1
|
Hamilton HK, Mathalon DH, Ford JM. P300 in schizophrenia: Then and now. Biol Psychol 2024; 187:108757. [PMID: 38316196 PMCID: PMC11686549 DOI: 10.1016/j.biopsycho.2024.108757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
The 1965 discovery of the P300 component of the electroencephalography (EEG)-based event-related potential (ERP), along with the subsequent identification of its alteration in people with schizophrenia, initiated over 50 years of P300 research in schizophrenia. Here, we review what we now know about P300 in schizophrenia after nearly six decades of research. We describe recent efforts to expand our understanding of P300 beyond its sensitivity to schizophrenia itself to its potential role as a biomarker of risk for psychosis or a heritable endophenotype that bridges genetic risk and psychosis phenomenology. We also highlight efforts to move beyond a syndrome-based approach to understand P300 within the context of the clinical, cognitive, and presumed pathophysiological heterogeneity among people diagnosed with schizophrenia. Finally, we describe several recent approaches that extend beyond measuring the traditional P300 ERP component in people with schizophrenia, including time-frequency analyses and pharmacological challenge studies, that may help to clarify specific cognitive mechanisms that are disrupted in schizophrenia. Moreover, we discuss several promising areas for future research, including studies of animal models that can be used for treatment development.
Collapse
Affiliation(s)
- Holly K Hamilton
- University of Minnesota, Department of Psychiatry & Behavioral Sciences, Minneapolis, MN, USA; Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA; University of California, San Francisco, Department of Psychiatry & Behavioral Sciences, San Francisco, CA, USA; San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| | - Daniel H Mathalon
- University of California, San Francisco, Department of Psychiatry & Behavioral Sciences, San Francisco, CA, USA; San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Judith M Ford
- University of California, San Francisco, Department of Psychiatry & Behavioral Sciences, San Francisco, CA, USA; San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| |
Collapse
|
2
|
Lu Z, Wang H, Gu J, Gao F. Association between abnormal brain oscillations and cognitive performance in patients with bipolar disorder; Molecular mechanisms and clinical evidence. Synapse 2022; 76:e22247. [PMID: 35849784 DOI: 10.1002/syn.22247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
Brain oscillations have gained great attention in neuroscience during recent decades as functional building blocks of cognitive-sensory processes. Research has shown that oscillations in "alpha," "beta," "gamma," "delta," and "theta" frequency windows are highly modified in brain pathology, including in patients with cognitive impairment like bipolar disorder (BD). The study of changes in brain oscillations can provide fundamental knowledge for exploring neurophysiological biomarkers in cognitive impairment. The present article reviews findings from the role and molecular basis of abnormal neural oscillation and synchronization in the symptoms of patients with BD. An overview of the results clearly demonstrates that, in cognitive-sensory processes, resting and evoked/event-related electroencephalogram (EEG) spectra in the delta, theta, alpha, beta, and gamma bands are abnormally changed in patients with BD showing psychotic features. Abnormal oscillations have been found to be associated with several neural dysfunctions and abnormalities contributing to BD, including abnormal GABAergic neurotransmission signaling, hippocampal cell discharge, abnormal hippocampal neurogenesis, impaired cadherin and synaptic contact-based cell adhesion processes, extended lateral ventricles, decreased prefrontal cortical gray matter, and decreased hippocampal volume. Mechanistically, impairment in calcium voltage-gated channel subunit alpha1 I, neurotrophic tyrosine receptor kinase proteins, genes involved in brain neurogenesis and synaptogenesis like WNT3 and ACTG2, genes involved in the cell adhesion process like CDH12 and DISC1, and gamma-aminobutyric acid (GABA) signaling have been reported as the main molecular contributors to the abnormalities in resting-state low-frequency oscillations in BD patients. Findings also showed the association of impaired synaptic connections and disrupted membrane potential with abnormal beta/gamma oscillatory activity in patients with BD. Of note, the synaptic GABA neurotransmitter has been found to be a fundamental requirement for the occurrence of long-distance synchronous gamma oscillations necessary for coordinating the activity of neural networks between various brain regions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhou Lu
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Huixiao Wang
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Jiajie Gu
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Feng Gao
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| |
Collapse
|
3
|
Liu CM, Liu YL, Hwu HG, Fann CSJ, Yang UC, Hsu PC, Chang CC, Chen WJ, Hwang TJ, Hsieh MH, Liu CC, Chien YL, Lin YT, Tsuang MT. Genetic associations and expression of extra-short isoforms of disrupted-in-schizophrenia 1 in a neurocognitive subgroup of schizophrenia. J Hum Genet 2019; 64:653-663. [PMID: 30976040 DOI: 10.1038/s10038-019-0597-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 01/20/2023]
Abstract
Disrupted-in-schizophrenia 1 (DISC1) was reported to be associated with schizophrenia. In a previous study, we found significant association with schizophrenia patients with deficient sustained attention assessed by continuous performance test (CPT). This study aimed to identify risk polymorphisms in this specific neurocognitive subgroup and investigate the expression of different isoforms of DISC1. A total of 83 genetic variants were identified through direct sequencing in 50 controls and 100 schizophrenia patients. Fourteen variants were genotyped in 600 controls and 912 patients. Patients were subgrouped by familial loading (multiplex or simplex) and performance on CPT. The frequency of AA genotype of rs11122324 at the 3'-UTR of Es and Esv1 isoforms and of rs2793091 at intron 4 were significantly higher in multiplex schizophrenia patients than those in controls (corrected p < 0.05). In further subgrouping, the frequency of AA genotype of the two SNPs were significantly higher in multiplex schizophrenia patients with deficient sustained attention than those in controls (corrected p < 0.005). The mRNA expression levels of two extra-short isoforms (Es and Esv1) in the EBV-transformed lymphocytes of schizophrenia were significantly higher than those of controls. Luciferase reporter assays demonstrated that the A-allele of rs11122324 significantly upregulated DISC1 extra-short isoforms transcription compared with the G-allele. We found two SNPs (rs11122324 and rs2793091) of DISC1 may be specifically associated with multiplex schizophrenia patients with deficient sustained attention. The SNP rs11122324 may be a risk polymorphism, which may have functional influence on the transcription of Es and Esv1 through increasing their expression.
