1
|
Tsui HKH, Wong TY, Sum MY, Chu ST, Hui CLM, Chang WC, Lee EHM, Suen Y, Chen EYH, Chan SKW. Comparison of Negative Symptom Network Structures Between Patients With Early and Chronic Schizophrenia: A Network and Exploratory Graph Analysis. Schizophr Bull 2025; 51:672-683. [PMID: 39093707 PMCID: PMC12061643 DOI: 10.1093/schbul/sbae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
BACKGROUND AND HYPOTHESIS Despite the clinical relevance of negative symptoms in schizophrenia, our understanding of negative symptoms remains limited. Although various courses and stages of schizophrenia have been identified, variations in the negative symptom networks between distinct stages of schizophrenia remain unexplored. STUDY DESIGN We examined 405 patients with early schizophrenia (ES) and 330 patients with chronic schizophrenia (CS) using the Scale for the Assessment of Negative Symptoms. Network analysis and exploratory graph analysis were used to identify and compare the network structures and community memberships of negative symptoms between the two groups. Further, associations between communities and social functioning were evaluated. The potential influences of other symptom domains and confounding factors were also examined. STUDY RESULTS Multidimensional differences were found in the networks of negative symptoms between ES and CS. The global connectivity strength was higher in the network of ES than in the network of CS. In ES, central symptoms were mainly related to expressive deficits, whereas in CS they were distributed across negative symptom domains. A three-community structure was suggested across stages but with different memberships and associations with social functioning. Potential confounding factors and symptom domains, including mood, positive, disorganization, and excitement symptoms, did not affect the network structures. CONCLUSION Our findings revealed the presence of stage-specific network structures of negative symptoms in schizophrenia, with negative symptom communities having differential significance for social functioning. These findings provide implications for the future development of tailored interventions to alleviate negative symptoms and improve functionality across stages.
Collapse
Affiliation(s)
- Harry Kam Hung Tsui
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Ting Yat Wong
- Department of Psychology, The Education University of Hong Kong, Hong Kong SAR
| | - Min Yi Sum
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Sin Ting Chu
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Christy Lai Ming Hui
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Wing Chung Chang
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR
| | - Edwin Ho Ming Lee
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Yinam Suen
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Eric Yu Hai Chen
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Sherry Kit Wa Chan
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
2
|
Moreno-Fernández M, Luján V, Baliyan S, Poza C, Capellán R, de Las Heras-Martínez N, Morcillo MÁ, Oteo M, Ambrosio E, Ucha M, Higuera-Matas A. A Hidden Mark of a Troubled Past: Neuroimaging and Transcriptomic Analyses Reveal Interactive Effects of Maternal Immune Activation and Adolescent THC Exposure Suggestive of Increased Neuropsychiatric Risk. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100452. [PMID: 40115746 PMCID: PMC11925510 DOI: 10.1016/j.bpsgos.2025.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/04/2024] [Accepted: 01/12/2025] [Indexed: 03/23/2025] Open
Abstract
Background Maternal exposure to infections during gestation has been shown to predispose individuals to neuropsychiatric disorders. Additionally, clinical data suggest that cannabis use may trigger the onset of schizophrenia in vulnerable individuals. However, the direction of causality remains unclear. Methods To elucidate this issue, we utilized a rat model of maternal immune activation combined with exposure to increasing doses of Δ9-tetrahydrocannabinol during adolescence in both male and female rats. We investigated several behaviors in adulthood relevant for neuropsychiatric disorders, including impairments in working memory, deficits in sensorimotor gating, alterations in social behavior, anhedonia, and potential changes in implicit learning (conditioned taste aversion). Furthermore, we conducted a longitudinal positron emission tomography study to target affected brain regions and, subsequently, collected brain samples of one such region (the orbitofrontal cortex) for RNA sequencing analyses, which were also performed on peripheral blood mononuclear cells to identify peripheral biomarkers. Results While adolescent Δ9-tetrahydrocannabinol did not unmask latent behavioral disruptions, positron emission tomography scans revealed several brain alterations dependent on the combination of both hits. Additionally, the transcriptomic studies demonstrated that maternal immune activation affected dopaminergic, glutamatergic, and serotoninergic genes, with the combination of both exposures in most cases shifting the expression from downregulation to upregulation. In peripheral cells, interactive effects were observed on inflammatory pathways, and some genes were proposed as biomarkers. Conclusions These results suggest that the combination of these 2 vulnerability factors leaves a lasting mark on the body, potentially predisposing individuals to neuropsychiatric disorders even before behavioral alterations manifest.
Collapse
Affiliation(s)
- Mario Moreno-Fernández
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Víctor Luján
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
- National University of Distance Education International Graduate School (EIDUNED), Madrid, Spain
- Medical Application of Ionising Radiations Unit, Centre for Energy, Environmental and Technological Research (CIEMAT), Madrid, Spain
| | - Shishir Baliyan
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Celia Poza
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Roberto Capellán
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | | | - Miguel Ángel Morcillo
- Medical Application of Ionising Radiations Unit, Centre for Energy, Environmental and Technological Research (CIEMAT), Madrid, Spain
| | - Marta Oteo
- Medical Application of Ionising Radiations Unit, Centre for Energy, Environmental and Technological Research (CIEMAT), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Marcos Ucha
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| |
Collapse
|
3
|
Li J, Zhang X, Wang J, Yang H, Yang M, Gao J, Du X. Thinning of the temporal and insular cortex is associated with negative symptoms and impaired attention in Chinese chronic schizophrenia patients with deficit syndrome. BMC Psychiatry 2025; 25:411. [PMID: 40264056 PMCID: PMC12016080 DOI: 10.1186/s12888-025-06835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND The considerable clinical heterogeneity of schizophrenia poses significant challenges for elucidating its neurobiology. The concept of deficit schizophrenia (DS) is a valuable framework for addressing the heterogeneity of schizophrenia. Growing evidence suggests notable differences between deficit (DS) and nondeficit (NDS) schizophrenia, indicating that DS could represent a separate disease entity. METHODS We aimed to use FreeSurfer to identify specific changes in cortical thickness among NDS patients and healthy controls (HCs) in a Chinese sample. Furthermore, we examined the potential relationships between changes in cerebral cortical thickness and negative symptoms and attention deficits in DS patients. A total of 142 subjects (48 HCs, 50 NDSs, and 44 DSs) underwent MRI scans and completed the assessment of psychopathological severity and cognitive performance. RESULTS Compared with HCs, DS and NDS patients presented common cortical thinning in the right insula, whereas cortical thinning in the left supramarginal cortex was more prominent in DS patients. We also found that thinning of the temporal and insular cortex was correlated with negative symptoms and impaired attention in DS patients. CONCLUSIONS Cortical thinning in specific brain regions in DS patients was found to be correlated with specific clinical and cognitive symptoms.
Collapse
Affiliation(s)
- Jin Li
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou, 215137, Jiangsu, China
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou, 215137, Jiangsu, China
| | - Junjie Wang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou, 215137, Jiangsu, China
| | - Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, P. R. China
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, P. R. China
| | - Ju Gao
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou, 215137, Jiangsu, China
| | - Xiangdong Du
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou, 215137, Jiangsu, China.
| |
Collapse
|
4
|
Dong Y, Chen C, Li Y, Cao P, Tang Y, Xu G, Si Q, Li R, Sui Y. The study on agitation and structure of orbitofrontal cortex subregion in first-episode drug-naïve patients with schizophrenia. Brain Imaging Behav 2025; 19:175-188. [PMID: 39661320 DOI: 10.1007/s11682-024-00961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
Agitation is one of the core symptoms of schizophrenia. The occurrence of agitation may be related to orbitofrontal cortex dysfunction. However, due to methodological heterogeneity, the relationship between agitation and orbitofrontal cortex subregions remains unclear. Based on the multi-dimensional structure of the orbitofrontal cortex subregion, this study aims to explore the relationship between orbitofrontal cortex structure and agitation in first-episode drug-naïve patients with schizophrenia. The study subjects included 50 first-episode drug-naïve patients with schizophrenia and 29 healthy controls. All participants underwent structure magnetic resonance imaging scanning. The patients' clinical symptoms were assessed using the Positive and Negative Syndrome Scale, and the agitation were evaluated using the Brief Agitation Rating Scale. SPSS 26.0 was used to compare the differences in the orbitofrontal cortex subregion between the two groups in different structure dimensions and then conduct a Pearson's partial correlations analysis to observe the relationship between orbitofrontal cortex subregion structure and agitation. There were no significant differences in demographic factors between the two groups. Our results show the folding index of the orbitofrontal cortex subregion in patients with schizophrenia were significantly smaller compared to the healthy controls. The surface area in the orbitofrontal cortex subregion is significantly negatively correlated with agitation in first-episode drug-naïve schizophrenia patients. These results suggest that structure alterations in the orbitofrontal cortex subregion may be involved in schizophrenia agitation.
