
Affiliation(s)
- Silvia Elisabetta Portis Bruzzone
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sagar Sanjay Aripaka
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Brice Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Peter Steen Jensen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibe Gedsoe Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Castillo-Navarrete JL, Vicente B, Schmidt K, Moraga-Escobar E, Rojas-Ponce R, Lagos P, Macaya X, Guzman-Castillo A. Interaction of Val66Met BDNF and 5-HTTLPR polymorphisms with prevalence of post-earthquake 27-F PTSD in Chilean population. PeerJ 2023; 11:e15870. [PMID: 37692110 PMCID: PMC10484206 DOI: 10.7717/peerj.15870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/18/2023] [Indexed: 09/12/2023] Open
Abstract
Post-traumatic stress (PTSD) disorder is a mental health condition that can occur after experiencing or witnessing a traumatic event. The 27-F earthquake that struck Chile in 2010 was one such event that had a significant impact on the mental health of the population. A study was conducted to investigate the prevalence of PTSD and its associated factors among survivors of this earthquake. The study was a longitudinal design, involving a sample of 913 patients aged 18 to 75 years who attended 10 Primary Care Centers in Concepción, Chile. The Composite International Diagnostic Interview (CIDI) was used to assess both depressive episodes (DE) and PTSD before and after the earthquake. The study also involved genotyping studies using saliva samples from the participants, specifically focusing on the Val66Met and 5-HTTLPR polymorphisms. Statistical analysis was performed to examine the association between different variables and the presence of PTSD. These variables included demographic factors, family history of psychiatric disorders, DE, childhood maltreatment experiences, and critical traumatic events related to the earthquake. The results showed that the incidence of post-earthquake PTSD was 11.06%. No significant differences were found between the groups of participants who developed post-earthquake PTSD regarding the Val66Met or 5-HTTLPR polymorphisms. However, a significant association was found between the concomitant diagnosis of DE and the development of post-earthquake PTSD. The presence of DE doubled the risk of developing post-earthquake PTSD. The number of traumatic events experienced also had a statistically significant association with an increased risk of developing post-earthquake PTSD. The study's limitations include the potential interference of different DE subtypes, the complexity of quantifying the degree of earthquake exposure experienced by each individual, and events entailing social disruption, such as looting, that can profoundly influence distress. In conclusion, the study found that PTSD following the 27-F earthquake in Chile was associated with a concomitant diagnosis of DE and the number of traumatic events experienced. The study did not find a significant association between PTSD and the Val66Met or 5-HTTLPR polymorphisms. The researchers recommend that mental health professionals should prioritize the detection and treatment of concomitant depressive episodes and exposure to critical traumatic events in survivors of disasters. They also suggest that further research is needed to better understand the relationship between genetic factors and post-disaster PTSD.
Collapse
Affiliation(s)
- Juan-Luis Castillo-Navarrete
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Programa Doctorado Salud Mental, Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Benjamin Vicente
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Kristin Schmidt
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Programa Doctorado Salud Mental, Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Esteban Moraga-Escobar
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
| | - Romina Rojas-Ponce
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Programa Doctorado Salud Mental, Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paola Lagos
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ximena Macaya
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Facultad de Odontología, Universidad de Concepción, Concepción, Chile
| | - Alejandra Guzman-Castillo
- Programa Neurociencias, Psiquiatría y Salud Mental, NEPSAM, Universidad de Concepción, Concepción, Chile
- Programa Doctorado Salud Mental, Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
7
|
Clancy KJ, Devignes Q, Kumar P, May V, Hammack SE, Akman E, Casteen EJ, Pernia CD, Jobson SA, Lewis MW, Daskalakis NP, Carlezon WA, Ressler KJ, Rauch SL, Rosso IM. Circulating PACAP levels are associated with increased amygdala-default mode network resting-state connectivity in posttraumatic stress disorder. Neuropsychopharmacology 2023; 48:1245-1254. [PMID: 37161077 PMCID: PMC10267202 DOI: 10.1038/s41386-023-01593-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) system is implicated in posttraumatic stress disorder (PTSD) and related amygdala-mediated arousal and threat reactivity. PTSD is characterized by increased amygdala reactivity to threat and, more recently, aberrant intrinsic connectivity of the amygdala with large-scale resting state networks, specifically the default mode network (DMN). While the influence of PACAP on amygdala reactivity has been described, its association with intrinsic amygdala connectivity remains unknown. To fill this gap, we examined functional connectivity of resting-state functional magnetic resonance imaging (fMRI) in eighty-nine trauma-exposed adults (69 female) screened for PTSD symptoms to examine the association between blood-borne (circulating) PACAP levels and amygdala-DMN connectivity. Higher circulating PACAP levels were associated with increased amygdala connectivity with posterior DMN regions, including the posterior cingulate cortex/precuneus (PCC/Precun) and left angular gyrus (lANG). Consistent with prior work, this effect was seen in female, but not male, participants and the centromedial, but not basolateral, subregions of the amygdala. Clinical association analyses linked amygdala-PCC/Precun connectivity to anxious arousal symptoms, specifically exaggerated startle response. Taken together, our findings converge with previously demonstrated effects of PACAP on amygdala activity in PTSD-related processes and offer novel evidence for an association between PACAP and intrinsic amygdala connectivity patterns in PTSD. Moreover, these data provide preliminary evidence to motivate future work ascertaining the sex- and subregion-specificity of these effects. Such findings may enable novel mechanistic insights into neural circuit dysfunction in PTSD and how the PACAP system confers risk through a disruption of intrinsic resting-state network dynamics.
