1
|
Polner B, Jamalabadi H, van Kemenade BM, Billino J, Kircher T, Straube B. Speech-Gesture Matching and Schizotypal Traits: A Network Approach. Schizophr Bull 2024:sbae134. [PMID: 39046822 DOI: 10.1093/schbul/sbae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND HYPOTHESIS Impaired speech-gesture matching has repeatedly been shown in patients with schizophrenia spectrum disorders. Here, we tested the hypothesis that schizotypal traits in the general population are related to reduced speech-gesture matching performance and reduced self-reports about gesture perception. We further explored the relationships between facets of schizotypy and gesture processing in a network model. STUDY DESIGN Participants (1094 mainly healthy adults) were presented with concrete or abstract sentences accompanied with videos showing related or unrelated gestures. For each video, participants evaluated the alignment between speech and gesture. They also completed self-rating scales about the perception and production of gestures (Brief Assessment of Gesture scale) and schizotypal traits (Schizotypal Personality Questionnaire-Brief 22-item version). We analyzed bivariate associations and estimated a non-regularized partial Spearman correlation network. We characterized the network by analyzing bridge centrality and controllability metrics of nodes. STUDY RESULTS We found a negative relationship between both concrete and abstract gesture-speech matching performance and overall schizotypy. In the network, disorganization had the highest average controllability and it was negatively related to abstract speech-gesture matching. Bridge centralities indicated that self-reported production of gestures to enhance communication in social interactions connects self-reported gesture perception, schizotypal traits, and gesture processing task performance. CONCLUSION The association between impaired abstract speech-gesture matching and disorganization supports a continuum between schizophrenia and schizotypy. Using gestures to facilitate communication connects subjective and objective aspects of gesture processing and schizotypal traits. Future interventional studies in patients should test the potential causal pathways implied by this network model.
Collapse
Affiliation(s)
- Bertalan Polner
- Institute of Psychology, ELTE, Eötvös Loránd University, Budapest, Hungary
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Bianca M van Kemenade
- Center for Psychiatry, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg, Marburg, Germany, and Justus Liebig University Giessen, Giessen, Germany
| | - Jutta Billino
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg, Marburg, Germany, and Justus Liebig University Giessen, Giessen, Germany
- Experimental Psychology, Lifespan Neuropsychology, Justus Liebig University Giessen, Giessen, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg, Marburg, Germany, and Justus Liebig University Giessen, Giessen, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg, Marburg, Germany, and Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
2
|
Pavlidou A, Gorisse G, Banakou D, Walther S. Using virtual reality to assess gesture performance deficits in schizophrenia patients. Front Psychiatry 2023; 14:1191601. [PMID: 37363173 PMCID: PMC10288366 DOI: 10.3389/fpsyt.2023.1191601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Gesture performance deficits are prevalent in schizophrenia patients and are strongly associated with poor social communication skills and community functioning, affecting their overall quality of life. Currently, video-recording technology is widely used in clinical settings to assess gesture production deficits in schizophrenia patients. Nevertheless, the subjective evaluation of video-recordings can encumber task assessment. The present study will aim to use virtual reality to examine its potential use as an alternative tool to objectively measure gesture performance accuracy in schizophrenia patients and healthy controls. Methods Gesture performance in the virtual reality setting will be based on the well-established Test of Upper Limb Apraxia. Participants will be immersed in a virtual environment where they will experience themselves being embodied in a collocated virtual body seen from a first-person perspective. Motion trackers will be placed on participants' hands and elbows to track upper body movements in real-time, and to record gesture movement for later analysis. Participants will see a virtual agent sitting across from them, with a virtual table in between. The agent will perform various types of gestures and the participants' task will be to imitate those gestures as accurately as possible. Measurements from the tracking devices will be stored and analyzed to address gesture performance accuracy across groups. Discussion This study aims to provide objective measurements of gesture performance accuracy in schizophrenia patients. If successful, the results will provide new knowledge to the gesture literature and offer the potential for novel therapeutic interventions using virtual reality technologies. Such interventions can improve gesturing and thus advance social communication skills in schizophrenia patients.
