1
|
Hegde AN, Timm LE, Sivley CJ, Ramiyaramcharankarthic S, Lowrimore OJ, Hendrix BJ, Grozdanov TG, Anderson WJ. Ubiquitin-Proteasome-Mediated Protein Degradation and Disorders of the Central Nervous System. Int J Mol Sci 2025; 26:966. [PMID: 39940735 PMCID: PMC11817509 DOI: 10.3390/ijms26030966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Ubiquitin-proteasome-mediated proteolysis post-translationally regulates the amounts of many proteins that are critical for the normal physiology of the central nervous system. Research carried out over the last several years has revealed a role for components of the ubiquitin-proteasome pathway (UPP) in many neurodegenerative diseases such as Parkinson's disease and Huntington's disease. Studies have also shown a role for the UPP in mental disorders such as schizophrenia and autism. Even though dysregulation of protein degradation by the UPP is a contributory factor to the pathology underlying many nervous system disorders, the association between the components of the UPP and these diseases is far from simple. In this review, we discuss the connections between the UPP and some of the major mental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashok N. Hegde
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA; (L.E.T.); (C.J.S.); (S.R.); (O.J.L.); (B.J.H.); (T.G.G.); (W.J.A.)
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Miyano T, Hirouchi M, Yoshimura N, Hattori K, Mikkaichi T, Kiyosawa N. Plasma microRNAs Associate Positive, Negative, and Cognitive Symptoms with Inflammation in Schizophrenia. Int J Mol Sci 2024; 25:13522. [PMID: 39769285 PMCID: PMC11676741 DOI: 10.3390/ijms252413522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Schizophrenia is a complex and heterogenous psychiatric disorder characterized by positive, negative, and cognitive symptoms. Our previous study identified three subgroups of schizophrenia patients based on plasma microRNA (miRNA) profiles. The present study aims to (1) verify the reproducibility of the miRNA-based patient stratification and (2) explore the pathophysiological pathways linked to the symptoms using plasma miRNAs. We measured levels of 376 miRNAs in plasma samples of schizophrenia patients and obtained their Positive and Negative Syndrome Scale (PANSS) scores and the Brief Assessment of Cognition in Schizophrenia (BACS) scores. The plasma miRNA profiles identified similar subgroups of patients as in the previous study, suggesting miRNA-based patient stratification is potentially reproducible. Our multivariate analysis identified optimal combinations of miRNAs to estimate the PANSS positive and negative subscales and BACS composite scores. Those miRNAs consistently enriched 'inflammation' and 'NFκB1' according to miRNA set enrichment analysis. Our literature-based text mining and survey confirmed that those miRNAs were associated with IL-1β, IL-6, and TNFα, suggesting that exacerbated positive, negative, and cognitive symptoms are associated with high inflammation. In conclusion, miRNAs are a potential biomarker to identify patient subgroups reflecting pathophysiological conditions and to investigate symptom-related molecular mechanisms in schizophrenia.
Collapse
Affiliation(s)
- Takuya Miyano
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (M.H.); (T.M.); (N.K.)
| | - Masakazu Hirouchi
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (M.H.); (T.M.); (N.K.)
| | - Naoki Yoshimura
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Kotaro Hattori
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Tsuyoshi Mikkaichi
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (M.H.); (T.M.); (N.K.)
| | - Naoki Kiyosawa
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (M.H.); (T.M.); (N.K.)
| |
Collapse
|
3
|
Dor H, Hertzberg L. Schizophrenia Biomarkers: Blood Transcriptome Suggests Two Molecular Subtypes. Neuromolecular Med 2024; 26:50. [PMID: 39609319 PMCID: PMC11604812 DOI: 10.1007/s12017-024-08817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
Schizophrenia is a chronic illness that imposes a significant burden on patients, their families, and the health care system. While it has a substantial genetic component, its heterogeneous nature-both genetic and clinical-limits the ability to identify causal genes and mechanisms. In this study, we analyzed the blood transcriptomes of 398 samples (212 patients with schizophrenia and 186 controls) obtained from five public datasets. We demonstrated this heterogeneity by clustering patients with schizophrenia into two molecular subtypes using an unsupervised machine-learning algorithm. We found that the genes most influential in clustering were enriched in pathways related to the ribosome and ubiquitin-proteasomes system, which are known to be associated with schizophrenia. Based on the expression levels of these genes, we developed a logistic regression model capable of predicting schizophrenia samples in unrelated datasets with a positive predictive value of 64% (p value = 0.039). In the future, integrating blood transcriptomics with clinical characteristics may enable the definition of distinct molecular subtypes, leading to a better understanding of schizophrenia pathophysiology and aiding in the development of personalized drugs and treatment options.