Collapse
Affiliation(s)
- Kevin J Clancy
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Quentin Devignes
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Poornima Kumar
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Victor May
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Eylül Akman
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Emily J Casteen
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Cameron D Pernia
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sydney A Jobson
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Michael W Lewis
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Nikolaos P Daskalakis
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William A Carlezon
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Scott L Rauch
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle M Rosso
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Castellini G, Merola GP, Baccaredda Boy O, Pecoraro V, Bozza B, Cassioli E, Rossi E, Bessi V, Sorbi S, Nacmias B, Ricca V. Emotional dysregulation, alexithymia and neuroticism: a systematic review on the genetic basis of a subset of psychological traits. Psychiatr Genet 2023; 33:79-101. [PMID: 36729042 PMCID: PMC10158611 DOI: 10.1097/ypg.0000000000000335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/24/2022] [Indexed: 02/03/2023]
Abstract
Neuroticism, alexithymia and emotion dysregulation are key traits and known risk factors for several psychiatric conditions. In this systematic review, the aim is to evaluate the genetic contribution to these psychological phenotypes. A systematic review of articles found in PubMed was conducted. Search terms included 'genetic', 'GWAS', 'neuroticism', 'alexithymia' and 'emotion dysregulation'. Risk of bias was assessed utilizing the STREGA checklist. Two hundred two papers were selected from existing literature based on the inclusion and exclusion criteria. Among these, 27 were genome-wide studies and 175 were genetic association studies. Single gene association studies focused on selected groups of genes, mostly involved in neurotransmission, with conflicting results. GWAS studies on neuroticism, on the other hand, found several relevant and replicated intergenic and intronic loci affecting the expression and regulation of crucial and well-known genes (such as DRD2 and CRHR1). Mutations in genes coding for trascriptional factors were also found to be associated with neuroticism (DCC, XKR6, TCF4, RBFOX1), as well as a noncoding regulatory RNA (LINC00461). On the other hand, little GWAS data are available on alexythima and emotional dysregulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valentina Bessi
- Neurology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Sandro Sorbi
- Neurology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Benedetta Nacmias
- Neurology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | | |
Collapse
|
9
|
Sankar A, Ozenne B, Dam VH, Svarer C, Jørgensen MB, Miskowiak KW, Frokjaer VG, Knudsen GM, Fisher PM. Association between brain serotonin 4 receptor binding and reactivity to emotional faces in depressed and healthy individuals. Transl Psychiatry 2023; 13:165. [PMID: 37169780 PMCID: PMC10175268 DOI: 10.1038/s41398-023-02440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Brain serotonergic (5-HT) signaling is posited to modulate neural responses to emotional stimuli. Dysfunction in 5-HT signaling is implicated in major depressive disorder (MDD), a disorder associated with significant disturbances in emotion processing. In MDD, recent evidence points to altered 5-HT4 receptor (5-HT4R) levels, a promising target for antidepressant treatment. However, how these alterations influence neural processing of emotions in MDD remains poorly understood. This is the first study to examine the association between 5-HT4R binding and neural responses to emotions in patients with MDD and healthy controls. The study included one hundred and thirty-eight participants, comprising 88 outpatients with MDD from the NeuroPharm clinical trial (ClinicalTrials.gov identifier: NCT02869035) and 50 healthy controls. Participants underwent an [11C]SB207145 positron emission tomography (PET) scan to quantify 5-HT4R binding (BPND) and a functional magnetic resonance imaging (fMRI) scan during which they performed an emotional face matching task. We examined the association between regional 5-HT4R binding and corticolimbic responses to emotional faces using a linear latent variable model, including whether this association was moderated by depression status. We observed a positive correlation between 5-HT4R BPND and the corticolimbic response to emotional faces across participants (r = 0.20, p = 0.03). This association did not differ between groups (parameter estimate difference = 0.002, 95% CI = -0.008: 0.013, p = 0.72). Thus, in the largest PET/fMRI study of associations between serotonergic signaling and brain function, we found a positive association between 5-HT4R binding and neural responses to emotions that appear unaltered in MDD. Future clinical trials with novel pharmacological agents targeting 5-HT4R are needed to confirm whether they ameliorate emotion processing biases in MDD.
Collapse
Affiliation(s)
- Anjali Sankar
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke H Dam
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Martin B Jørgensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kamilla W Miskowiak
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Mental Health Services, Capital Region of Denmark, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Vibe G Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
A neural model of vulnerability and resilience to stress-related disorders linked to differential susceptibility. Mol Psychiatry 2022; 27:514-524. [PMID: 33649455 DOI: 10.1038/s41380-021-01047-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
Expert opinion remains divided concerning the impact of putative risk factors on vulnerability to depression and other stress-related disorders. A large body of literature has investigated gene by environment interactions, particularly between the serotonin transporter polymorphism (5-HTTLPR) and negative environments, on the risk for depression. However, fewer studies have simultaneously investigated the outcomes in both negative and positive environments, which could explain some of the inconclusive findings. This is embodied by the concept of differential susceptibility, i.e., the idea that certain common gene polymorphisms, prenatal factors, and traits make some individuals not only disproportionately more susceptible and responsive to negative, vulnerability-promoting environments, but also more sensitive and responsive to positive, resilience-enhancing environmental conditions. Although this concept from the field of developmental psychology is well accepted and supported by behavioral findings, it is striking that its implementation in neuropsychiatric research is limited and that underlying neural mechanisms are virtually unknown. Based on neuroimaging studies that examined how factors mediating differential susceptibility affect brain function, we posit that environmental sensitivity manifests in increased salience network activity, increased salience and default mode network connectivity, and increased salience and central executive network connectivity. These changes in network function may bring about automatic exogenous attention for positive and negative stimuli and flexible attentional set-shifting. We conclude with a call to action; unraveling the neural mechanisms through which differential susceptibility factors mediate vulnerability and resilience may lead us to personalized preventive interventions.
Collapse
|
11
|
Understanding complex functional wiring patterns in major depressive disorder through brain functional connectome. Transl Psychiatry 2021; 11:526. [PMID: 34645783 PMCID: PMC8513388 DOI: 10.1038/s41398-021-01646-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023] Open
Abstract
Brain function relies on efficient communications between distinct brain systems. The pathology of major depressive disorder (MDD) damages functional brain networks, resulting in cognitive impairment. Here, we reviewed the associations between brain functional connectome changes and MDD pathogenesis. We also highlighted the utility of brain functional connectome for differentiating MDD from other similar psychiatric disorders, predicting recurrence and suicide attempts in MDD, and evaluating treatment responses. Converging evidence has now linked aberrant brain functional network organization in MDD to the dysregulation of neurotransmitter signaling and neuroplasticity, providing insights into the neurobiological mechanisms of the disease and antidepressant efficacy. Widespread connectome dysfunctions in MDD patients include multiple, large-scale brain networks as well as local disturbances in brain circuits associated with negative and positive valence systems and cognitive functions. Although the clinical utility of the brain functional connectome remains to be realized, recent findings provide further promise that research in this area may lead to improved diagnosis, treatments, and clinical outcomes of MDD.
Collapse
|
12
|
Facial expression recognition: A meta-analytic review of theoretical models and neuroimaging evidence. Neurosci Biobehav Rev 2021; 127:820-836. [PMID: 34052280 DOI: 10.1016/j.neubiorev.2021.05.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/03/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022]
Abstract
Discrimination of facial expressions is an elementary function of the human brain. While the way emotions are represented in the brain has long been debated, common and specific neural representations in recognition of facial expressions are also complicated. To examine brain organizations and asymmetry on discrete and dimensional facial emotions, we conducted an activation likelihood estimation meta-analysis and meta-analytic connectivity modelling on 141 studies with a total of 3138 participants. We found consistent engagement of the amygdala and a common set of brain networks across discrete and dimensional emotions. The left-hemisphere dominance of the amygdala and AI across categories of facial expression, but category-specific lateralization of the vmPFC, suggesting a flexibly asymmetrical neural representations of facial expression recognition. These results converge to characteristic activation and connectivity patterns across discrete and dimensional emotion categories in recognition of facial expressions. Our findings provide the first quantitatively meta-analytic brain network-based evidence supportive of the psychological constructionist hypothesis in facial expression recognition.