Collapse
Affiliation(s)
- Anastasia Pavlidou
- University of Bern, University Hospital of Psychiatry and Psychotherapy, Translation Research Centre, Bern, Switzerland
| | | | - Domna Banakou
- Arts and Humanities Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sebastian Walther
- University of Bern, University Hospital of Psychiatry and Psychotherapy, Translation Research Centre, Bern, Switzerland
| |
Collapse
|
3
|
Vargas TG, Mittal VA. Brain morphometry points to emerging patterns of psychosis, depression, and anxiety vulnerability over a 2-year period in childhood. Psychol Med 2023; 53:3322-3334. [PMID: 37323064 PMCID: PMC10276191 DOI: 10.1017/s0033291721005304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gray matter morphometry studies have lent seminal insights into the etiology of mental illness. Existing research has primarily focused on adults and then, typically on a single disorder. Examining brain characteristics in late childhood, when the brain is preparing to undergo significant adolescent reorganization and various forms of serious psychopathology are just first emerging, may allow for a unique and highly important perspective of overlapping and unique pathogenesis. METHODS A total of 8645 youth were recruited as part of the Adolescent Brain and Cognitive Development study. Magnetic resonance imaging scans were collected, and psychotic-like experiences (PLEs), depressive, and anxiety symptoms were assessed three times over a 2-year period. Cortical thickness, surface area, and subcortical volume were used to predict baseline symptomatology and symptom progression over time. RESULTS Some features could possibly signal common vulnerability, predicting progression across forms of psychopathology (e.g. superior frontal and middle temporal regions). However, there was a specific predictive value for emerging PLEs (lateral occipital and precentral thickness), anxiety (parietal thickness/area and cingulate), and depression (e.g. parahippocampal and inferior temporal). CONCLUSION Findings indicate common and distinct patterns of vulnerability for varying forms of psychopathology are present during late childhood, before the adolescent reorganization, and have direct relevance for informing novel conceptual models along with early prevention and intervention efforts.
Collapse
Affiliation(s)
- Teresa G Vargas
- Northwestern University, Swift Hall 102, 2029 Sheridan Road, Evanston, IL 60201, USA
| | - Vijay A Mittal
- Northwestern University, Swift Hall 102, 2029 Sheridan Road, Evanston, IL 60201, USA
| |
Collapse
|
4
|
Xu X, He B, Zeng J, Yin J, Wang X, Luo X, Liang C, Luo S, Yan H, Xiong S, Tan Z, Lv D, Dai Z, Lin Z, Lin J, Ye X, Chen R, Li Y, Wang Y, Chen W, Luo Z, Li K, Ma G. Genetic variations in DOCK4 contribute to schizophrenia susceptibility in a Chinese cohort: A genetic neuroimaging study. Behav Brain Res 2023; 443:114353. [PMID: 36822513 DOI: 10.1016/j.bbr.2023.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Emerging evidence suggests that the DOCK4 gene increases susceptibility to schizophrenia. However, no study has hitherto repeated this association in Chinese, and further investigated the relationship between DOCK4 and clinical symptoms in schizophrenic patients using clinical scales and functional magnetic resonance imaging (fMRI). METHODS In this study, we genotyped three single nucleotide polymorphisms (SNPs) (rs2074127, rs2217262, and rs2074130) within the DOCK4 gene using a case-control design (including 1289 healthy controls and 1351 patients with schizophrenia). 55 first-episode schizophrenia (FES) patients and 59 healthy participants were divided by the genotypes of rs2074130 into CC and CT+TT groups. We further investigated the association with clinical symptoms and neural characteristics (brain activation/connectivity and nodal network metrics). RESULTS Our results showed significant associations between all selected SNPs and schizophrenia (all P < 0.05). In patients, letter fluency and motor speed scores of T allele carriers were significantly higher than the CC group (all P < 0.05). Interestingly, greater brain activity, functional connectivity, and betweenness centrality (BC) in language processing and motor coordination were also observed in the corresponding brain zones in patients with the T allele based on a two-way ANCOVA model. Moreover, a potential positive correlation was found between brain activity/connectivity of these brain regions and verbal fluency and motor speed. CONCLUSION Our findings suggest that the DOCK4 gene may contribute to the onset of schizophrenia and lead to language processing and motor coordination dysfunction in this patient population from China.