Collapse
Affiliation(s)
- Yingbo Dong
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Congxin Chen
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Yuting Li
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Peiyu Cao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yilin Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Guoxin Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Qi Si
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of Psychiatry, Huai'an Third People's Hospital, Huaian, Jiangsu Province, 223001, China
| | - Runda Li
- Department of Vanderbilt University, Nashville, TN, 37240, USA
| | - Yuxiu Sui
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
5
|
Núñez C, Stephan-Otto C, Roldán A, Grasa EM, Escartí MJ, Aguilar García-Iturrospe EJ, García-Martí G, de la Iglesia-Vaya M, Nacher J, Portella MJ, Corripio I. Orbitofrontal cortex hypergyrification in hallucinating schizophrenia patients: Surface ratio as a promising brain biomarker. Eur Neuropsychopharmacol 2024; 89:47-55. [PMID: 39341083 DOI: 10.1016/j.euroneuro.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The study of brain gyrification may provide useful information on the cytoarchitecture and connectivity of the brain. One of the methods that have been developed to estimate brain gyrification, known as surface ratio (SR), has not yet been studied in schizophrenia. Here we aimed to assess whether SR could provide new insights on the brain structure of schizophrenia patients and the severity of symptoms. We also computed a more established brain gyrification measure, namely absolute mean curvature (AMC). We analyzed 63 magnetic resonance images, 25 from schizophrenia patients with treatment-resistant auditory verbal hallucinations (SCH-H), 18 from schizophrenia patients without hallucinations (SCH-NH), and 20 from healthy controls (HC). The SR measure revealed that SCH-H patients had a more folded orbitofrontal cortex than SCH-NH patients and HC. Gyrification in this region was also negatively associated with positive symptoms, specifically with the delusions and conceptual disorganization items, only in the SCH-H group. Regarding the AMC measure, we identified two areas where HC showed more gyrification than SCH-H patients, but no relationships arose with symptoms. The hypergyrification of the orbitofrontal cortex displayed by SCH-H patients, as captured by the SR measure, suggests aberrant and/or excessive wiring in these patients, which in turn could give rise to auditory verbal hallucinations. Alternatively, we comment on potential compensatory mechanisms that may better explain the negative association between orbitofrontal gyrification and positive symptomatology. The SR measure captured the most relevant differences and associations, making it a promising biomarker in schizophrenia.
Collapse
Affiliation(s)
- Christian Núñez
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Christian Stephan-Otto
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Pediatric Computational Imaging Group (PeCIC), Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Alexandra Roldán
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | - Eva Mª Grasa
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain
| | - Mª José Escartí
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Hospital Clínico Universitario de Valencia, Valencia, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain; Department of Medicine, University CEU-UCH, Valencia, Spain
| | - Eduardo J Aguilar García-Iturrospe
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Hospital Clínico Universitario de Valencia, Valencia, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain; Department of Medicine, University CEU-UCH, Valencia, Spain
| | - Gracián García-Martí
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Biomedical Engineering Unit / Radiology Department, Quirónsalud Hospital, Valencia, Spain
| | - Maria de la Iglesia-Vaya
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Joint unit in Biomedical Imaging FISABIO-CIPF, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, Valencia, Spain
| | - Juan Nacher
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain; Neuroplasticity Unit, Institute of Biotechnology and Biomedicine, Universitat de València, Valencia, Spain
| | - Maria J Portella
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iluminada Corripio
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Psychiatry Department, Hospital Consortium of Vic, Barcelona, Spain; Institute of Health Research and Innovation at Central Catalonia (IRIS-CC). Central University of Catalonia (UVic-UCC), Barcelona, Spain
| |
Collapse
|
6
|
Zhou N, Kuang Q, Xia Y, Li H, She S, Zheng Y. Prediction of anhedonia in patients with first-episode schizophrenia using a Wavelet-ALFF-based Support vector regression model. Neuroscience 2024; 559:150-155. [PMID: 39244011 DOI: 10.1016/j.neuroscience.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Anhedonia is one of the core features of the negative symptoms of schizophrenia and can be extremely burdensome. Our study applied resting-state functional magnetic resonance imaging (fMRI)-based support vector regression (SVR) to predict anhedonia in patients with first-episode schizophrenia (FES) and analysed the correlation between the wavelet-based amplitude low-frequency fluctuation (wavelet-ALFF) of the main brain region and anhedonia. We recruited 31 patients with FES and 33 healthy controls (HCs) from the Affiliated Brain Hospital of Guangzhou Medical University. All subjects completed the Temporal Experience of Pleasure Scale (TEPS) and received resting-state fMRI (rs-fMRI). We used the wavelet-ALFF method and SVR to analyse the data. Patients with FES had lower consummatory pleasure scores than healthy subjects (t = -2.71, P<0.01). FES displays variable wavelet-ALFF in a wide range of cerebral cortices (P<0.05, GFR corrected). The SVR analysis showed that wavelet-ALFF, based primarily on the right putamen (r = 0.40, P<0.05) and right superior occipital gyrus (r = -0.39, P<0.05), was effective in predicting consummatory pleasure scores with an accuracy of 56.43 %. Our study shows that abnormal spontaneous neural activity in FES may be related to the state of consummatory anhedonia in FES. Wavelet-ALFF changes in the right putamen and superior occipital gyrus may be a biological feature of FES with anhedonia and could serve as a potential biological marker of FES with anhedonia.
Collapse
Affiliation(s)
- Nvnan Zhou
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
| | - Qijie Kuang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510000, China
| | - Yu Xia
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
| | - Haijing Li
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510000, China
| | - Shenglin She
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510000, China.
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510000, China.