Collapse
|
13
|
Severity of self-reported depressive symptoms in a healthy sample is modulated by trait Harm Avoidance, not by 5-HTTLPR polymorphism. Psychiatry Res 2020; 291:113029. [PMID: 32619821 DOI: 10.1016/j.psychres.2020.113029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/19/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND The length of the serotonin transporter polymorphic region (5-HTTLPR) has been suggested to be associated with risk for developing depression, though with inconsistent evidence. Likewise, the personality trait Harm Avoidance (HA) has been linked to vulnerability for developing depression. However, no study has investigated whether there is an interaction effect between 5-HTTLPR and trait HA on depressive symptoms in healthy individuals. METHODS A total of 319 healthy individuals were included in this cross-sectional study. All participants were genotyped for the 5-HTTLPR polymorphism and completed self-reported measures of personality trait HA with the Temperament and Character Inventory (TCI), and of depression with the Major Depression Inventory (MDI). Linear regression analyses were used to test interaction effects between 5-HTTLPR and HA on MDI. Post hoc analyses were further performed to investigate main effects of HA and possible interaction effects between 5-HTTLPR and HA sub-scales on MDI. RESULTS No significant interaction effect between 5-HTTLPR and HA on MDI was found. A significant main effect of trait HA on MDI was found, indicating that personality trait HA is a viable vulnerability factor for even sub-clinical depressive symptoms. CONCLUSION This study finds a strong significant relationship between HA and MDI. Moreover, the present study supports the line of research indicating that candidate gene-by-interactions does not increase vulnerability for developing depression even at a sub-clinical level.
Collapse
|
14
|
Spies M, Nasser A, Ozenne B, Jensen PS, Knudsen GM, Fisher PM. Common HTR2A variants and 5-HTTLPR are not associated with human in vivo serotonin 2A receptor levels. Hum Brain Mapp 2020; 41:4518-4528. [PMID: 32697408 PMCID: PMC7555071 DOI: 10.1002/hbm.25138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
The serotonin 2A receptor (5‐HT2AR) is implicated in the pathophysiology and treatment of various psychiatric disorders. [18F]altanserin and [11C]Cimbi‐36 positron emission tomography (PET) allow for high‐resolution imaging of 5‐HT2AR in the living human brain. Cerebral 5‐HT2AR binding is strongly genetically determined, though the impact of specific variants is poorly understood. Candidate gene studies suggest that HTR2A single nucleotide polymorphisms including rs6311/rs6313, rs6314, and rs7997012 may influence risk for psychiatric disorders and mediate treatment response. Although known to impact in vitro expression of 5‐HT2AR or other serotonin (5‐HT) proteins, their effect on human in vivo brain 5‐HT2AR binding has as of yet been insufficiently studied. We thus assessed the extent to which these variants and the commonly studied 5‐HTTLPR predict neocortex in vivo 5‐HT2AR binding in healthy adult humans. We used linear regression analyses and likelihood ratio tests in 197 subjects scanned with [18F]altanserin or [11C]Cimbi‐36 PET. Although we observed genotype group differences in 5‐HT2AR binding of up to ~10%, no genetic variants were statistically significantly predictive of 5‐HT2AR binding in what is the largest human in vivo 5‐HT2AR imaging genetics study to date. Thus, in vitro and post mortem results suggesting effects on 5‐HT2AR expression did not carry over to the in vivo setting. To any extent these variants might affect clinical risk, our findings do not support that 5‐HT2AR binding mediates such effects. Our observations indicate that these individual variants do not significantly contribute to genetic load on human in vivo 5‐HT2AR binding.
Collapse
Affiliation(s)
- Marie Spies
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Arafat Nasser
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.,Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Peter S Jensen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
15
|
Kong F, Yang K, Sajjad S, Yan W, Li X, Zhao J. Neural correlates of social well-being: gray matter density in the orbitofrontal cortex predicts social well-being in emerging adulthood. Soc Cogn Affect Neurosci 2020; 14:319-327. [PMID: 30715518 PMCID: PMC6399614 DOI: 10.1093/scan/nsz008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/06/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
Social well-being reflects the perception of one’s social functioning, which plays an important role in physical and psychological health. However, the exact neuroanatomical substrate for social well-being remains unclear. To address the issue, we employed the voxel-based morphometry method to probe the neuroanatomical basis of individual variation in social well-being in young healthy adults (n = 136). The results revealed a significant negative association between social well-being and regional gray matter density (rGMD) in an anatomical cluster that mainly includes the left orbitofrontal cortex (OFC) that has been involved in emotion regulation and social cognition. Furthermore, a balanced 4-fold cross-validation using the machine learning approach revealed that rGMD in the left OFC could be reliably related to social well-being. More importantly, the multiple mediation analysis revealed that neuroticism and dispositional forgiveness independently mediated the association between rGMD in the left OFC and social well-being. In addition, all these results remained stable when subjective socioeconomic status was controlled. Together, our results provide the initial evidence that the OFC is a neuroanatomical substrate for social well-being and demonstrate that the OFC is a crucial neural site linking neuroticism and dispositional forgiveness to social well-being.
Collapse
Affiliation(s)
- Feng Kong
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Kairong Yang
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Sonia Sajjad
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Wenjing Yan
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Xuewen Li
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
16
|
Li G, Wang L, Cao C, Fang R, Hall BJ, Elhai JD, Liberzon I. Post-traumatic stress symptoms of children and adolescents exposed to the 2008 Wenchuan Earthquake: A longitudinal study of 5-HTTLPR genotype main effects and gene-environment interactions. INTERNATIONAL JOURNAL OF PSYCHOLOGY 2019; 56:22-29. [PMID: 31441508 DOI: 10.1002/ijop.12614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 08/05/2019] [Indexed: 11/11/2022]
Abstract
Experiencing disasters causes severe mental disorders, among which post-traumatic stress disorder (PTSD) is the most common. We conducted a longitudinal study to examine the effect of 5-hydroxyl tryptamine transporter gene-linked polymorphic region (5-HTTLPR) genotype on child and adolescent PTSD symptom course after the 2008 Wenchuan Earthquake. We genotyped 963 participants who personally experienced the earthquake. PTSD symptoms were measured by University of California, Los Angeles PTSD reaction index at 2.5, 3.5, 4.5 and 5.5 years after the earthquake, respectively. Latent growth model was utilised to examine the main effect and gene-environment interaction effect of 5-HTTLPR on PTSD's symptom course. 5-HTTLPR genotype predicted initial PTSD symptom severity (β = 0.108, p = .019) and rates of symptom recovery (β = -0.120, p = .031) between 2.5 and 5.5 years. Compared with L' allele carriers, those with S'S' genotype showed higher initial symptom severity but also faster recovery rate. 5-HTTLPR genotype only predicted symptom severity at 2.5 years after the earthquake, after controlling for sex, age, ethnicity and trauma severity (β = 0.108, p = .019). This is the first evidence of the effect of 5-HTTLPR genotype on child and adolescent PTSD symptoms longitudinally, offering a novel perspective on the effect of 5-HTTLPR on PTSD symptom development following trauma exposure.