Collapse
Affiliation(s)
- Xusan Xu
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China; Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde 528300, China
| | - Bin He
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jieqing Zeng
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China; Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde 528300, China
| | - Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiaoxia Wang
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China; Institute of Neurology, Longjiang Hospital, the Third Affiliated Hospital of Guangdong Medical University, Shunde 528300, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Chunmei Liang
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China
| | - Shucun Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Haifeng Yan
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhi Tan
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiaoqing Ye
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Riling Chen
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde 528300, China
| | - You Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China
| | - Yajun Wang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde 528300, China
| | - Wubiao Chen
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zebin Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Keshen Li
- Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou 510623, China.
| | - Guoda Ma
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China; Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde 528300, China.
| |
Collapse
|
5
|
Tonna M, Lucarini V, Borrelli DF, Parmigiani S, Marchesi C. Disembodiment and Language in Schizophrenia: An Integrated Psychopathological and Evolutionary Perspective. Schizophr Bull 2023; 49:161-171. [PMID: 36264669 PMCID: PMC9810023 DOI: 10.1093/schbul/sbac146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Different hypotheses have flourished to explain the evolutionary paradox of schizophrenia. In this contribution, we sought to illustrate how, in the schizophrenia spectrum, the concept of embodiment may underpin the phylogenetic and developmental pathways linking sensorimotor processes, the origin of human language, and the construction of a basic sense of the self. In particular, according to an embodied model of language, we suggest that the reuse of basic sensorimotor loops for language, while enabling the development of fully symbolic thought, has pushed the human brain close to the threshold of a severe disruption of self-embodiment processes, which are at the core of schizophrenia psychopathology. We adopted an inter-disciplinary approach (psychopathology, neuroscience, developmental biology) within an evolutionary framework, to gain an integrated, multi-perspectival model on the origin of schizophrenia vulnerability. A maladaptive over-expression of evolutionary-developmental trajectories toward language at the expense of embodiment processes would have led to the evolutionary "trade-off" of a hyper-symbolic activity to the detriment of a disembodied self. Therefore, schizophrenia psychopathology might be the cost of long-term co-evolutive interactions between brain and language.
Collapse
Affiliation(s)
- Matteo Tonna
- Department of Medicine and Surgery, Psychiatric Unit, University of Parma, Parma, Italy
- Department of Mental Health, Local Health Service, Parma, Italy
| | - Valeria Lucarini
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | | | - Stefano Parmigiani
- Department of Department of Chemistry, Life Sciences and Environmental Sustainability, Unit of Behavioral Biology, University of Parma, Parma, Italy
| | - Carlo Marchesi
- Department of Medicine and Surgery, Psychiatric Unit, University of Parma, Parma, Italy
- Department of Mental Health, Local Health Service, Parma, Italy
| |
Collapse
|
6
|
Riedl L, Nagels A, Sammer G, Choudhury M, Nonnenmann A, Sütterlin A, Feise C, Haslach M, Bitsch F, Straube B. Multimodal speech-gesture training in patients with schizophrenia spectrum disorder: Effects on quality of life and neural processing. Schizophr Res 2022; 246:112-125. [PMID: 35759877 DOI: 10.1016/j.schres.2022.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/25/2022] [Accepted: 06/11/2022] [Indexed: 12/30/2022]
Abstract
Dysfunctional social communication is one of the most stable characteristics in patients with schizophrenia spectrum disorder (SSD) that severely affects quality of life. Interpreting abstract speech and integrating nonverbal information is particularly affected. Considering the difficulty to treat communication dysfunctions with usual intervention, we investigated the possibility to apply a multimodal speech-gesture (MSG) training. In the MSG training, we offered 8 sessions (60 min each) including perceptive and expressive tasks as well as meta-learning elements and transfer exercises to 29 patients with SSD. In a within-group crossover design, patients were randomized to a TAU-first (treatment as usual first, then MSG training) group (N = 20) or a MSG-first (MSG training first, then TAU only) group (N = 9), and were compared to healthy controls (N = 17). Outcomes were quality of life and related changes in the neural processing of abstract speech-gesture information, which were measured pre-post training through standardized psychological questionnaires and functional Magnetic Resonance Imaging, respectively. Pre-training, patients showed reduced quality of life as compared to controls but improved significantly during the training. Strikingly, this improvement was correlated with neural activation changes in the middle temporal gyrus for the processing of abstract multimodal content. Improvement during training, self-report measures and ratings of relatives confirmed the MSG-related changes. Together, we provide first promising results of a novel multimodal speech-gesture training for patients with schizophrenia. We could link training induced changes in speech-gesture processing to changes in quality of life, demonstrating the relevance of intact communication skills and gesture processing for well-being.