| |
Collapse
|
7
|
Jiao X, Hu Q, Tang Y, Zhang T, Zhang J, Wang X, Sun J, Wang J. Abnormal Global Cortical Responses in Drug-Naïve Patients With Schizophrenia Following Orbitofrontal Cortex Stimulation: A Concurrent Transcranial Magnetic Stimulation-Electroencephalography Study. Biol Psychiatry 2024; 96:342-351. [PMID: 38852897 DOI: 10.1016/j.biopsych.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Abnormalities in cortical excitability and plasticity have been considered to underlie the pathophysiology of schizophrenia. Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) can provide a direct evaluation of cortical responses to TMS. Here, we employed TMS-EEG to investigate cortical responses to orbitofrontal cortex (OFC) stimulation in schizophrenia. METHODS In total, we recruited 92 drug-naïve patients with first-episode schizophrenia and 51 age- and sex-matched healthy individuals. For each participant, one session of 1-Hz repetitive TMS (rTMS) was delivered to the right OFC, and TMS-EEG data were obtained to explore the change in cortical-evoked activities before and immediately after rTMS during the eyes-closed state. The MATRICS Consensus Cognitive Battery was used to assess neurocognitive performance. RESULTS The cortical responses indexed by global mean field amplitudes (i.e., P30, N45, and P60) were larger in patients with schizophrenia than in healthy control participants at baseline. Furthermore, after one session of 1-Hz rTMS over the right OFC, the N100 amplitude was significantly reduced in the healthy control group but not in the schizophrenia group. In the healthy control participants, there was a significant correlation between modulation of P60 amplitude by rTMS and working memory; however, this correlation was absent in patients with schizophrenia. CONCLUSIONS Aberrant global cortical responses following right OFC stimulation were found in patients with drug-naïve first-episode schizophrenia, supporting its significance in the primary pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Xiong Jiao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Med.-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychiatry, Zhenjiang Mental Health Center, Jiangsu, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Med.-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xijin Wang
- The First Psychiatric Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Junfeng Sun
- Shanghai Med.-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Thalhammer M, Schulz J, Scheulen F, Oubaggi MEM, Kirschner M, Kaiser S, Schmidt A, Borgwardt S, Avram M, Brandl F, Sorg C. Distinct Volume Alterations of Thalamic Nuclei Across the Schizophrenia Spectrum. Schizophr Bull 2024; 50:1208-1222. [PMID: 38577901 PMCID: PMC11349018 DOI: 10.1093/schbul/sbae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BACKGROUND AND HYPOTHESIS Abnormal thalamic nuclei volumes and their link to cognitive impairments have been observed in schizophrenia. However, whether and how this finding extends to the schizophrenia spectrum is unknown. We hypothesized a distinct pattern of aberrant thalamic nuclei volume across the spectrum and examined its potential associations with cognitive symptoms. STUDY DESIGN We performed a FreeSurfer-based volumetry of T1-weighted brain MRIs from 137 healthy controls, 66 at-risk mental state (ARMS) subjects, 89 first-episode psychosis (FEP) individuals, and 126 patients with schizophrenia to estimate thalamic nuclei volumes of six nuclei groups (anterior, lateral, ventral, intralaminar, medial, and pulvinar). We used linear regression models, controlling for sex, age, and estimated total intracranial volume, both to compare thalamic nuclei volumes across groups and to investigate their associations with positive, negative, and cognitive symptoms. STUDY RESULTS We observed significant volume alterations in medial and lateral thalamic nuclei. Medial nuclei displayed consistently reduced volumes across the spectrum compared to controls, while lower lateral nuclei volumes were only observed in schizophrenia. Whereas positive and negative symptoms were not associated with reduced nuclei volumes across all groups, higher cognitive scores were linked to lower volumes of medial nuclei in ARMS. In FEP, cognition was not linked to nuclei volumes. In schizophrenia, lower cognitive performance was associated with lower medial volumes. CONCLUSIONS Results demonstrate distinct thalamic nuclei volume reductions across the schizophrenia spectrum, with lower medial nuclei volumes linked to cognitive deficits in ARMS and schizophrenia. Data suggest a distinctive trajectory of thalamic nuclei abnormalities along the course of schizophrenia.
Collapse
Affiliation(s)
- Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Schulz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felicitas Scheulen
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mohamed El Mehdi Oubaggi
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Kirschner
- Department of Psychiatry, University Hospital of Geneva, Geneva, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Department of Psychiatry, University Hospital of Geneva, Geneva, Switzerland
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Felix Brandl
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
Jiang Y, Luo C, Wang J, Palaniyappan L, Chang X, Xiang S, Zhang J, Duan M, Huang H, Gaser C, Nemoto K, Miura K, Hashimoto R, Westlye LT, Richard G, Fernandez-Cabello S, Parker N, Andreassen OA, Kircher T, Nenadić I, Stein F, Thomas-Odenthal F, Teutenberg L, Usemann P, Dannlowski U, Hahn T, Grotegerd D, Meinert S, Lencer R, Tang Y, Zhang T, Li C, Yue W, Zhang Y, Yu X, Zhou E, Lin CP, Tsai SJ, Rodrigue AL, Glahn D, Pearlson G, Blangero J, Karuk A, Pomarol-Clotet E, Salvador R, Fuentes-Claramonte P, Garcia-León MÁ, Spalletta G, Piras F, Vecchio D, Banaj N, Cheng J, Liu Z, Yang J, Gonul AS, Uslu O, Burhanoglu BB, Uyar Demir A, Rootes-Murdy K, Calhoun VD, Sim K, Green M, Quidé Y, Chung YC, Kim WS, Sponheim SR, Demro C, Ramsay IS, Iasevoli F, de Bartolomeis A, Barone A, Ciccarelli M, Brunetti A, Cocozza S, Pontillo G, Tranfa M, Park MTM, Kirschner M, Georgiadis F, Kaiser S, Van Rheenen TE, Rossell SL, Hughes M, Woods W, Carruthers SP, Sumner P, Ringin E, Spaniel F, Skoch A, Tomecek D, Homan P, Homan S, Omlor W, Cecere G, Nguyen DD, Preda A, Thomopoulos SI, Jahanshad N, Cui LB, Yao D, et alJiang Y, Luo C, Wang J, Palaniyappan L, Chang X, Xiang S, Zhang J, Duan M, Huang H, Gaser C, Nemoto K, Miura K, Hashimoto R, Westlye LT, Richard G, Fernandez-Cabello S, Parker N, Andreassen OA, Kircher T, Nenadić I, Stein F, Thomas-Odenthal F, Teutenberg L, Usemann P, Dannlowski U, Hahn T, Grotegerd D, Meinert S, Lencer R, Tang Y, Zhang T, Li C, Yue W, Zhang Y, Yu X, Zhou E, Lin CP, Tsai SJ, Rodrigue AL, Glahn D, Pearlson G, Blangero J, Karuk A, Pomarol-Clotet E, Salvador R, Fuentes-Claramonte P, Garcia-León MÁ, Spalletta G, Piras F, Vecchio D, Banaj N, Cheng J, Liu Z, Yang J, Gonul AS, Uslu O, Burhanoglu BB, Uyar Demir A, Rootes-Murdy K, Calhoun VD, Sim K, Green M, Quidé Y, Chung YC, Kim WS, Sponheim SR, Demro C, Ramsay IS, Iasevoli F, de Bartolomeis A, Barone A, Ciccarelli M, Brunetti A, Cocozza S, Pontillo G, Tranfa M, Park MTM, Kirschner M, Georgiadis F, Kaiser S, Van Rheenen TE, Rossell SL, Hughes M, Woods W, Carruthers SP, Sumner P, Ringin E, Spaniel F, Skoch A, Tomecek D, Homan P, Homan S, Omlor W, Cecere G, Nguyen DD, Preda A, Thomopoulos SI, Jahanshad N, Cui LB, Yao D, Thompson PM, Turner JA, van Erp TGM, Cheng W, Feng J. Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm. Nat Commun 2024; 15:5996. [PMID: 39013848 PMCID: PMC11252381 DOI: 10.1038/s41467-024-50267-3] [Show More Authors] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Machine learning can be used to define subtypes of psychiatric conditions based on shared biological foundations of mental disorders. Here we analyzed cross-sectional brain images from 4,222 individuals with schizophrenia and 7038 healthy subjects pooled across 41 international cohorts from the ENIGMA, non-ENIGMA cohorts and public datasets. Using the Subtype and Stage Inference (SuStaIn) algorithm, we identify two distinct neurostructural subgroups by mapping the spatial and temporal 'trajectory' of gray matter change in schizophrenia. Subgroup 1 was characterized by an early cortical-predominant loss with enlarged striatum, whereas subgroup 2 displayed an early subcortical-predominant loss in the hippocampus, striatum and other subcortical regions. We confirmed the reproducibility of the two neurostructural subtypes across various sample sites, including Europe, North America and East Asia. This imaging-based taxonomy holds the potential to identify individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.