Collapse
Affiliation(s)
- Herut Dor
- The Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Libi Hertzberg
- The Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Department of Physics of Complex Systems, Weizmann Institute of Science, 76100, Rehovot, Israel.
- Shalvata Mental Health Center, Affiliated with the Faculty of Medicine, Tel-Aviv University, 13 Aliat Hanoar St., 45100, Hod Hasharon, Israel.
| |
Collapse
|
4
|
Miyano T, Mikkaichi T, Nakamura K, Yoshigae Y, Abernathy K, Ogura Y, Kiyosawa N. Circulating microRNA Profiles Identify a Patient Subgroup with High Inflammation and Severe Symptoms in Schizophrenia Experiencing Acute Psychosis. Int J Mol Sci 2024; 25:4291. [PMID: 38673876 PMCID: PMC11050142 DOI: 10.3390/ijms25084291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Schizophrenia is a complex and heterogenous psychiatric disorder. This study aimed to demonstrate the potential of circulating microRNAs (miRNAs) as a clinical biomarker to stratify schizophrenia patients and to enhance understandings of their heterogenous pathophysiology. We measured levels of 179 miRNA and 378 proteins in plasma samples of schizophrenia patients experiencing acute psychosis and obtained their Positive and Negative Syndrome Scale (PANSS) scores. The plasma miRNA profile revealed three subgroups of schizophrenia patients, where one subgroup tended to have higher scores of all the PANSS subscales compared to the other subgroups. The subgroup with high PANSS scores had four distinctively downregulated miRNAs, which enriched 'Immune Response' according to miRNA set enrichment analysis and were reported to negatively regulate IL-1β, IL-6, and TNFα. The same subgroup had 22 distinctively upregulated proteins, which enriched 'Cytokine-cytokine receptor interaction' according to protein set enrichment analysis, and all the mapped proteins were pro-inflammatory cytokines. Hence, the subgroup is inferred to have comparatively high inflammation within schizophrenia. In conclusion, miRNAs are a potential biomarker that reflects both disease symptoms and molecular pathophysiology, and identify a patient subgroup with high inflammation. These findings provide insights for the precision medicinal strategies for anti-inflammatory treatments in the high-inflammation subgroup of schizophrenia.
Collapse
Affiliation(s)
- Takuya Miyano
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (T.M.); (K.N.); (Y.Y.); (N.K.)
| | - Tsuyoshi Mikkaichi
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (T.M.); (K.N.); (Y.Y.); (N.K.)
| | - Kouichi Nakamura
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (T.M.); (K.N.); (Y.Y.); (N.K.)
| | - Yasushi Yoshigae
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (T.M.); (K.N.); (Y.Y.); (N.K.)
| | - Kelly Abernathy
- Clinical Research Department, Sirtsei Pharmaceuticals, Inc., 3000 RDU Center Drive, Suite 130, Morrisville, NC 27560, USA;
| | - Yuji Ogura
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa, Tokyo 134-8630, Japan;
| | - Naoki Kiyosawa
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (T.M.); (K.N.); (Y.Y.); (N.K.)
| |
Collapse
|
5
|
Shamir A, Yitzhaky A, Segev A, Haroutunian V, Katsel P, Hertzberg L. Up-Regulation of S100 Gene Family in Brain Samples of a Subgroup of Individuals with Schizophrenia: Meta-analysis. Neuromolecular Med 2023; 25:388-401. [PMID: 37005977 DOI: 10.1007/s12017-023-08743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/12/2023] [Indexed: 04/04/2023]
Abstract
The S100 proteins family is known to affect neuroinflammation and astrocyte activation, which have been suggested to be contributors to the pathogenesis of schizophrenia. We conducted a systematic meta-analysis of S100 genes differential expression in postmortem samples of patients with schizophrenia vs. healthy controls, following the commonly used Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Twelve microarray datasets met the inclusion criteria (overall 511 samples, 253 schizophrenia and 258 controls were analyzed). Nine out of 21 genes were significantly up-regulated or with tendency for up-regulation. A per-sample fold change analysis indicated that the S100 genes' up-regulation was concentrated in a subgroup of the patients. None of the genes have been found to be down-regulated. ANXA3, which encodes Annexin 3 protein and was associated with neuroinflammation, was up-regulated and positively correlated with the S100 genes' expression pattern. In addition, astrocytes and endothelial cell markers were significantly correlated with S100A8 expression. S100 correlation with ANXA3 and endothelial cell markers suggests that the up-regulation we detected reflects increased inflammation. However, it might also reflect astrocytes abundance or activation. The fact that S100 proteins were shown to be up-regulated in blood samples and other body fluids of patients with schizophrenia suggests a potential role as biomarkers, which might help disease subtyping, and the development of etiological treatments for immune dysregulation in schizophrenia.