Collapse
Affiliation(s)
- Gen Li
- Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chengqi Cao
- Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China
| | - Ruojiao Fang
- Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Brian J Hall
- Global and Community Mental Health Research Group, Department of Psychology, Faculty of Social Sciences, University of Macau, Macau SAR, China.,Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jon D Elhai
- Department of Psychology, University of Toledo, Toledo, OH, USA.,Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M College of Medicine, College Station, TX, USA
| |
Collapse
|
17
|
Functional connectivity of reflective and brooding rumination in depressed and healthy women. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:884-901. [PMID: 29949111 DOI: 10.3758/s13415-018-0611-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ruminative thinking is related to an increased risk for major depressive disorder (MDD) and perpetuates negative mood states. Rumination, uncontrollable negative thoughts about the self, may comprise both reflective and brooding components. However, only brooding rumination is consistently associated with increased negativity bias and negative coping styles, while reflective rumination has a less clear relationship with negative outcomes in healthy and depressed participants. The current study examined seed-to-voxel (S2.V) resting-state functional connectivity (FC) in a sample of healthy (HC) and depressed (MDD) adult women (HC: n=50, MDD: n=33). The S2V FC of six key brain regions, including the left and right amygdala, anterior and posterior cingulate cortex (ACC, PCC), and medial and dorsolateral prefrontal cortices (mPFC, dlPFC), was correlated with self-reported reflective and brooding rumination. Results indicate that HC and MDD participants had increased brooding rumination associated with decreased FC between the left amygdala and the right temporal pole. Moreover, reflective rumination was associated with distinct FC of the mPFC, PCC, and ACC with parietal, occipital, and cingulate regions. Depressed participants, compared with HC, exhibited decreased FC between the PCC and a region in the right middle frontal gyrus. The results of the current study add to the understanding of the neural underpinnings of different forms of self-related cognition-brooding and reflective rumination-in healthy and depressed women.
Collapse
|
18
|
Insula serotonin 2A receptor binding and gene expression contribute to serotonin transporter polymorphism anxious phenotype in primates. Proc Natl Acad Sci U S A 2019; 116:14761-14768. [PMID: 31266890 PMCID: PMC6642374 DOI: 10.1073/pnas.1902087116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Genetic variation in the serotonin transporter gene (SLC6A4) is associated with vulnerability to affective disorders and pharmacotherapy efficacy. We recently identified sequence polymorphisms in the common marmoset SLC6A4 repeat region (AC/C/G and CT/T/C) associated with individual differences in anxiety-like trait, gene expression, and response to antidepressants. The mechanisms underlying the effects of these polymorphisms are unknown, but a key mediator of serotonin action is the serotonin 2A receptor (5HT2A). Thus, we correlated 5HT2A binding potential (BP) and RNA gene expression in 16 SLC6A4 genotyped marmosets with responsivity to 5HT2A antagonism during the human intruder test of anxiety. Voxel-based analysis and RNA measurements showed a reduction in 5HT2A BP and gene expression specifically in the right posterior insula of individuals homozygous for the anxiety-related variant AC/C/G. These same marmosets displayed an anxiogenic, dose-dependent response to the human intruder after 5HT2A pharmacological antagonism, while CT/T/C individuals showed no effect. A voxel-based correlation analysis, independent of SLC6A4 genotype, revealed that 5HT2A BP in the adjacent right anterior insula and insula proisocortex was negatively correlated with trait anxiety scores. Moreover, 5HT2A BP in both regions was a good predictor of the size and direction of the acute emotional response to the human intruder threat after 5HT2A antagonism. Our findings suggest that genetic variation in the SLC6A4 repeat region may contribute to the trait anxious phenotype via neurochemical changes in brain areas implicated in interoceptive and emotional processing, with a critical role for the right insula 5HT2A in the regulation of affective responses to threat.
Collapse
|
19
|
Buades-Rotger M, Engelke C, Krämer UM. Trait and state patterns of basolateral amygdala connectivity at rest are related to endogenous testosterone and aggression in healthy young women. Brain Imaging Behav 2019; 13:564-576. [PMID: 29744800 DOI: 10.1007/s11682-018-9884-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The steroid hormone testosterone (T) has been suggested to influence reactive aggression upon its action on the basolateral amygdala (BLA), a key brain region for threat detection. However, it is unclear whether T modulates resting-state functional connectivity (rsFC) of the BLA, and whether this predicts subsequent aggressive behavior. Aggressive interactions themselves, which often induce changes in T concentrations, could further alter BLA rsFC, but this too remains untested. Here we investigated the effect of endogenous T on rsFC of the BLA at baseline as well as after an aggressive encounter, and whether this was related to behavioral aggression in healthy young women (n = 39). Pre-scan T was negatively correlated with basal rsFC between BLA and left superior temporal gyrus (STG; p < .001, p < .05 Family-Wise Error [FWE] cluster-level corrected), which in turn was associated with increased aggression (r = .37, p = .020). BLA-STG coupling at rest might thus underlie hostile readiness in low-T women. In addition, connectivity between the BLA and the right superior parietal lobule (SPL), a brain region involved in higher-order perceptual processes, was reduced in aggressive participants (p < .001, p < .05 FWE cluster-level corrected). On the other hand, post-task increases in rsFC between BLA and medial orbitofrontal cortex (mOFC) were linked to reduced aggression (r = -.36, p = .023), consistent with the established notion that the mOFC regulates amygdala activity in order to curb aggressive impulses. Finally, competition-induced changes in T were associated with increased coupling between the BLA and the right lateral OFC (p < .001, p < .05 FWE cluster-level corrected), but this effect was unrelated to aggression. We thus identified connectivity patterns that prospectively predict aggression in women, and showed how aggressive interactions in turn impact these neural systems.