Collapse
Affiliation(s)
- Yuchao Jiang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Canada
| | - Xiao Chang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Jie Zhang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Neurology, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Magdeburg, Germany
| | - Kiyotaka Nemoto
- Department of Psychiatry, Division of Clinical Medicine, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Genevieve Richard
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sara Fernandez-Cabello
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Nadine Parker
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, Marburg, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, Marburg, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry and Psychotherapie and Center for Brain, Behavior and Metabolism, Lübeck University, Lübeck, Germany
- Institute for Transnational Psychiatry and Otto Creutzfeldt Center for Behavioral and Cognitive Neuroscience, University of Münster, Münster, Germany
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
- Chinese Institute for Brain Research, Beijing, PR China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, PR China
| | - Yuyanan Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Enpeng Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Amanda L Rodrigue
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - Andriana Karuk
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - María Ángeles Garcia-León
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Daniela Vecchio
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nerisa Banaj
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhening Liu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Jie Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Ali Saffet Gonul
- Ege University School of Medicine Department of Psychiatry, SoCAT Lab, Izmir, Turkey
| | - Ozgul Uslu
- Ege University Institute of Health Sciences Department of Neuroscience, Izmir, Turkey
| | | | - Aslihan Uyar Demir
- Ege University School of Medicine Department of Psychiatry, SoCAT Lab, Izmir, Turkey
| | - Kelly Rootes-Murdy
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, Emory University], Atlanta, GA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, Emory University], Atlanta, GA, USA
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Melissa Green
- School of Clinical Medicine, University of New South Wales, SYD, Australia
| | - Yann Quidé
- School of Psychology, University of New South Wales, SYD, Australia
| | - Young Chul Chung
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Woo-Sung Kim
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Scott R Sponheim
- Minneapolis VA Medical Center, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Demro
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ian S Ramsay
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Felice Iasevoli
- Section of Psychiatry - Department of Neuroscience, University "Federico II", Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry - Department of Neuroscience, University "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry - Department of Neuroscience, University "Federico II", Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry - Department of Neuroscience, University "Federico II", Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Min Tae M Park
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, TO, Canada
- Centre for Addiction and Mental Health, TO, Canada
| | - Matthias Kirschner
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland
| | - Foivos Georgiadis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, MEL, Australia
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, MEL, Australia
| | - Susan L Rossell
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, MEL, Australia
| | - Matthew Hughes
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, MEL, Australia
| | - William Woods
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, MEL, Australia
| | - Sean P Carruthers
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, MEL, Australia
| | - Philip Sumner
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, MEL, Australia
| | - Elysha Ringin
- National Institute of Mental Health, Klecany, Czech Republic
| | - Filip Spaniel
- National Institute of Mental Health, Klecany, Czech Republic
| | - Antonin Skoch
- National Institute of Mental Health, Klecany, Czech Republic
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - David Tomecek
- National Institute of Mental Health, Klecany, Czech Republic
- Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Philipp Homan
- Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Stephanie Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Wolfgang Omlor
- Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Giacomo Cecere
- Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Dana D Nguyen
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Long-Biao Cui
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, PR China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, China
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica A Turner
- Psychiatry and Behavioral Health, Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine Hall, room 109, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, 309 Qureshey Research Lab, Irvine, CA, USA
| | - Wei Cheng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, China.
- School of Data Science, Fudan University, Shanghai, China.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
10
|
Sabé M, Kohler R, Perez N, Sauvain-Sabé M, Sentissi O, Jermann F, Prada P, Perroud N, Böge K. Mindfulness-based interventions for patients with schizophrenia spectrum disorders: A systematic review of the literature. Schizophr Res 2024; 264:191-203. [PMID: 38157679 DOI: 10.1016/j.schres.2023.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Mindfulness-based interventions (MBIs) have emerged as secular practices, including elements of mindfulness-based stress reduction (MBSR) and mindfulness-based cognitive therapy (MBCT). While MBIs have been widely adopted for physical and mental illness, only a few available programs are explicitly adapted for psychosis. However, previous reviews have reported the vital heterogeneity regarding treatment program structure. Therefore, this review aims to compare the structure of different mindfulness protocols applied to patients with schizophrenia spectrum disorder (SSD). METHODS A systematic search was conducted up to March 2023 in PubMed, Embase and PsycInfo. Following our protocol (CRD 42023253356), we followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) checklist. RESULTS We included 22 randomized controlled trials (RCTs) involving 1500 patients SSD. All programs varied in structure, session components, duration, and instructor experience. While MBSR-like programs focused on stress reactivity, MBCT-like programs addressed primary symptoms of psychosis and relapse prevention. Despite the heterogeneity of programs, some common mechanisms emerged, including attention training, emotion and stress regulation, decentering, self-compassion, and cognitive restructuring. CONCLUSIONS The critical heterogeneity found limits the interpretation of results. However, most recent trials present fewer risks of bias and more homogenous programs. Findings suggested potential benefits, such as reduced negative symptoms, increased well-being, and decreased hospitalization rates. For future studies, authors should align on more congruent MBIs programs for patients with SSD. Further research is needed to identify optimal mindfulness teaching approaches for patients with psychosis and investigate specific mechanisms of action, relevant processes, and optimal doses in varying settings.
Collapse
Affiliation(s)
- Michel Sabé
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 2, Chemin du Petit-Bel-Air, CH-1226 Thonex, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Raoul Kohler
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 2, Chemin du Petit-Bel-Air, CH-1226 Thonex, Switzerland
| | - Natacha Perez
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 2, Chemin du Petit-Bel-Air, CH-1226 Thonex, Switzerland
| | - Mathilde Sauvain-Sabé
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 2, Chemin du Petit-Bel-Air, CH-1226 Thonex, Switzerland
| | - Othman Sentissi
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 2, Chemin du Petit-Bel-Air, CH-1226 Thonex, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francoise Jermann
- Division of Psychiatric Specialties, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - Paco Prada
- Consultation Liaison and Crisis Intervention, University Hospitals of Geneva, Switzerland
| | - Nader Perroud
- Division of Psychiatric Specialties, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - Kerem Böge
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin; and Freie Universität Berlin; and Humboldt-Universität zu Berlin; and Berlin Institute of Health, Germany; German Center of Mental Health (DZPG), Germany
| |
Collapse
|
11
|
Gao J, Jiang R, Tang X, Chen J, Yu M, Zhou C, Wang X, Zhang H, Huang C, Yang Y, Zhang X, Cui Z, Zhang X. A neuromarker for deficit syndrome in schizophrenia from a combination of structural and functional magnetic resonance imaging. CNS Neurosci Ther 2023; 29:3774-3785. [PMID: 37288482 PMCID: PMC10651988 DOI: 10.1111/cns.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023] Open
Abstract
AIM Deficit schizophrenia (DS), defined by primary and enduring negative symptoms, has been proposed as a promising homogeneous subtype of schizophrenia. It has been demonstrated that unimodal neuroimaging characteristics of DS were different from non-deficit schizophrenia (NDS), however, whether multimodal-based neuroimaging features could identify deficit syndrome remains to be determined. METHODS Functional and structural multimodal magnetic resonance imaging of DS, NDS and healthy controls were scanned. Voxel-based features of gray matter volume, fractional amplitude of low-frequency fluctuations, and regional homogeneity were extracted. The support vector machine classification models were constructed using these features separately and jointly. The most discriminative features were defined as the first 10% of features with the greatest weights. Moreover, relevance vector regression was applied to explore the predictive values of these top-weighted features in predicting negative symptoms. RESULTS The multimodal classifier achieved a higher accuracy (75.48%) compared with the single modal model in distinguishing DS from NDS. The most predictive brain regions were mainly located in the default mode and visual networks, exhibiting differences between functional and structural features. Further, the identified discriminative features significantly predicted scores of diminished expressivity factor in DS but not NDS. CONCLUSIONS The present study demonstrated that local properties of brain regions extracted from multimodal imaging data could distinguish DS from NDS with a machine learning-based approach and confirmed the relationship between distinctive features and the negative symptoms subdomain. These findings may improve the identification of potential neuroimaging signatures and improve the clinical assessment of the deficit syndrome.