Collapse
Affiliation(s)
- Lydia Riedl
- Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Philipps-University, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg and Justus Liebig University, Giessen, Germany.
| | - Arne Nagels
- Department of English and Linguistics, Johannes-Gutenberg-University, Mainz, Germany
| | - Gebhard Sammer
- Department of Psychiatry and Psychotherapy, Justus-Liebig-University, Giessen, Germany
| | - Momoko Choudhury
- Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Philipps-University, Marburg, Germany
| | - Annika Nonnenmann
- Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Philipps-University, Marburg, Germany
| | - Anne Sütterlin
- Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Philipps-University, Marburg, Germany
| | - Chiara Feise
- Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Philipps-University, Marburg, Germany
| | - Maxi Haslach
- Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Philipps-University, Marburg, Germany
| | - Florian Bitsch
- Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Philipps-University, Marburg, Germany
| | - Benjamin Straube
- Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Philipps-University, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg and Justus Liebig University, Giessen, Germany
| |
Collapse
|
7
|
Pavlidou A, Chapellier V, Maderthaner L, von Känel S, Walther S. Using dynamic point light display stimuli to assess gesture deficits in schizophrenia. Schizophr Res Cogn 2022; 28:100240. [PMID: 35242609 PMCID: PMC8866720 DOI: 10.1016/j.scog.2022.100240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/29/2022]
Abstract
Background Gesture deficits are ubiquitous in schizophrenia patients contributing to poor social communication and functional outcome. Given the dynamic nature of social communications, the current study aimed to explore the underlying socio-cognitive processes associated with point-light-displays (PLDs) of communicative gestures in the absence of any other confounding visual characteristics, and compare them to other well-established stimuli of gestures such as pictures by examining their association with symptom severity and motor-cognitive modalities. Methods We included 39-stable schizophrenia outpatients and 27-age-gender matched controls and assessed gesture processing using two tasks. The first task used static stimuli of pictures of a person performing a gesture. The limbs executing the gesture were missing and participants' task was to choose the correct gesture from three-options provided. The second task included videos of dynamic PLDs interacting with each other. One PLD performed communicative gestures, while the other PLD imitated/followed these performed gestures. Participants had to indicate, which of the two PLDs was imitating/following the other. Additionally, we evaluated symptom severity, as well as, motor and cognitive parameters. Results Patients underperformed in both gesture tasks compared to controls. Task performance for static stimuli was associated with blunted affect, motor coordination and sequencing domains, while PLD performance was associated with expressive gestures and sensory integration processes. Discussion Gesture representations of static and dynamic stimuli are associated with distinct processes contributing to poor social communication in schizophrenia, requiring novel therapeutic interventions. Such stimuli can easily be applied remotely for screening socio-cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Anastasia Pavlidou
- Corresponding author at: Psychiatric Services University of Bern, University Hospital of Psychiatry and Psychotherapy, Division of Systems Neuroscience of Psychopathology, Translational Research Center, Bollingerstr. 111, CH-3000 Bern 60, Switzerland.