Collapse
Affiliation(s)
- Anat Shamir
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Aviv Segev
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Shalvata Mental Health Center, 13 Aliat Hanoar St, 45100, Hod Hasharon, Israel
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| | - Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Libi Hertzberg
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel.
- Shalvata Mental Health Center, 13 Aliat Hanoar St, 45100, Hod Hasharon, Israel.
| |
Collapse
|
6
|
Mekiten O, Yitzhaky A, Gould N, Rosenblum K, Hertzberg L. Ribosome subunits are upregulated in brain samples of a subgroup of individuals with schizophrenia: A systematic gene expression meta-analysis. J Psychiatr Res 2023; 164:372-381. [PMID: 37413782 DOI: 10.1016/j.jpsychires.2023.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
One of the new theories accounting for the underlying pathophysiology of schizophrenia is excitation/inhibition imbalance. Interestingly, perturbation in protein synthesis machinery as well as oxidative stress can lead to excitation/inhibition imbalance. We thus performed a systematic meta-analysis of the expression of 79 ribosome subunit genes and two oxidative-stress related genes, HIF1A and NQO1, in brain samples of individuals with schizophrenia vs. healthy controls. We integrated 12 gene expression datasets, following the PRISMA guidelines (overall 511 samples, 253 schizophrenia and 258 controls). Five ribosome subunit genes were significantly upregulated in a subgroup of the patients with schizophrenia, while 24 (30%) showed a tendency for upregulation. HIF1A and NQO1 were also found to be significantly upregulated. Moreover, HIF1A and NQO1 showed positive correlation with the expression of the upregulated ribosome subunit genes. Our results, together with previous findings, suggest a possible role for altered mRNA translation in the pathogenesis of schizophrenia, in association with markers of increased oxidative stress in a subgroup of patients. Further studies should define whether the upregulation of ribosome subunits result in altered mRNA translation, which proteins are modulated and how it characterizes a subgroup of the patients with schizophrenia.
Collapse
Affiliation(s)
- Ori Mekiten
- Faculty of Medicine, Tel-Aviv University, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Nathaniel Gould
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel; Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Libi Hertzberg
- Faculty of Medicine, Tel-Aviv University, Israel; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel; Shalvata Mental Health Center, Israel.
| |
Collapse
|
7
|
Witte K, Schneider-Burrus S, Salinas G, Mössner R, Ghoreschi K, Wolk K, Sabat R. Blood T Helper Memory Cells: A Tool for Studying Skin Inflammation in HS? Int J Mol Sci 2023; 24:ijms24108854. [PMID: 37240200 DOI: 10.3390/ijms24108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Hidradenitis suppurativa (HS) is an inflammatory skin disease characterized by painful lesions on intertriginous body areas such as the axillary, inguinal, and perianal sites. Given the limited treatment options for HS, expanding our knowledge of its pathogenetic mechanisms is a prerequisite for novel therapeutic developments. T cells are assumed to play a crucial role in HS pathogenesis. However, it is currently unknown whether blood T cells show specific molecular alterations in HS. To address this, we studied the molecular profile of CD4+ memory T (Thmem) cells purified from the blood of patients with HS and matched healthy participants. About 2.0% and 1.9% of protein-coding transcripts were found to be up- and down-regulated in blood HS Thmem cells, respectively. These differentially expressed transcripts (DETs) are known to be involved in nucleoside triphosphate/nucleotide metabolic processes, mitochondrion organization, and oxidative phosphorylation. The detected down-regulation of transcripts involved in oxidative phosphorylation suggest a metabolic shift of HS Thmem cells towards glycolysis. The inclusion of transcriptome data from skin from HS patients and healthy participants in the analyses revealed that in HS skin lesions, the expression pattern of transcripts identified as DETs in blood HS Thmem cells was very similar to the expression pattern of the totality of protein-coding transcripts. Furthermore, there was no significant association between the extent of the expressional changes in the DETs of blood HS Thmem cells and the extent of the expressional changes in these transcripts in HS skin lesions compared to healthy donor skin. Additionally, a gene ontology enrichment analysis did not demonstrate any association of the DETs of blood HS Thmem cells with skin disorders. Instead, there were associations with different neurological diseases, non-alcoholic fatty liver disease, and thermogenesis. The levels of most DETs linked to neurological diseases showed a positive correlation to each other, suggesting common regulatory mechanisms. In summary, the transcriptomic changes in blood Thmem cells observed in patients with manifest cutaneous HS lesions do not appear to be characteristic of the molecular changes in the skin. Instead, they could be useful for studying comorbidities and identifying corresponding blood biomarkers in these patients.