Collapse
Affiliation(s)
- Ju Gao
- Institute of Mental HealthSuzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
- Department of Geriatric PsychiatryNanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Rongtao Jiang
- Department of Radiology & Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
| | - Xiaowei Tang
- Department of PsychiatryWutaishan Hospital of YangzhouYangzhouChina
| | - Jiu Chen
- Department of Geriatric PsychiatryNanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Miao Yu
- Department of Geriatric PsychiatryNanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Chao Zhou
- Department of Geriatric PsychiatryNanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Xiang Wang
- Medical Psychological Institute of the Second Xiangya HospitalChangshaChina
| | - Hongying Zhang
- Department of RadiologySubei People's Hospital of Jiangsu ProvinceYangzhouChina
| | - Chengbing Huang
- Department of Geriatric PsychiatryNanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
- Department of PsychiatryHuai'an No. 3 People's HospitalHuai'anChina
| | - Yong Yang
- Institute of Mental HealthSuzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Xiaobin Zhang
- Institute of Mental HealthSuzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Zaixu Cui
- Chinese Institute for Brain ResearchBeijingChina
| | - Xiangrong Zhang
- Department of Geriatric PsychiatryNanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
- Department of PsychiatryThe Affiliated Xuzhou Oriental Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
12
|
Schulz J, Brandl F, Grothe MJ, Kirschner M, Kaiser S, Schmidt A, Borgwardt S, Priller J, Sorg C, Avram M. Basal-Forebrain Cholinergic Nuclei Alterations are Associated With Medication and Cognitive Deficits Across the Schizophrenia Spectrum. Schizophr Bull 2023; 49:1530-1541. [PMID: 37606273 PMCID: PMC10686329 DOI: 10.1093/schbul/sbad118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
BACKGROUND AND HYPOTHESIS The cholinergic system is altered in schizophrenia. Particularly, patients' volumes of basal-forebrain cholinergic nuclei (BFCN) are lower and correlated with attentional deficits. It is unclear, however, if and how BFCN changes and their link to cognitive symptoms extend across the schizophrenia spectrum, including individuals with at-risk mental state for psychosis (ARMS) or during first psychotic episode (FEP). STUDY DESIGN To address this question, we assessed voxel-based morphometry (VBM) of structural magnetic resonance imaging data of anterior and posterior BFCN subclusters as well as symptom ratings, including cognitive, positive, and negative symptoms, in a large multi-site dataset (n = 4) comprising 68 ARMS subjects, 98 FEP patients (27 unmedicated and 71 medicated), 140 patients with established schizophrenia (SCZ; medicated), and 169 healthy controls. RESULTS In SCZ, we found lower VBM measures for the anterior BFCN, which were associated with the anticholinergic burden of medication and correlated with patients' cognitive deficits. In contrast, we found larger VBM measures for the posterior BFCN in FEP, which were driven by unmedicated patients and correlated at-trend with cognitive deficits. We found no BFCN changes in ARMS. Altered VBM measures were not correlated with positive or negative symptoms. CONCLUSIONS Results demonstrate complex (posterior vs. anterior BFCN) and non-linear (larger vs. lower VBM) differences in BFCN across the schizophrenia spectrum, which are specifically associated both with medication, including its anticholinergic burden, and cognitive symptoms. Data suggest an altered trajectory of BFCN integrity in schizophrenia, influenced by medication and relevant for cognitive symptoms.
Collapse
Affiliation(s)
- Julia Schulz
- TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Felix Brandl
- TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christian Sorg
- TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Bengtsson J, Rad P, Cernvall M, Bodén R. Psychometric properties of the Clinical Assessment Interview for Negative Symptoms (CAINS) in patients with depression and its relationship to affective symptoms. Ann Gen Psychiatry 2023; 22:42. [PMID: 37885022 PMCID: PMC10604520 DOI: 10.1186/s12991-023-00474-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND There is a conceptual overlap between negative and depressive symptoms, requiring further exploration to advance the understanding of negative symptoms. The aim of this study was to examine psychometric properties of the Clinical Assessment Interview for Negative Symptoms (CAINS) in patients with depression, and to explore the relationship between the negative and affective symptoms domains. METHODS Fifty-one patients with a depressive episode were included and interviewed with the CAINS and the Brief Psychiatric Rating Scale-Expanded (BPRS-E). Self-reported depressive symptoms were collected with the Montgomery-Asberg Depression Rating Scale (MADRS-S). Inter-rater agreement, internal consistency and validity measures were examined, as were correlations between negative and affective symptoms. RESULTS The intraclass correlation for the CAINS motivation and pleasure subscale (CAINS-MAP) was 0.98 (95% CI 0.96-0.99) and that for the expressional subscale (CAINS-EXP) was 0.81 (95% CI 0.67-0.89). Cronbach's alpha was 0.71 (95% CI 0.57-0.82) for the CAINS-MAP and 0.86 (95% CI 0.79-0.92) for the CAINS-EXP. The correlation with the negative symptoms subscale of the BPRS-E was 0.35 (p = 0.011, blinded/different raters) or 0.55 (p < 0.001, not blinded/same rater). The CAINS-MAP correlated with the affective symptoms subscale of the BPRS-E (r = 0.39, p = 0.005) and the MADRS-S total score (r = 0.50, p < 0.001), but not with anxiety symptoms. CONCLUSIONS Negative symptoms in depression can be assessed with the CAINS with good inter-rater agreement and acceptable internal consistency and validity. There are associations between negative and depressive symptoms that call for further exploration.
Collapse
Affiliation(s)
- Johan Bengtsson
- Department of Medical Sciences, Psychiatry, Uppsala University, Entrance 10, Uppsala University Hospital, 751 85, Uppsala, Sweden.
| | - Parya Rad
- Uppsala University Hospital, Uppsala, Sweden
| | - Martin Cernvall
- Department of Medical Sciences, Psychiatry, Uppsala University, Entrance 10, Uppsala University Hospital, 751 85, Uppsala, Sweden
| | - Robert Bodén
- Department of Medical Sciences, Psychiatry, Uppsala University, Entrance 10, Uppsala University Hospital, 751 85, Uppsala, Sweden
| |
Collapse
|
14
|
Jiang Y, Luo C, Wang J, Palaniyappan L, Chang X, Xiang S, Zhang J, Duan M, Huang H, Gaser C, Nemoto K, Miura K, Hashimoto R, Westlye LT, Richard G, Fernandez-Cabello S, Parker N, Andreassen OA, Kircher T, Nenadić I, Stein F, Thomas-Odenthal F, Teutenberg L, Usemann P, Dannlowski U, Hahn T, Grotegerd D, Meinert S, Lencer R, Tang Y, Zhang T, Li C, Yue W, Zhang Y, Yu X, Zhou E, Lin CP, Tsai SJ, Rodrigue AL, Glahn D, Pearlson G, Blangero J, Karuk A, Pomarol-Clotet E, Salvador R, Fuentes-Claramonte P, Garcia-León MÁ, Spalletta G, Piras F, Vecchio D, Banaj N, Cheng J, Liu Z, Yang J, Gonul AS, Uslu O, Burhanoglu BB, Demir AU, Rootes-Murdy K, Calhoun VD, Sim K, Green M, Quidé Y, Chung YC, Kim WS, Sponheim SR, Demro C, Ramsay IS, Iasevoli F, de Bartolomeis A, Barone A, Ciccarelli M, Brunetti A, Cocozza S, Pontillo G, Tranfa M, Park MTM, Kirschner M, Georgiadis F, Kaiser S, Rheenen TEV, Rossell SL, Hughes M, Woods W, Carruthers SP, Sumner P, Ringin E, Spaniel F, Skoch A, Tomecek D, Homan P, Homan S, Omlor W, Cecere G, Nguyen DD, Preda A, Thomopoulos S, Jahanshad N, Cui LB, Yao D, et alJiang Y, Luo C, Wang J, Palaniyappan L, Chang X, Xiang S, Zhang J, Duan M, Huang H, Gaser C, Nemoto K, Miura K, Hashimoto R, Westlye LT, Richard G, Fernandez-Cabello S, Parker N, Andreassen OA, Kircher T, Nenadić I, Stein F, Thomas-Odenthal F, Teutenberg L, Usemann P, Dannlowski U, Hahn T, Grotegerd D, Meinert S, Lencer R, Tang Y, Zhang T, Li C, Yue W, Zhang Y, Yu X, Zhou E, Lin CP, Tsai SJ, Rodrigue AL, Glahn D, Pearlson G, Blangero J, Karuk A, Pomarol-Clotet E, Salvador R, Fuentes-Claramonte P, Garcia-León MÁ, Spalletta G, Piras F, Vecchio D, Banaj N, Cheng J, Liu Z, Yang J, Gonul AS, Uslu O, Burhanoglu BB, Demir AU, Rootes-Murdy K, Calhoun VD, Sim K, Green M, Quidé Y, Chung YC, Kim WS, Sponheim SR, Demro C, Ramsay IS, Iasevoli F, de Bartolomeis A, Barone A, Ciccarelli M, Brunetti A, Cocozza S, Pontillo G, Tranfa M, Park MTM, Kirschner M, Georgiadis F, Kaiser S, Rheenen TEV, Rossell SL, Hughes M, Woods W, Carruthers SP, Sumner P, Ringin E, Spaniel F, Skoch A, Tomecek D, Homan P, Homan S, Omlor W, Cecere G, Nguyen DD, Preda A, Thomopoulos S, Jahanshad N, Cui LB, Yao D, Thompson PM, Turner JA, van Erp TG, Cheng W, ENIGMA Schizophrenia Consortium, ZIB Consortium, Feng J. Two neurostructural subtypes: results of machine learning on brain images from 4,291 individuals with schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.11.23296862. [PMID: 37873296 PMCID: PMC10593004 DOI: 10.1101/2023.10.11.23296862] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Machine learning can be used to define subtypes of psychiatric conditions based on shared clinical and biological foundations, presenting a crucial step toward establishing biologically based subtypes of mental disorders. With the goal of identifying subtypes of disease progression in schizophrenia, here we analyzed cross-sectional brain structural magnetic resonance imaging (MRI) data from 4,291 individuals with schizophrenia (1,709 females, age=32.5 years±11.9) and 7,078 healthy controls (3,461 females, age=33.0 years±12.7) pooled across 41 international cohorts from the ENIGMA Schizophrenia Working Group, non-ENIGMA cohorts and public datasets. Using a machine learning approach known as Subtype and Stage Inference (SuStaIn), we implemented a brain imaging-driven classification that identifies two distinct neurostructural subgroups by mapping the spatial and temporal trajectory of gray matter (GM) loss in schizophrenia. Subgroup 1 (n=2,622) was characterized by an early cortical-predominant loss (ECL) with enlarged striatum, whereas subgroup 2 (n=1,600) displayed an early subcortical-predominant loss (ESL) in the hippocampus, amygdala, thalamus, brain stem and striatum. These reconstructed trajectories suggest that the GM volume reduction originates in the Broca's area/adjacent fronto-insular cortex for ECL and in the hippocampus/adjacent medial temporal structures for ESL. With longer disease duration, the ECL subtype exhibited a gradual worsening of negative symptoms and depression/anxiety, and less of a decline in positive symptoms. We confirmed the reproducibility of these imaging-based subtypes across various sample sites, independent of macroeconomic and ethnic factors that differed across these geographic locations, which include Europe, North America and East Asia. These findings underscore the presence of distinct pathobiological foundations underlying schizophrenia. This new imaging-based taxonomy holds the potential to identify a more homogeneous sub-population of individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.