Collapse
Affiliation(s)
- Macià Buades-Rotger
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- Institute of Psychology II, University of Lübeck, Lübeck, Germany.
| | - Christin Engelke
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Ulrike M Krämer
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
| |
Collapse
|
20
|
Balada F, Lucas I, Blanch Á, Blanco E, Aluja A. Neuroticism is associated with reduced oxygenation levels in the lateral prefrontal cortex following exposure to unpleasant images. Physiol Behav 2019; 199:66-72. [DOI: 10.1016/j.physbeh.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/04/2018] [Accepted: 11/02/2018] [Indexed: 12/22/2022]
|
21
|
Neuroticism modulates mood responses to pharmacological sex hormone manipulation in healthy women. Psychoneuroendocrinology 2019; 99:251-256. [PMID: 30390443 DOI: 10.1016/j.psyneuen.2018.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Women show increased risk of depressive symptoms during hormonal transition phases. The risk mechanisms may include changes in mood in response to fluctuating ovarian hormones moderated by predisposing risk factors for mood disorders, such as personality trait Neuroticism. METHODS A pooled sample of 92 mentally healthy women (28.3 ± 7.1, mean age ± SD) from two independent cohorts run in our lab, using gonadotropin-releasing hormone agonist (GnRHa) experimentally (n = 28) compared to placebo (n = 27) and as part in vitro fertilization (n = 37), were extracted from the Center for Integrated Molecular Brain Imaging database. All women filled in questionnaires of trait Neuroticism from the NEO personality Inventory-Revised (NEO PI-R) at baseline and self-reported levels of mood disturbances with the Profile of Mood States (POMS) daily during 14 days of GnRHa intervention or placebo. Effects of intervention by trait Neuroticism on serial daily reports of mood disturbances were examined using mixed model analyses. RESULTS Personality trait Neuroticism significantly modulated daily mood responses to GnRHa, but not placebo. Women with high and low scores on trait Neuroticism at baseline experienced more pronounced changes in mood when exposed to GnRHa, whereas women with medium trait Neuroticism scores remained relatively stable. CONCLUSIONS The susceptibility to hormone-triggered mood changes appears to depend upon women's general tendency to experience distress and destabilization of mood, as captured by personality trait Neuroticism. This could aid clinicians evaluate hormone-related vulnerability for mood disorders in women and may guide targeted prevention in reproductive care.
Collapse
|
22
|
Hornboll B, Macoveanu J, Nejad A, Rowe J, Elliott R, Knudsen GM, Siebner HR, Paulson OB. Neuroticism predicts the impact of serotonin challenges on fear processing in subgenual anterior cingulate cortex. Sci Rep 2018; 8:17889. [PMID: 30559408 PMCID: PMC6297157 DOI: 10.1038/s41598-018-36350-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022] Open
Abstract
The personality trait neuroticism is associated with increased vulnerability to anxiety and mood disorders, conditions linked with abnormal serotonin neurotransmission and emotional processing. The interaction between neuroticism and serotonin during emotional processing is however not understood. Here we investigate how individual neuroticism scores influence the neural response to negative emotional faces and their sensitivity to serotonergic tone. Twenty healthy participants performed an emotional face task under functional MRI on three occasions: increased serotonin tone following infusion of a selective serotonin reuptake inhibitor (SSRI), decreased serotonin tone following acute tryptophan depletion (ATD) protocol, and no serotonin challenge (control). During the task, participants performed a gender-discrimination task of neutral, fearful or angry facial expressions. Individual variations in neuroticism scores were associated with neural response of subgenual anterior cingulate cortex to fearful facial expressions. The association was however opposite under the two serotoninergic challenges. The fear-related response in this region and individual neuroticism scores correlated negatively during citalopram challenge and positively during ATD. Thus, neuroticism scores were associated with the relative impact of serotonin challenges on fear processing in subgenual anterior cingulate cortex. This finding may link to a neural mechanism for the variable therapeutic effect of SSRI treatment observed in clinical populations.
Collapse
Affiliation(s)
- Bettina Hornboll
- Danish Research Centre for Magnetic Resonance (DRCMR), Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Center for Integrated Molecular Brain Imaging (Cimbi), Copenhagen, Denmark.,University of Copenhagen, Faculty of Health Science and Medicine, Copenhagen, Denmark
| | - Julian Macoveanu
- Danish Research Centre for Magnetic Resonance (DRCMR), Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Center for Integrated Molecular Brain Imaging (Cimbi), Copenhagen, Denmark
| | - Ayna Nejad
- Danish Research Centre for Magnetic Resonance (DRCMR), Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Child and Adolescent Mental Health Centre, Capital Region Psychiatry, Copenhagen, Denmark
| | - James Rowe
- Center for Integrated Molecular Brain Imaging (Cimbi), Copenhagen, Denmark.,Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom.,University of Copenhagen, Faculty of Health Science and Medicine, Copenhagen, Denmark
| | - Rebecca Elliott
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Gitte M Knudsen
- Center for Integrated Molecular Brain Imaging (Cimbi), Copenhagen, Denmark.,Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,University of Copenhagen, Faculty of Health Science and Medicine, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance (DRCMR), Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.,University of Copenhagen, Faculty of Health Science and Medicine, Copenhagen, Denmark
| | - Olaf B Paulson
- Danish Research Centre for Magnetic Resonance (DRCMR), Copenhagen University Hospital Hvidovre, Hvidovre, Denmark. .,Center for Integrated Molecular Brain Imaging (Cimbi), Copenhagen, Denmark. .,Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark. .,University of Copenhagen, Faculty of Health Science and Medicine, Copenhagen, Denmark.
| |
Collapse
|
23
|
Nostro AD, Müller VI, Varikuti DP, Pläschke RN, Hoffstaedter F, Langner R, Patil KR, Eickhoff SB. Predicting personality from network-based resting-state functional connectivity. Brain Struct Funct 2018; 223:2699-2719. [PMID: 29572625 DOI: 10.1007/s00429-018-1651-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
Personality is associated with variation in all kinds of mental faculties, including affective, social, executive, and memory functioning. The intrinsic dynamics of neural networks underlying these mental functions are reflected in their functional connectivity at rest (RSFC). We, therefore, aimed to probe whether connectivity in functional networks allows predicting individual scores of the five-factor personality model and potential gender differences thereof. We assessed nine meta-analytically derived functional networks, representing social, affective, executive, and mnemonic systems. RSFC of all networks was computed in a sample of 210 males and 210 well-matched females and in a replication sample of 155 males and 155 females. Personality scores were predicted using relevance vector machine in both samples. Cross-validation prediction accuracy was defined as the correlation between true and predicted scores. RSFC within networks representing social, affective, mnemonic, and executive systems significantly predicted self-reported levels of Extraversion, Neuroticism, Agreeableness, and Openness. RSFC patterns of most networks, however, predicted personality traits only either in males or in females. Personality traits can be predicted by patterns of RSFC in specific functional brain networks, providing new insights into the neurobiology of personality. However, as most associations were gender-specific, RSFC-personality relations should not be considered independently of gender.