Collapse
Affiliation(s)
- Katrin Witte
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Sylke Schneider-Burrus
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Center for Dermatosurgery, Havelklinik Berlin, 13595 Berlin, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Rotraut Mössner
- Department of Dermatology, Georg-August-University Goettingen, 37073 Goettingen, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Robert Sabat
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
8
|
Wolf A, Yitzhaky A, Hertzberg L. SMAD genes are up-regulated in brain and blood samples of individuals with schizophrenia. J Neurosci Res 2023. [PMID: 36977612 DOI: 10.1002/jnr.25188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023]
Abstract
Schizophrenia is a severe psychiatric disorder, with heritability around 80%, but a not fully understood pathophysiology. Signal transduction through the mothers against decapentaplegic (SMADs) are eight different proteins involved in the regulation of inflammatory processes, cell cycle, and tissue patterning. The literature is not consistent regarding the differential expression of SMAD genes among subjects with schizophrenia. In this article, we performed a systematic meta-analysis of the expression of SMAD genes in 423 brain samples (211 schizophrenia vs. 212 healthy controls), integrating 10 datasets from two public repositories, following the PRISMA guidelines. We found a statistically significant up-regulation of SMAD1, SMAD4, SMAD5, and SMAD7, and a tendency for up-regulation of SMAD3 and SMAD9 in brain samples of patients with schizophrenia. Overall, six of the eight genes showed a tendency for up-regulation, and none of them was found to have a tendency for down-regulation. SMAD1 and SMAD4 were up-regulated also in blood samples of 13 individuals with schizophrenia versus eight healthy controls, suggesting the SMAD genes' potential role as biomarkers of schizophrenia. Furthermore, SMAD genes' expression levels were significantly correlated with those of Sphingosine-1-phosphate receptor-1 (S1PR1), which is known to regulate inflammatory processes. Our meta-analysis supports the involvement of SMAD genes in the pathophysiology of schizophrenia through their role in inflammatory processes, as well as demonstrates the importance of gene expression meta-analysis for improving our understanding of psychiatric diseases.
Collapse
Affiliation(s)
- Ammie Wolf
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Libi Hertzberg
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- Shalvata Mental Health Center, 13 Aliat Hanoar St., Hod Hasharon, 45100, Israel
| |
Collapse
|
9
|
Meta-analysis of brain samples of individuals with schizophrenia detects down-regulation of multiple ATP synthase encoding genes in both females and males. J Psychiatr Res 2023; 158:350-359. [PMID: 36640659 DOI: 10.1016/j.jpsychires.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/05/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Schizophrenia is a chronic and debilitating mental disorder, with unknown pathophysiology. Converging lines of evidence suggest that mitochondrial functioning may be compromised in schizophrenia. Postmortem brain samples of individuals with schizophrenia showed dysregulated expression levels of genes encoding enzyme complexes comprising the mitochondrial electron transport chain (ETC), including ATP synthase, the fifth ETC complex. However, there are inconsistencies regarding the direction of change, i.e., up- or down-regulation, and differences between female and male patients were hardly examined. We have performed a systematic meta-analysis of the expression of 16 ATP synthase encoding genes in postmortem brain samples of individuals with schizophrenia vs. healthy controls of three regions: Brodmann Area 10 (BA10), BA22/Superior Temporal Gyrus (STG) and the cerebellum. Eight independent datasets were integrated (overall 294brain samples, 145 of individuals with schizophrenia and 149 controls). The meta-analysis was applied to all individuals with schizophrenia vs. the controls, and also to female and male patients vs. age-matched controls, separately. A significant down-regulation of two ATP synthase encoding genes was detected in schizophrenia, ATP5A1 and ATP5H, and a trend towards down-regulation of five further ATP synthase genes. The down-regulation tendency was shown for both females and males with schizophrenia. Our findings support the hypothesis that schizophrenia is associated with reduced ATP synthesis via the oxidative phosphorylation system, which is caused by reduced cellular demand of ATP. Abnormal cellular energy metabolism can lead to alterations in neural function and brain circuitry, and thereby to the cognitive and behavioral aberrations characteristic of schizophrenia.