Collapse
Affiliation(s)
- Yuchao Jiang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Canada
| | - Xiao Chang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Jie Zhang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Neurology, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| | - Kiyotaka Nemoto
- Department of Psychiatry, Division of Clinical Medicine, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 187-8553, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, 187-8553, Japan
| | - Lars T. Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Genevieve Richard
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sara Fernandez-Cabello
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Nadine Parker
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry and Psychotherapie and Center for Brain, Behavior and Metabolism, Lübeck University, Lübeck, Germany
- Institute for Transnational Psychiatry and Otto Creutzfeldt Center for Behavioral and Cognitive Neuroscience, University of Münster, Münster, Germany
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
- Chinese Institute for Brain Research, Beijing, PR China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, PR China
| | - Yuyanan Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Enpeng Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Amanda L. Rodrigue
- Department of Psychiatry, Boston Children’s Hospital, Harvard Medical School, Boston MA, USA
| | - David Glahn
- Department of Psychiatry, Boston Children’s Hospital, Harvard Medical School, Boston MA, USA
| | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas of the Rio Grande Valley, Brownsville, TX, USA
| | - Andriana Karuk
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Spain
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Spain
| | - María Ángeles Garcia-León
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Spain
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Daniela Vecchio
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nerisa Banaj
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhening Liu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Jie Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Ali Saffet Gonul
- Ege University School of Medicine Department of Psychiatry, SoCAT Lab, Izmir, Turkey
| | - Ozgul Uslu
- Ege University Institute of Health Sciences Department of Neuroscience, Izmir, Turkey
| | | | - Aslihan Uyar Demir
- Ege University School of Medicine Department of Psychiatry, SoCAT Lab, Izmir, Turkey
| | - Kelly Rootes-Murdy
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, Emory University], Atlanta, GA, USA
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, Emory University], Atlanta, GA, USA
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Melissa Green
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Yann Quidé
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Young Chul Chung
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Woo-Sung Kim
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Scott R. Sponheim
- Minneapolis VA Medical Center, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Demro
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ian S. Ramsay
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Felice Iasevoli
- Section of Psychiatry - Department of Neuroscience - University “Federico II”, Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry - Department of Neuroscience - University “Federico II”, Naples, Italy
| | - Annarita Barone
- Section of Psychiatry - Department of Neuroscience - University “Federico II”, Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry - Department of Neuroscience - University “Federico II”, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences - University “Federico II”, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences - University “Federico II”, Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences - University “Federico II”, Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences - University “Federico II”, Naples, Italy
| | - Min Tae M. Park
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Centre for Addiction and Mental Health, Toronto, Canada
| | - Matthias Kirschner
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Switzerland
| | - Foivos Georgiadis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Switzerland
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Susan L Rossell
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Matthew Hughes
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - William Woods
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Sean P Carruthers
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Philip Sumner
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Elysha Ringin
- National Institute of Mental Health, Klecany, Czech Republic
| | - Filip Spaniel
- National Institute of Mental Health, Klecany, Czech Republic
| | - Antonin Skoch
- National Institute of Mental Health, Klecany, Czech Republic
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - David Tomecek
- National Institute of Mental Health, Klecany, Czech Republic
- Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Philipp Homan
- Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Stephanie Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Switzerland
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Switzerland
| | - Wolfgang Omlor
- Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Giacomo Cecere
- Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Dana D Nguyen
- Department of Pediatrics, University of California Irvine, Irvine, California, USA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, USA
| | - Sophia Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Long-Biao Cui
- Department of Clinical Psychology, Fourth Military Medical University, Xi’an, PR China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, China
| | - Paul M. Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica A. Turner
- Psychiatry and Behavioral Health, Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Theo G.M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine Hall, room 109, Irvine, CA, 92697-3950, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, 309 Qureshey Research Lab, Irvine, CA, 92697, USA
| | - Wei Cheng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | | | | | - Jianfeng Feng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
- School of Data Science, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
15
|
Wu Y, Wang H, Li C, Zhang C, Li Q, Shao Y, Yang Z, Li C, Fan Q. Deficits in Key Brain Network for Social Interaction in Individuals with Schizophrenia. Brain Sci 2023; 13:1403. [PMID: 37891773 PMCID: PMC10605178 DOI: 10.3390/brainsci13101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Individuals with schizophrenia (SZ) show impairment in social functioning. The reward network and the emotional salience network are considered to play important roles in social interaction. The current study investigated alterations in the resting-state (rs-) amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo) and functional connectivity (fc) in the reward network and the emotional salience network in SZ patients. MRI scans were collected from 60 subjects, including 30 SZ patients and 30 matched healthy controls. SZ symptoms were measured using the Positive and Negative Syndrome Scale (PANSS). We analyzed the ALFF, fALFF and ReHo in key brain regions in the reward network and emotional salience network as well as rs-fc among the bilateral amygdala, lateral orbitofrontal cortex (OFC), medial OFC and insula between groups. The SZ patients demonstrated increased ALFF in the right caudate and right putamen, increased fALFF and ReHo in the bilateral caudate, putamen and pallidum, along with decreased fALFF in the bilateral insula. Additionally, reduced rs-fc was found between the right lateral OFC and the left amygdala, which simultaneously belong to the reward network and the emotional salience network. These findings highlight the association between impaired social functioning in SZ patients and aberrant resting-state ALFF, fALFF, ReHo and fc. Future studies are needed to conduct network-based statistical analysis and task-state fMRI, reflecting live social interaction to advance our understanding of the mechanism of social interaction deficits in SZ.