Collapse
Affiliation(s)
- Alessandra D Nostro
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany. .,Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany. .,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany.
| | - Veronika I Müller
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Deepthi P Varikuti
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Rachel N Pläschke
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Kaustubh R Patil
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| |
Collapse
|
24
|
Borgsted C, Ozenne B, Mc Mahon B, Madsen MK, Hjordt LV, Hageman I, Baaré WFC, Knudsen GM, Fisher PM. Amygdala response to emotional faces in seasonal affective disorder. J Affect Disord 2018; 229:288-295. [PMID: 29329062 DOI: 10.1016/j.jad.2017.12.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/29/2017] [Accepted: 12/31/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Seasonal affective disorder (SAD) is characterized by seasonally recurring depression. Heightened amygdala activation to aversive stimuli is associated with major depressive disorder but its relation to SAD is unclear. We evaluated seasonal variation in amygdala activation in SAD and healthy controls (HC) using a longitudinal design targeting the asymptomatic/symptomatic phases of SAD. We hypothesized increased amygdala activation to aversive stimuli in the winter in SAD individuals (season-by-group interaction). METHODS Seventeen SAD individuals and 15 HCs completed an implicit emotional faces BOLD-fMRI paradigm during summer and winter. We computed amygdala activation (SPM5) to an aversive contrast (angry & fearful minus neutral) and angry, fearful and neutral faces, separately. Season-by-group and main effects were evaluated using Generalized Least Squares. In SAD individuals, we correlated change in symptom severity, assessed with The Hamilton Rating Scale for Depression - Seasonal Affective Disorder version (SIGH-SAD), with change in amygdala activation. RESULTS We found no season-by-group, season or group effect on our aversive contrast. Independent of season, SAD individuals showed significantly lower amygdala activation to all faces compared to healthy controls, with no evidence for a season-by-group interaction. Seasonal change in amygdala activation was unrelated to change in SIGH-SAD. LIMITATIONS Small sample size, lack of positive valence stimuli. CONCLUSIONS Amygdala activation to aversive faces is not increased in symptomatic SAD individuals. Instead, we observed decreased amygdala activation across faces, independent of season. Our findings suggest that amygdala activation to angry, fearful and neutral faces is altered in SAD individuals, independent of the presence of depressive symptoms.
Collapse
Affiliation(s)
- Camilla Borgsted
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark; Department of Biostatistics, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen, Denmark
| | - Brenda Mc Mahon
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Martin K Madsen
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Liv V Hjordt
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ida Hageman
- Psychiatric Centre Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
25
|
da Cunha-Bang S, Fisher PM, Hjordt LV, Perfalk E, Persson Skibsted A, Bock C, Ohlhues Baandrup A, Deen M, Thomsen C, Sestoft DM, Knudsen GM. Violent offenders respond to provocations with high amygdala and striatal reactivity. Soc Cogn Affect Neurosci 2018; 12:802-810. [PMID: 28338916 PMCID: PMC5460055 DOI: 10.1093/scan/nsx006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/16/2017] [Indexed: 01/15/2023] Open
Abstract
The ability to successfully suppress impulses and angry affect is fundamental to control aggressive reactions following provocations. The aim of this study was to examine neural responses to provocations and aggression using a laboratory model of reactive aggression. We used a novel functional magnetic resonance imaging point-subtraction aggression paradigm in 44 men, of whom 18 were incarcerated violent offenders and 26 were control non-offenders. We measured brain activation following provocations (monetary subtractions), while the subjects had the possibility to behave aggressively or pursue monetary rewards. The violent offenders behaved more aggressively than controls (aggression frequency 150 vs 84, P = 0.03) and showed significantly higher brain reactivity to provocations within the amygdala and striatum, as well as reduced amygdala-prefrontal and striato-prefrontal connectivity. Amygdala reactivity to provocations was positively correlated with task-related behavior in the violent offenders. Across groups, striatal and prefrontal reactivity to provocations was positively associated with trait anger and trait aggression. These results suggest that violent individuals display abnormally high neural sensitivity to social provocations, a sensitivity related to aggressive behavior. These findings provide novel insight into the neural pathways that are sensitive to provocations, which is critical to more effectively shaped interventions that aim to reduce pathological aggressive behavior.
Collapse
Affiliation(s)
- Sofi da Cunha-Bang
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Liv Vadskjær Hjordt
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Erik Perfalk
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Anine Persson Skibsted
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Camilla Bock
- The Danish Prison and Probation Service, Herstedvester Prison, Holsbjergvej 20, DK-2620 Albertslund, Denmark
| | - Anders Ohlhues Baandrup
- Research Center for Advanced Imaging, Department of Radiology Zealand University Hospital, Lykkebækvej 1, DK-4600 Køge, Denmark
| | - Marie Deen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Carsten Thomsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.,Department of Radiology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Dorte M Sestoft
- Minstry of Justice, Clinic of Forensic Psychiatry, Blegdamsvej 6B, DK-2200 Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
26
|
Vai B, Riberto M, Ghiglino D, Poletti S, Bollettini I, Lorenzi C, Colombo C, Benedetti F. A 5-HT 1Areceptor promoter polymorphism influences fronto-limbic functional connectivity and depression severity in bipolar disorder. Psychiatry Res Neuroimaging 2017; 270:1-7. [PMID: 28985530 DOI: 10.1016/j.pscychresns.2017.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Benedetta Vai
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy.
| | - Martina Riberto
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Davide Ghiglino
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Sara Poletti
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Irene Bollettini
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Lorenzi
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Cristina Colombo
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Francesco Benedetti
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
27
|
Association between Neuroticism and Emotional Face Processing. Sci Rep 2017; 7:17669. [PMID: 29247161 PMCID: PMC5732281 DOI: 10.1038/s41598-017-17706-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Neuroticism is one of the “Big Five” personality factors and is characterized by a tendency to experience negative affect. We aimed to investigate how neuroticism influences the neural correlates for processing of emotional facial expressions. 68 healthy participants were presented with emotional dynamic facial stimuli, i.e. happy, neutral or angry, during functional MRI. Brain activations for the contrasts emotional vs. neutral, happy vs. neutral and angry vs. neutral were correlated with individuals’ neuroticism scores as obtained by the NEO Five Factor Inventory questionnaire and additionally investigated for gender differences. The bilateral medial temporal gyrus (MTG) was identified as key region in the processing of emotional faces and activations within this region correlated with individual neuroticism scores. Although female participants showed significantly stronger activation differences between emotional and neutral facial expressions in the left MTG, the correlation between activation and neuroticism scores did not show any significant gender differences. Our results offer for the first time a biological correlate within the face processing network for enhanced reactivity of neurotic individuals to emotional facial expressions which occurs similarly for both male and female participants.