Collapse
|
10
|
Segev S, Yitzhaky A, Ben Shachar D, Hertzberg L. VDAC genes down-regulation in brain samples of individuals with schizophrenia is revealed by a systematic meta-analysis. Neurosci Res 2023:S0168-0102(23)00022-6. [PMID: 36717018 DOI: 10.1016/j.neures.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Mitochondrial dysfunction was shown to be involved in schizophrenia pathophysiology. Abnormal energy states can lead to alterations in neural function and thereby to the cognitive and behavioral aberrations characteristics of schizophrenia. Voltage-dependent anion-selective channels (VDAC) are located in the outer mitochondrial membrane and are involved in mitochondrial energy production. Only few studies explored VDAC genes' expression in schizophrenia, and their results were not consistent. We conducted a systematic meta-analysis of ten brain samples gene expression datasets (overall 368 samples, 179 schizophrenia, 189 controls). In addition, we conducted a meta-analysis of three blood samples datasets (overall 300 samples, 167 schizophrenia, 133 controls). Pairwise correlation analysis was conducted between the VDAC and proteasome subunit genes' expression patterns. VDAC1, VDAC2 and VDAC3 showed significant down-regulation in brain samples of patients with schizophrenia. They also showed significant positive correlations with the proteasome subunit genes' expression levels. Our findings suggest that VDAC genes might play a role in mitochondrial dysfunction in schizophrenia. VDAC1 was down-regulated also in blood samples, which suggests its potential role as a biomarker for schizophrenia. The correlation with proteasome subunits, which were previously shown to be down-regulated in a subgroup of the patients, suggests that our findings might characterize a subgroup of the patients. This direction has the potential to lead to patients' stratification and more precisely-targeted therapy and necessitates further study.
Collapse
Affiliation(s)
- Shaked Segev
- Sackler School of Medicine, Tel-Aviv University, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Dorit Ben Shachar
- Psychobiology Research Lab, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Israel
| | - Libi Hertzberg
- Sackler School of Medicine, Tel-Aviv University, Israel; Shalvata Mental Health Center, Israel; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Shriebman Y, Yitzhaky A, Kosloff M, Hertzberg L. Gene expression meta-analysis in patients with schizophrenia reveals up-regulation of RGS2 and RGS16 in Brodmann Area 10. Eur J Neurosci 2023; 57:360-372. [PMID: 36443250 DOI: 10.1111/ejn.15876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Regulator of G-protein signalling (RGS) proteins inhibit signalling by G-protein-coupled receptors (GPCRs). GPCRs mediate the functions of several important neurotransmitters and serve as targets of many anti-psychotics. RGS2, RGS4, RGS5 and RGS16 are located on chromosome 1q23.3-31, a locus found to be associated with schizophrenia. Although previous gene expression analysis detected down-regulation of RGS4 expression in brain samples of patients with schizophrenia, the results were not consistent. In the present study, we performed a systematic meta-analysis of differential RGS2, RGS4, RGS5 and RGS16 expression in Brodmann Area 10 (BA10) samples of patients with schizophrenia and from healthy controls. Two microarray datasets met the inclusion criteria (overall, 41 schizophrenia samples and 38 controls were analysed). RGS2 and RGS16 were found to be up-regulated in BA10 samples of individuals with schizophrenia, whereas no differential expression of RGS4 and RGS5 was detected. Analysis of dorso-lateral prefrontal cortex samples of the CommonMind Consortium (258 schizophrenia samples vs. 279 controls) further validated the results. Given their central role in inactivating G-protein-coupled signalling pathways, our results suggest that differential gene expression might lead to enhanced inactivation of G-protein signalling in schizophrenia. This, in turn, suggests that additional studies are needed to further explore the consequences of the differential expression we detected, this time at the protein and functional levels.