Collapse
Affiliation(s)
- Yiwen Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hongyan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chuoran Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qingfeng Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yang Shao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhi Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
- Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
16
|
Demjaha A, Galderisi S, Glenthøj B, Arango C, Mucci A, Lawrence A, O'Daly O, Kempton M, Ciufolini S, Baandrup L, Ebdrup BH, Rodriguez-Jimenez R, Diaz-Marsa M, Díaz-Caneja CM, Winter van Rossum I, Kahn R, Dazzan P, McGuire P. Negative symptoms in First-Episode Schizophrenia related to morphometric alterations in orbitofrontal and superior temporal cortex: the OPTiMiSE study. Psychol Med 2023; 53:3471-3479. [PMID: 35197142 PMCID: PMC10277764 DOI: 10.1017/s0033291722000010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Negative symptoms are one of the most incapacitating features of Schizophrenia but their pathophysiology remains unclear. They have been linked to alterations in grey matter in several brain regions, but findings have been inconsistent. This may reflect the investigation of relatively small patient samples, and the confounding effects of chronic illness and exposure to antipsychotic medication. We sought to address these issues by investigating concurrently grey matter volumes (GMV) and cortical thickness (CTh) in a large sample of antipsychotic-naïve or minimally treated patients with First-Episode Schizophrenia (FES). METHODS T1-weighted structural MRI brain scans were acquired from 180 antipsychotic-naïve or minimally treated patients recruited as part of the OPTiMiSE study. The sample was stratified into subgroups with (N = 88) or without (N = 92) Prominent Negative Symptoms (PMN), based on PANSS ratings at presentation. Regional GMV and CTh in the two groups were compared using Voxel-Based Morphometry (VBM) and FreeSurfer (FS). Between-group differences were corrected for multiple comparisons via Family-Wise Error (FWE) and Monte Carlo z-field simulation respectively at p < 0.05 (2-tailed). RESULTS The presence of PMN symptoms was associated with larger left inferior orbitofrontal volume (p = 0.03) and greater CTh in the left lateral orbitofrontal gyrus (p = 0.007), but reduced CTh in the left superior temporal gyrus (p = 0.009). CONCLUSIONS The findings highlight the role of orbitofrontal and temporal cortices in the pathogenesis of negative symptoms of Schizophrenia. As they were evident in generally untreated FEP patients, the results are unlikely to be related to effects of previous treatment or illness chronicity.
Collapse
Affiliation(s)
- Arsime Demjaha
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Birthe Glenthøj
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health. Hospital General Universitario Gregorio Marañón. IiSGM, CIBERSAM. School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Armida Mucci
- Department of Psychiatry, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Andrew Lawrence
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Matthew Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Lone Baandrup
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H. Ebdrup
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Roberto Rodriguez-Jimenez
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health. Hospital General Universitario Gregorio Marañón. IiSGM, CIBERSAM. School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Diaz-Marsa
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health. Hospital General Universitario Gregorio Marañón. IiSGM, CIBERSAM. School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Covadonga Martinez Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health. Hospital General Universitario Gregorio Marañón. IiSGM, CIBERSAM. School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Rene Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, Utrecht, Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
17
|
Jiang Y, Wang J, Zhou E, Palaniyappan L, Luo C, Ji G, Yang J, Wang Y, Zhang Y, Huang CC, Tsai SJ, Chang X, Xie C, Zhang W, Lv J, Chen D, Shen C, Wu X, Zhang B, Kuang N, Sun YJ, Kang J, Zhang J, Huang H, He H, Duan M, Tang Y, Zhang T, Li C, Yu X, Si T, Yue W, Liu Z, Cui LB, Wang K, Cheng J, Lin CP, Yao D, Cheng W, Feng J, the ZIB Consortium. Neuroimaging biomarkers define neurophysiological subtypes with distinct trajectories in schizophrenia. NATURE MENTAL HEALTH 2023; 1:186-199. [DOI: 10.1038/s44220-023-00024-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/23/2023] [Indexed: 03/04/2025]
|
18
|
Chew QH, Prakash KNB, Koh LY, Chilla G, Yeow LY, Sim K. Neuroanatomical subtypes of schizophrenia and relationship with illness duration and deficit status. Schizophr Res 2022; 248:107-113. [PMID: 36030757 DOI: 10.1016/j.schres.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/21/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND The heterogeneity of schizophrenia (SCZ) regarding psychopathology, illness trajectory and their inter-relationships with underlying neural substrates remain incompletely understood. In a bid to reduce illness heterogeneity using neural substrates, our study aimed to replicate the findings of an earlier study by Chand et al. (2020). We employed brain structural measures for subtyping SCZ patients, and evaluate each subtype's relationship with clinical features such as illness duration, psychotic psychopathology, and additionally deficit status. METHODS Overall, 240 subjects (160 SCZ patients, 80 healthy controls) were recruited for this study. The participants underwent brain structural magnetic resonance imaging scans and clinical rating using the Positive and Negative Syndrome Scale. Neuroanatomical subtypes of SCZ were identified using "Heterogeneity through discriminative analysis" (HYDRA), a clustering technique which accounted for relevant covariates and the inter-group normalized percentage changes in brain volume were also calculated. RESULTS As replicated, two neuroanatomical subtypes (SG-1 and SG-2) were found amongst our patients with SCZ. The subtype SG-1 was associated with enlargements in the third and lateral ventricles, volume increase in the basal ganglia (putamen, caudate, pallidum), longer illness duration, and deficit status. The subtype SG-2 was associated with reductions of cortical and subcortical structures (hippocampus, thalamus, basal ganglia). CONCLUSIONS These replicated findings have clinical implications in the early intervention, response monitoring, and prognostication of SCZ. Future studies may adopt a multi-modal neuroimaging approach to enhance insights into the neurobiological composition of relevant subtypes.
Collapse
Affiliation(s)
- Qian Hui Chew
- Research Division, Institute of Mental Health, Singapore
| | - K N Bhanu Prakash
- Biophotonics & Bioimaging, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore; Clinical Data Analytics & Radiomics, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Li Yang Koh
- Biophotonics & Bioimaging, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore
| | - Geetha Chilla
- Biophotonics & Bioimaging, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore; Clinical Data Analytics & Radiomics, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Ling Yun Yeow
- Biophotonics & Bioimaging, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore; Clinical Data Analytics & Radiomics, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore.
| |
Collapse
|
19
|
Kirschner M, Hodzic-Santor B, Antoniades M, Nenadic I, Kircher T, Krug A, Meller T, Grotegerd D, Fornito A, Arnatkeviciute A, Bellgrove MA, Tiego J, Dannlowski U, Koch K, Hülsmann C, Kugel H, Enneking V, Klug M, Leehr EJ, Böhnlein J, Gruber M, Mehler D, DeRosse P, Moyett A, Baune BT, Green M, Quidé Y, Pantelis C, Chan R, Wang Y, Ettinger U, Debbané M, Derome M, Gaser C, Besteher B, Diederen K, Spencer TJ, Fletcher P, Rössler W, Smigielski L, Kumari V, Premkumar P, Park HRP, Wiebels K, Lemmers-Jansen I, Gilleen J, Allen P, Kozhuharova P, Marsman JB, Lebedeva I, Tomyshev A, Mukhorina A, Kaiser S, Fett AK, Sommer I, Schuite-Koops S, Paquola C, Larivière S, Bernhardt B, Dagher A, Grant P, van Erp TGM, Turner JA, Thompson PM, Aleman A, Modinos G. Cortical and subcortical neuroanatomical signatures of schizotypy in 3004 individuals assessed in a worldwide ENIGMA study. Mol Psychiatry 2022; 27:1167-1176. [PMID: 34707236 PMCID: PMC9054674 DOI: 10.1038/s41380-021-01359-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 02/04/2023]
Abstract
Neuroanatomical abnormalities have been reported along a continuum from at-risk stages, including high schizotypy, to early and chronic psychosis. However, a comprehensive neuroanatomical mapping of schizotypy remains to be established. The authors conducted the first large-scale meta-analyses of cortical and subcortical morphometric patterns of schizotypy in healthy individuals, and compared these patterns with neuroanatomical abnormalities observed in major psychiatric disorders. The sample comprised 3004 unmedicated healthy individuals (12-68 years, 46.5% male) from 29 cohorts of the worldwide ENIGMA Schizotypy working group. Cortical and subcortical effect size maps with schizotypy scores were generated using standardized methods. Pattern similarities were assessed between the schizotypy-related cortical and subcortical maps and effect size maps from comparisons of schizophrenia (SZ), bipolar disorder (BD) and major depression (MDD) patients with controls. Thicker right medial orbitofrontal/ventromedial prefrontal cortex (mOFC/vmPFC) was associated with higher schizotypy scores (r = 0.067, pFDR = 0.02). The cortical thickness profile in schizotypy was positively correlated with cortical abnormalities in SZ (r = 0.285, pspin = 0.024), but not BD (r = 0.166, pspin = 0.205) or MDD (r = -0.274, pspin = 0.073). The schizotypy-related subcortical volume pattern was negatively correlated with subcortical abnormalities in SZ (rho = -0.690, pspin = 0.006), BD (rho = -0.672, pspin = 0.009), and MDD (rho = -0.692, pspin = 0.004). Comprehensive mapping of schizotypy-related brain morphometry in the general population revealed a significant relationship between higher schizotypy and thicker mOFC/vmPFC, in the absence of confounding effects due to antipsychotic medication or disease chronicity. The cortical pattern similarity between schizotypy and schizophrenia yields new insights into a dimensional neurobiological continuity across the extended psychosis phenotype.