Collapse
|
28
|
Stenbæk DS, Dam VH, Fisher PM, Hansen N, Hjordt LV, Frokjaer VG. No evidence for a role of the serotonin 4 receptor in five-factor personality traits: A positron emission tomography brain study. PLoS One 2017; 12:e0184403. [PMID: 28880910 PMCID: PMC5589219 DOI: 10.1371/journal.pone.0184403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
Serotonin (5-HT) brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo serotonin 4 receptor (5-HT4R) brain availability, which has recently become possible to image with Positron Emission Tomography (PET). This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone in the healthy brain. In 69 healthy participants (18 females), the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R) and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC) were investigated using linear regression models. The associations between each of the five personality traits and a latent variable construct of global 5-HT4R levels were also evaluated using latent variable structural equation models. We found no significant associations between the five NEO personality traits and regional 5-HT4R binding (all p-values > .17) or the latent construct of global 5-HT4R levels (all p-values > .37). Our findings indicate that NEO personality traits and 5-HT4R are not related in healthy participants. Under the assumption that global 5-HT4R levels index 5-HT tone, our data also suggest that 5-HT tone per se is not directly implicated in normal personality traits.
Collapse
Affiliation(s)
- Dea Siggaard Stenbæk
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Center for Integrated Molecular Brain Imaging and Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| | - Vibeke Høyrup Dam
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Center for Integrated Molecular Brain Imaging and Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Center for Integrated Molecular Brain Imaging and Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Nanna Hansen
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Liv Vadskjær Hjordt
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Center for Integrated Molecular Brain Imaging and Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibe Gedsoe Frokjaer
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Center for Integrated Molecular Brain Imaging and Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
29
|
Stenbæk DS, Fisher PM, Ozenne B, Andersen E, Hjordt LV, McMahon B, Hasselbalch SG, Frokjaer VG, Knudsen GM. Brain serotonin 4 receptor binding is inversely associated with verbal memory recall. Brain Behav 2017; 7:e00674. [PMID: 28413715 PMCID: PMC5390847 DOI: 10.1002/brb3.674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 01/12/2017] [Accepted: 02/04/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We have previously identified an inverse relationship between cerebral serotonin 4 receptor (5-HT 4R) binding and nonaffective episodic memory in healthy individuals. Here, we investigate in a novel sample if the association is related to affective components of memory, by examining the association between cerebral 5-HT 4R binding and affective verbal memory recall. METHODS Twenty-four healthy volunteers were scanned with the 5-HT 4R radioligand [11C]SB207145 and positron emission tomography, and were tested with the Verbal Affective Memory Test-24. The association between 5-HT 4R binding and affective verbal memory was evaluated using a linear latent variable structural equation model. RESULTS We observed a significant inverse association across all regions between 5-HT 4R binding and affective verbal memory performances for positive (p = 5.5 × 10-4) and neutral (p = .004) word recall, and an inverse but nonsignificant association for negative (p = .07) word recall. Differences in the associations with 5-HT 4R binding between word categories (i.e., positive, negative, and neutral) did not reach statistical significance. CONCLUSION Our findings replicate our previous observation of a negative association between 5-HT 4R binding and memory performance in an independent cohort and provide novel evidence linking 5-HT 4R binding, as a biomarker for synaptic 5-HT levels, to the mnestic processing of positive and neutral word stimuli in healthy humans.
Collapse
Affiliation(s)
- Dea S Stenbæk
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging The Neuroscience Centre Rigshospitalet Copenhagen Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging The Neuroscience Centre Rigshospitalet Copenhagen Denmark
| | - Brice Ozenne
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging The Neuroscience Centre Rigshospitalet Copenhagen Denmark.,Department of Biostatistics University of Copenhagen Copenhagen Denmark
| | - Emil Andersen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging The Neuroscience Centre Rigshospitalet Copenhagen Denmark
| | - Liv V Hjordt
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging The Neuroscience Centre Rigshospitalet Copenhagen Denmark
| | - Brenda McMahon
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging The Neuroscience Centre Rigshospitalet Copenhagen Denmark
| | - Steen G Hasselbalch
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging The Neuroscience Centre Rigshospitalet Copenhagen Denmark.,Department of Neurology The Neuroscience Centre Danish Dementia Research Centre Rigshospitalet, University of Copenhagen Copenhagen Denmark
| | - Vibe G Frokjaer
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging The Neuroscience Centre Rigshospitalet Copenhagen Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging The Neuroscience Centre Rigshospitalet Copenhagen Denmark
| |
Collapse
|
30
|
Ren P, Anthony M, Chapman BP, Heffner K, Lin F. Amygdala functional connectivity is associated with locus of control in the context of cognitive aging. Neuropsychologia 2017; 99:199-206. [PMID: 28315366 DOI: 10.1016/j.neuropsychologia.2017.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/07/2017] [Accepted: 03/12/2017] [Indexed: 11/28/2022]
Abstract
Locus of control (LOC) measures the extent to which individuals perceive control over their lives. Those with a more "internal" LOC feel self-sufficient and able to determine important aspects of their own future, while those with a more "external" LOC feel that their lives are governed by events beyond their control. Reduced internal LOC and increased external LOC have been found in cognitive disorders, but the neural substrates of these control perceptions are yet unknown. In the present study, we explored the relationship between amygdala functional connectivity and LOC in 18 amnestic mild cognitive impairment (MCI) and age-, sex-, and education-matched, 22 cognitively healthy controls (HC). Participants completed cognitive challenge tasks (Stroop Word Color task and Dual 1-back) for 20min, and underwent resting-state functional magnetic resonance imaging immediately before and after the tasks. We found significantly lower internal LOC and higher external LOC in the MCI group than the HC group. Compared to HC, MCI group showed significantly stronger positive associations between internal LOC and baseline right amygdala connections (including right middle frontal gyrus and anterior cingulate cortex), and stronger negative associations between internal LOC and change of these right amygdala connections. Across all participants, external LOC explained the relationships between associations of another set of right amygdala connections (including middle cingulate cortex and right superior frontal gyrus), both at baseline and for change, and performance in the cognitive challenge tasks. Our findings indicate that the right amygdala networks might be critical in understanding the neural mechanisms underlying LOC's role in cognitive aging.