Collapse
Affiliation(s)
- Yaen Shriebman
- Shalvata Mental Health Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Mickey Kosloff
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Libi Hertzberg
- Shalvata Mental Health Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Hemmings SMJ, Swart P, Womersely JS, Ovenden ES, van den Heuvel LL, McGregor NW, Meier S, Bardien S, Abrahams S, Tromp G, Emsley R, Carr J, Seedat S. RNA-seq analysis of gene expression profiles in posttraumatic stress disorder, Parkinson's disease and schizophrenia identifies roles for common and distinct biological pathways. DISCOVER MENTAL HEALTH 2022; 2:6. [PMID: 37861850 PMCID: PMC10501040 DOI: 10.1007/s44192-022-00009-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 10/21/2023]
Abstract
Evidence suggests that shared pathophysiological mechanisms in neuropsychiatric disorders (NPDs) may contribute to risk and resilience. We used single-gene and network-level transcriptomic approaches to investigate shared and disorder-specific processes underlying posttraumatic stress disorder (PTSD), Parkinson's disease (PD) and schizophrenia in a South African sample. RNA-seq was performed on blood obtained from cases and controls from each cohort. Gene expression and weighted gene correlation network analyses (WGCNA) were performed using DESeq2 and CEMiTool, respectively. Significant differences in gene expression were limited to the PTSD cohort. However, WGCNA implicated, amongst others, ribosomal expression, inflammation and ubiquitination as key players in the NPDs under investigation. Differential expression in ribosomal-related pathways was observed in the PTSD and PD cohorts, and focal adhesion and extracellular matrix pathways were implicated in PD and schizophrenia. We propose that, despite different phenotypic presentations, core transdiagnostic mechanisms may play important roles in the molecular aetiology of NPDs.
Collapse
Affiliation(s)
- Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa.
| | - Patricia Swart
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Jacqueline S Womersely
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Ellen S Ovenden
- Systems Genetics Working Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Nathaniel W McGregor
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- Systems Genetics Working Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Stuart Meier
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
| | - Soraya Bardien
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Shameemah Abrahams
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Robin Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
13
|
Gassó P, Rodríguez N, Martínez-Pinteño A, Mezquida G, Ribeiro M, González-Peñas J, Zorrilla I, Martínez-Sadurni L, Rodriguez-Jimenez R, Corripio I, Sarró S, Ibáñez A, Usall J, Lobo A, Moren C, Cuesta MJ, Parellada M, González-Pinto A, Berrocoso E, Bernardo M, Mas S, 2EPs Group BioqueM.23426AmorettiS.134Andreu-BernabeuA.47GurriaránX.47Alonso-SolísA.41415GrasaE.41415LópezP.48910GarciaE.48910BergéD.42728TrabsaA.11Sànchez-PastorL.13Jiménez-RodríguezO.13Pomarol-ClotetE.416Feria-RaposoI.1629ButjosaA.419PardoM.30Moreno-IzcoL.56Sánchez-TorresA. M.6Saiz-RuizJ.418León-QuismondoL.31NacherJ.323334ContrerasF.3536De-la-CámaraC.42037GutiérrezM.43839SáizP. A.40. A longitudinal study of gene expression in first-episode schizophrenia; exploring relapse mechanisms by co-expression analysis in peripheral blood. Transl Psychiatry 2021; 11:539. [PMID: 34667144 PMCID: PMC8526619 DOI: 10.1038/s41398-021-01645-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Little is known about the pathophysiological mechanisms of relapse in first-episode schizophrenia, which limits the study of potential biomarkers. To explore relapse mechanisms and identify potential biomarkers for relapse prediction, we analyzed gene expression in peripheral blood in a cohort of first-episode schizophrenia patients with less than 5 years of evolution who had been evaluated over a 3-year follow-up period. A total of 91 participants of the 2EPs project formed the sample for baseline gene expression analysis. Of these, 67 provided biological samples at follow-up (36 after 3 years and 31 at relapse). Gene expression was assessed using the Clariom S Human Array. Weighted gene co-expression network analysis was applied to identify modules of co-expressed genes and to analyze their preservation after 3 years of follow-up or at relapse. Among the 25 modules identified, one module was semi-conserved at relapse (DarkTurquoise) and was enriched with risk genes for schizophrenia, showing a dysregulation of the TCF4 gene network in the module. Two modules were semi-conserved both at relapse and after 3 years of follow-up (DarkRed and DarkGrey) and were found to be biologically associated with protein modification and protein location processes. Higher expression of DarkRed genes was associated with higher risk of suffering a relapse and early appearance of relapse (p = 0.045). Our findings suggest that a dysregulation of the TCF4 network could be an important step in the biological process that leads to relapse and suggest that genes related to the ubiquitin proteosome system could be potential biomarkers of relapse.