Collapse
Affiliation(s)
- Matthias Kirschner
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada ,grid.7400.30000 0004 1937 0650Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Benazir Hodzic-Santor
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Mathilde Antoniades
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK
| | - Igor Nenadic
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany
| | - Tilo Kircher
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany
| | - Axel Krug
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany ,grid.10388.320000 0001 2240 3300Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Tina Meller
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany
| | - Dominik Grotegerd
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Alex Fornito
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Aurina Arnatkeviciute
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Mark A. Bellgrove
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Jeggan Tiego
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Udo Dannlowski
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Koch
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Carina Hülsmann
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- grid.5949.10000 0001 2172 9288University Clinic for Radiology, University of Münster, Münster, Germany
| | - Verena Enneking
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Melissa Klug
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J. Leehr
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Joscha Böhnlein
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Marius Gruber
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - David Mehler
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Pamela DeRosse
- grid.416477.70000 0001 2168 3646Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY USA ,grid.250903.d0000 0000 9566 0634The Feinstein Institutes for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Ashley Moyett
- grid.416477.70000 0001 2168 3646Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY USA
| | - Bernhard T. Baune
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany ,grid.1008.90000 0001 2179 088XDepartment of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, VIC Australia
| | - Melissa Green
- grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW Australia ,grid.250407.40000 0000 8900 8842Neuroscience Research Australia (NeuRA), Randwick, NSW Australia
| | - Yann Quidé
- grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW Australia ,grid.250407.40000 0000 8900 8842Neuroscience Research Australia (NeuRA), Randwick, NSW Australia
| | - Christos Pantelis
- grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, VIC Australia
| | - Raymond Chan
- grid.9227.e0000000119573309Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- grid.9227.e0000000119573309Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Ulrich Ettinger
- grid.10388.320000 0001 2240 3300University of Bonn, Bonn, Germany
| | - Martin Debbané
- grid.8591.50000 0001 2322 4988University of Geneva, Geneva, Switzerland
| | - Melodie Derome
- grid.8591.50000 0001 2322 4988University of Geneva, Geneva, Switzerland
| | - Christian Gaser
- grid.275559.90000 0000 8517 6224Jena University Hospital, Jena, Germany
| | - Bianca Besteher
- grid.275559.90000 0000 8517 6224Jena University Hospital, Jena, Germany
| | - Kelly Diederen
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK
| | - Tom J. Spencer
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK
| | - Paul Fletcher
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Wulf Rössler
- grid.412004.30000 0004 0478 9977Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany ,grid.11899.380000 0004 1937 0722Institute of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lukasz Smigielski
- grid.412004.30000 0004 0478 9977Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Veena Kumari
- grid.7728.a0000 0001 0724 6933Brunel University London, Uxbridge, UK
| | - Preethi Premkumar
- grid.7728.a0000 0001 0724 6933Brunel University London, Uxbridge, UK
| | - Haeme R. P. Park
- grid.9654.e0000 0004 0372 3343School of Psychology, University of Auckland, Auckland, New Zealand
| | - Kristina Wiebels
- grid.9654.e0000 0004 0372 3343School of Psychology, University of Auckland, Auckland, New Zealand
| | | | - James Gilleen
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK ,grid.35349.380000 0001 0468 7274University of Roehampton, London, UK
| | - Paul Allen
- grid.35349.380000 0001 0468 7274University of Roehampton, London, UK
| | - Petya Kozhuharova
- grid.35349.380000 0001 0468 7274University of Roehampton, London, UK
| | - Jan-Bernard Marsman
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Irina Lebedeva
- grid.466467.10000 0004 0627 319XMental Health Research Center, Moscow, Russian Federation
| | - Alexander Tomyshev
- grid.466467.10000 0004 0627 319XMental Health Research Center, Moscow, Russian Federation
| | - Anna Mukhorina
- grid.466467.10000 0004 0627 319XMental Health Research Center, Moscow, Russian Federation
| | - Stefan Kaiser
- grid.150338.c0000 0001 0721 9812Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - Anne-Kathrin Fett
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK ,grid.28577.3f0000 0004 1936 8497City, University London, London, UK
| | - Iris Sommer
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sanne Schuite-Koops
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Casey Paquola
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Sara Larivière
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Boris Bernhardt
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Alain Dagher
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Phillip Grant
- grid.440934.e0000 0004 0593 1824Fresenius University of Applied Sciences, Frankfurt am Main, Germany
| | - Theo G. M. van Erp
- grid.266093.80000 0001 0668 7243Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA USA
| | - Jessica A. Turner
- grid.256304.60000 0004 1936 7400Imaging Genetics and Neuroinformatics Lab, Georgia State University, Atlanta, GA USA
| | - Paul M. Thompson
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - André Aleman
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gemma Modinos
- Department of Psychosis Studies, King's College London, London, UK. .,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
20
|
He M, Cheng Y, Chu Z, Wang X, Xu J, Lu Y, Shen Z, Xu X. White Matter Network Disruption Is Associated With Melancholic Features in Major Depressive Disorder. Front Psychiatry 2022; 13:816191. [PMID: 35492691 PMCID: PMC9046786 DOI: 10.3389/fpsyt.2022.816191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The efficacy and prognosis of major depressive disorder (MDD) are limited by its heterogeneity. MDD with melancholic features is an important subtype of MDD. The present study aimed to reveal the white matter (WM) network changes in melancholic depression. MATERIALS AND METHODS Twenty-three first-onset, untreated melancholic MDD, 59 non-melancholic MDD patients and 63 health controls underwent diffusion tensor imaging (DTI) scans. WM network analysis based on graph theory and support vector machine (SVM) were used for image data analysis. RESULTS Compared with HC, small-worldness was reduced and abnormal node attributes were in the right orbital inferior frontal gyrus, left orbital superior frontal gyrus, right caudate nucleus, right orbital superior frontal gyrus, right orbital middle frontal gyrus, left rectus gyrus, and left median cingulate and paracingulate gyrus of MDD patients. Compared with non-melancholic MDD, small-worldness was reduced and abnormal node attributes were in right orbital inferior frontal gyrus, left orbital superior frontal gyrus and right caudate nucleus of melancholic MDD. For correlation analysis, the 7th item score of the HRSD-17 (work and interest) was positively associated with increased node betweenness centrality (aBC) values in right orbital inferior frontal gyrus, while negatively associated with the decreased aBC in left orbital superior frontal gyrus. SVM analysis results showed that abnormal aBC in right orbital inferior frontal gyrus and left orbital superior frontal gyrus showed the highest accuracy of 81.0% (69/83), the sensitivity of 66.3%, and specificity of 85.2% for discriminating MDD patients with or without melancholic features. CONCLUSION There is a significant difference in WM network changes between MDD patients with and without melancholic features.
Collapse
Affiliation(s)
- Mengxin He
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Clinical Research Center for Mental Disorders, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Clinical Research Center for Mental Disorders, Kunming, China
| | - Zhaosong Chu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Clinical Research Center for Mental Disorders, Kunming, China
| | - Xin Wang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinlei Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi Lu
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zonglin Shen
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Clinical Research Center for Mental Disorders, Kunming, China.,Mental Health Institute of Yunnan, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Yunnan Clinical Research Center for Mental Disorders, Kunming, China
| |
Collapse
|