Collapse
Affiliation(s)
- Ping Ren
- School of Nursing, University of Rochester Medical Center, Rochester, NY, USA
| | - Mia Anthony
- School of Nursing, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin P Chapman
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA; Depart of Public Health Science, University of Rochester Medical Center, Rochester, NY, USA
| | - Kathi Heffner
- School of Nursing, University of Rochester Medical Center, Rochester, NY, USA; Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Feng Lin
- School of Nursing, University of Rochester Medical Center, Rochester, NY, USA; Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA; Department of Brain and Cognitive Science, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
31
|
BDNF val66met association with serotonin transporter binding in healthy humans. Transl Psychiatry 2017; 7:e1029. [PMID: 28195567 PMCID: PMC5438027 DOI: 10.1038/tp.2016.295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/22/2016] [Accepted: 12/15/2016] [Indexed: 12/31/2022] Open
Abstract
The serotonin transporter (5-HTT) is a key feature of the serotonin system, which is involved in behavior, cognition and personality and implicated in neuropsychiatric illnesses including depression. The brain-derived neurotrophic factor (BDNF) val66met and 5-HTTLPR polymorphisms have predicted differences in 5-HTT levels in humans but with equivocal results, possibly due to limited sample sizes. Within the current study we evaluated these genetic predictors of 5-HTT binding with [11C]DASB positron emission tomography (PET) in a comparatively large cohort of 144 healthy individuals. We used a latent variable model to determine genetic effects on a latent variable (5-HTTLV), reflecting shared correlation across regional 5-HTT binding (amygdala, caudate, hippocampus, midbrain, neocortex, putamen and thalamus). Our data supported a significant BDNF val66met effect on 5-HTTLV such that met-carriers showed 2-7% higher subcortical 5-HTT binding compared with val/val individuals (P=0.042). Our data did not support a BDNF val66met effect in neocortex and 5-HTTLPR did not significantly predict 5-HTTLV. We did not observe evidence for an interaction between genotypes. Our findings indicate that met-carriers have increased subcortical 5-HTT binding. The small difference suggests limited statistical power may explain previously reported null effects. Our finding adds to emerging evidence that BDNF val66met contributes to differences in the human brain serotonin system, informing how variability in the 5-HTT level emerges and may represent an important molecular mediator of BDNF val66met effects on behavior and related risk for neuropsychiatric illness.
Collapse
|
32
|
Di X, Huang J, Biswal BB. Task modulated brain connectivity of the amygdala: a meta-analysis of psychophysiological interactions. Brain Struct Funct 2017; 222:619-634. [PMID: 27259584 PMCID: PMC10673661 DOI: 10.1007/s00429-016-1239-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 05/20/2016] [Indexed: 01/26/2023]
Abstract
Understanding functional connectivity of the amygdala with other brain regions, especially task modulated connectivity, is a critical step toward understanding the role of the amygdala in emotional processes and the interactions between emotion and cognition. The present study performed coordinate-based meta-analysis on studies of task modulated connectivity of the amygdala which used psychophysiological interaction (PPI) analysis. We first analyzed 49 PPI studies on different types of tasks using activation likelihood estimation (ALE) meta-analysis. Widespread cortical and subcortical regions showed consistent task modulated connectivity with the amygdala, including the medial frontal cortex, bilateral insula, anterior cingulate, fusiform gyrus, parahippocampal gyrus, thalamus, and basal ganglia. These regions were in general overlapped with those showed coactivations with the amygdala, suggesting that these regions and amygdala are not only activated together, but also show different levels of interactions during tasks. Further analyses with subsets of PPI studies revealed task specific functional connectivities with the amygdala that were modulated by fear processing, face processing, and emotion regulation. These results suggest a dynamic modulation of connectivity upon task demands, and provide new insights on the functions of the amygdala in different affective and cognitive processes. The meta-analytic approach on PPI studies may offer a framework toward systematical examinations of task modulated connectivity.
Collapse
Affiliation(s)
- Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, 607 Fenster Hall, University Height, Newark, NJ, 07102, USA
| | - Jia Huang
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, People's Republic of China
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, 607 Fenster Hall, University Height, Newark, NJ, 07102, USA.
| |
Collapse
|
33
|
Extraversion and neuroticism related to the resting-state effective connectivity of amygdala. Sci Rep 2016; 6:35484. [PMID: 27765947 PMCID: PMC5073227 DOI: 10.1038/srep35484] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022] Open
Abstract
The amygdala plays a key role in emotion processing. Its functional connectivity with other brain regions has been extensively demonstrated to be associated with extraversion and neuroticism. However, how the amygdala affects other regions and is affected by others within these connectivity patterns associated with extraversion and neuroticism remains unclear. To address this issue, we investigated the effective connectivity of the amygdala using Granger causality analysis on the resting-state functional magnetic resonance imaging data of 70 participants. Results showed that extraversion was positively correlated with the influence from the right inferior occipital gyrus (IOG) to the left amygdala, and from the bilateral IOG to the right amygdala; such result may represent the neural correlates of social interactions in extraverts. Conversely, neuroticism was associated with an increased influence from right amygdala to right middle frontal gyrus and a decreased influence from right precuneus to right amygdala. This influence might affect the modulations of cognitive regulation function and self-referential processes in neurotic individuals. These findings highlight the importance of the causal influences of amygdala in explaining the individual differences in extraversion and neuroticism, and offer further insights into the specific neural networks underlying personality.
Collapse
|
34
|
Macoveanu J, Fisher PM, Madsen MK, Mc Mahon B, Knudsen GM, Siebner HR. Bright-light intervention induces a dose-dependent increase in striatal response to risk in healthy volunteers. Neuroimage 2016; 139:37-43. [PMID: 27318214 DOI: 10.1016/j.neuroimage.2016.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 02/01/2023] Open
Abstract
Bright-light interventions have successfully been used to reduce depression symptoms in patients with seasonal affective disorder, a depressive disorder most frequently occurring during seasons with reduced daylight availability. Yet, little is known about how light exposure impacts human brain function, for instance on risk taking, a process affected in depressive disorders. Here we examined the modulatory effects of bright-light exposure on brain activity during a risk-taking task. Thirty-two healthy male volunteers living in the greater Copenhagen area received 3weeks of bright-light intervention during the winter season. Adopting a double-blinded dose-response design, bright-light was applied for 30minutes continuously every morning. The individual dose varied between 100 and 11.000lx. Whole-brain functional MRI was performed before and after bright-light intervention to probe how the intervention modifies risk-taking related neural activity during a two-choice gambling task. We also assessed whether inter-individual differences in the serotonin transporter-linked polymorphic region (5-HTTLPR) genotype influenced the effects of bright-light intervention on risk processing. Bright-light intervention led to a dose-dependent increase in risk-taking in the LA/LA group relative to the non-LA/LA group. Further, bright-light intervention enhanced risk-related activity in ventral striatum and head of caudate nucleus in proportion with the individual bright-light dose. The augmentation effect of light exposure on striatal risk processing was not influenced by the 5-HTTLPR-genotype. This study provides novel evidence that in healthy non-depressive individuals bright-light intervention increases striatal processing to risk in a dose-dependent fashion. The findings provide converging evidence that risk processing is sensitive to bright-light exposure during winter.
Collapse
Affiliation(s)
- Julian Macoveanu
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark; Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | - Patrick M Fisher
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Martin K Madsen
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Brenda Mc Mahon
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Gitte M Knudsen
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|