| | | | | | | | | |
Collapse
|
8
|
Cuevas P, He Y, Steines M, Straube B. The Processing of Semantic Complexity and Cospeech Gestures in Schizophrenia: A Naturalistic, Multimodal fMRI Study. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac026. [PMID: 39144758 PMCID: PMC11205911 DOI: 10.1093/schizbullopen/sgac026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Schizophrenia is marked by aberrant processing of complex speech and gesture, which may contribute functionally to its impaired social communication. To date, extant neuroscientific studies of schizophrenia have largely investigated dysfunctional speech and gesture in isolation, and no prior research has examined how the two communicative channels may interact in more natural contexts. Here, we tested if patients with schizophrenia show aberrant neural processing of semantically complex story segments, and if speech-associated gestures (co-speech gestures) might modulate this effect. In a functional MRI study, we presented to 34 participants (16 patients and 18 matched-controls) an ecologically-valid retelling of a continuous story, performed via speech and spontaneous gestures. We split the entire story into ten-word segments, and measured the semantic complexity for each segment with idea density, a linguistic measure that is commonly used clinically to evaluate aberrant language dysfunction at the semantic level. Per segment, the presence of numbers of gestures varied (n = 0, 1, +2). Our results suggest that, in comparison to controls, patients showed reduced activation for more complex segments in the bilateral middle frontal and inferior parietal regions. Importantly, this neural aberrance was normalized in segments presented with gestures. Thus, for the first time with a naturalistic multimodal stimulation paradigm, we show that gestures reduced group differences when processing a natural story, probably by facilitating the processing of semantically complex segments of the story in schizophrenia.
Collapse
Affiliation(s)
- Paulina Cuevas
- Translational Neuroimaging Lab Marburg, Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Marburg, Germany
| | - Yifei He
- Translational Neuroimaging Lab Marburg, Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Marburg, Germany
| | - Miriam Steines
- Translational Neuroimaging Lab Marburg, Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Marburg, Germany
| | - Benjamin Straube
- Translational Neuroimaging Lab Marburg, Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Marburg, Germany
| |
Collapse
|
9
|
Năstase MG, Vlaicu I, Trifu SC, Trifu SC. Genetic polymorphism and neuroanatomical changes in schizophrenia. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:307-322. [PMID: 36374137 PMCID: PMC9801677 DOI: 10.47162/rjme.63.2.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The article is a review of the latest meta-analyses regarding the genetic spectrum in schizophrenia, discussing the risks given by the disrupted-in-schizophrenia 1 (DISC1), catechol-O-methyltransferase (COMT), monoamine oxidases-A∕B (MAO-A∕B), glutamic acid decarboxylase 67 (GAD67) and neuregulin 1 (NRG1) genes, and dysbindin-1 protein. The DISC1 polymorphism significantly increases the risk of schizophrenia, as well injuries from the prefrontal cortex that affect connectivity. NRG1 is one of the most important proteins involved. Its polymorphism is associated with the reduction of areas in the corpus callosum, right uncinate, inferior lateral fronto-occipital fascicle, right external capsule, fornix, right optic tract, gyrus. NRG1 and the ErbB4 receptor (tyrosine kinase receptor) are closely related to the N-methyl-D-aspartate receptor (NMDAR) (glutamate receptor). COMT is located on chromosome 22 and together with interleukin-10 (IL-10) have an anti-inflammatory and immunosuppressive function that influences the dopaminergic system. MAO gene methylation has been associated with mental disorders. MAO-A is a risk gene in the onset of schizophrenia, more precisely a certain type of single-nucleotide polymorphism (SNP), at the gene level, is associated with schizophrenia. In schizophrenia, we find deficits of the γ-aminobutyric acid (GABA)ergic neurotransmitter, the dysfunctions being found predominantly at the level of the substantia nigra. In schizophrenia, missing an allele at GAD67, caused by a SNP, has been correlated with decreases in parvalbumin (PV), somatostatin receptor (SSR), and GAD ribonucleic acid (RNA). Resulting in the inability to mature PV and SSR neurons, which has been associated with hyperactivity.
Collapse
Affiliation(s)
- Mihai Gabriel Năstase
- Department of Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania;
| | - Ilinca Vlaicu
- Department of Psychiatry, Hospital for Psychiatry, Săpunari, Călăraşi County, Romania
| | - Simona Corina Trifu
- Department of Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | |
Collapse
|