Collapse
Affiliation(s)
- P. Gassó
- grid.5841.80000 0004 1937 0247Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain ,grid.10403.36Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain
| | - N. Rodríguez
- grid.5841.80000 0004 1937 0247Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain ,grid.10403.36Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain
| | - A. Martínez-Pinteño
- grid.5841.80000 0004 1937 0247Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain ,grid.10403.36Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain
| | - G. Mezquida
- grid.5841.80000 0004 1937 0247Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain ,grid.10403.36Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain ,grid.410458.c0000 0000 9635 9413Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
| | - M. Ribeiro
- grid.497559.3Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain ,grid.508840.10000 0004 7662 6114IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - J. González-Peñas
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.4795.f0000 0001 2157 7667Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - I. Zorrilla
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,Department of Psychiatry, Hospital Universitario de Alava, Vitoria, Spain ,BIOARABA Health Research Institute, Vitoria, Spain ,grid.11480.3c0000000121671098University of the Basque Country, Vitoria, Spain
| | - L. Martínez-Sadurni
- grid.411142.30000 0004 1767 8811Hospital del Mar Medicar Research Institute (IMIM), Barcelona, Spain
| | - R. Rodriguez-Jimenez
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.144756.50000 0001 1945 5329Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain ,grid.4795.f0000 0001 2157 7667CogPsy Group, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - I. Corripio
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.413396.a0000 0004 1768 8905Psychiatry Department, Institut d’Investigació Biomèdica-Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain ,grid.7080.f0000 0001 2296 0625Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - S. Sarró
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.466668.cFIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain ,grid.410675.10000 0001 2325 3084School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - A. Ibáñez
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.411347.40000 0000 9248 5770Department of Psychiatry, Hospital Universitario Ramón y Cajal, IRYCIS, Universidad de Alcalá, Madrid, Spain
| | - J. Usall
- grid.466982.70000 0004 1771 0789Etiopatogènia i tractament dels trastorns mentals greus (MERITT) Institut de Recerca Sant Joan de Déu Parc Sanitari Sant Joan de Déu, Barcelona, Spain
| | - A. Lobo
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.11205.370000 0001 2152 8769Department of Medicine and Psychiatry, Universidad de Zaragoza, Zaragoza, Spain ,grid.488737.70000000463436020Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - C. Moren
- grid.10403.36Cellex, IDIBAPS, University of Barcelona-Hospital Clínic of Barcelona, Barcelona, 08036 Spain ,grid.512890.7Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid, 28029 Spain
| | - M. J. Cuesta
- grid.497559.3Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain ,grid.508840.10000 0004 7662 6114IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - M. Parellada
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.4795.f0000 0001 2157 7667Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - A. González-Pinto
- grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,Department of Psychiatry, Hospital Universitario de Alava, Vitoria, Spain ,BIOARABA Health Research Institute, Vitoria, Spain ,grid.11480.3c0000000121671098University of the Basque Country, Vitoria, Spain
| | - E. Berrocoso
- grid.7759.c0000000103580096Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain ,grid.411342.10000 0004 1771 1175Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - M. Bernardo
- grid.10403.36Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain ,grid.410458.c0000 0000 9635 9413Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain ,grid.5841.80000 0004 1937 0247Department of Medicine, University of Barcelona, Barcelona, Spain
| | - S. Mas
- grid.5841.80000 0004 1937 0247Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain ,grid.10403.36Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
| | | |
Collapse
|
14
|
Genome wide analysis implicates upregulation of proteasome pathway in major depressive disorder. Transl Psychiatry 2021; 11:409. [PMID: 34321460 PMCID: PMC8319154 DOI: 10.1038/s41398-021-01529-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/27/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
|