Collapse
Affiliation(s)
- Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan. .,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Ueng-Cheng Yang
- Institute of Bioinformatics, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chun Hsu
- Institute of Bioinformatics, National Yang-Ming University, Taipei, Taiwan
| | | | - Wei J Chen
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tzung-Jeng Hwang
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Ming H Hsieh
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Chung Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Tin Lin
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming T Tsuang
- Center for Behavioral Genomics, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Harvard Departments of Epidemiology and Psychiatry, Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
4
|
Blakey R, Ranlund S, Zartaloudi E, Cahn W, Calafato S, Colizzi M, Crespo-Facorro B, Daniel C, Díez-Revuelta Á, Di Forti M, GROUP, Iyegbe C, Jablensky A, Jones R, Hall MH, Kahn R, Kalaydjieva L, Kravariti E, Lin K, McDonald C, McIntosh AM, PEIC, Picchioni M, Powell J, Presman A, Rujescu D, Schulze K, Shaikh M, Thygesen JH, Toulopoulou T, Van Haren N, Van Os J, Walshe M, WTCCC2, Murray RM, Bramon E. Associations between psychosis endophenotypes across brain functional, structural, and cognitive domains. Psychol Med 2018; 48:1325-1340. [PMID: 29094675 PMCID: PMC6516747 DOI: 10.1017/s0033291717002860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND A range of endophenotypes characterise psychosis, however there has been limited work understanding if and how they are inter-related. METHODS This multi-centre study includes 8754 participants: 2212 people with a psychotic disorder, 1487 unaffected relatives of probands, and 5055 healthy controls. We investigated cognition [digit span (N = 3127), block design (N = 5491), and the Rey Auditory Verbal Learning Test (N = 3543)], electrophysiology [P300 amplitude and latency (N = 1102)], and neuroanatomy [lateral ventricular volume (N = 1721)]. We used linear regression to assess the interrelationships between endophenotypes. RESULTS The P300 amplitude and latency were not associated (regression coef. -0.06, 95% CI -0.12 to 0.01, p = 0.060), and P300 amplitude was positively associated with block design (coef. 0.19, 95% CI 0.10-0.28, p 0.38). All the cognitive endophenotypes were associated with each other in the expected directions (all p < 0.001). Lastly, the relationships between pairs of endophenotypes were consistent in all three participant groups, differing for some of the cognitive pairings only in the strengths of the relationships. CONCLUSIONS The P300 amplitude and latency are independent endophenotypes; the former indexing spatial visualisation and working memory, and the latter is hypothesised to index basic processing speed. Individuals with psychotic illnesses, their unaffected relatives, and healthy controls all show similar patterns of associations between endophenotypes, endorsing the theory of a continuum of psychosis liability across the population.
Collapse
Affiliation(s)
- R. Blakey
- Division of Psychiatry, University College London, London, UK
| | - S. Ranlund
- Division of Psychiatry, University College London, London, UK
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - E. Zartaloudi
- Division of Psychiatry, University College London, London, UK
| | - W. Cahn
- Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S. Calafato
- Division of Psychiatry, University College London, London, UK
| | - M. Colizzi
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - B. Crespo-Facorro
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria–IDIVAL, Santander, Spain
| | - C. Daniel
- Division of Psychiatry, University College London, London, UK
| | - Á. Díez-Revuelta
- Division of Psychiatry, University College London, London, UK
- Laboratory of Cognitive and Computational Neuroscience – Centre for Biomedical Technology (CTB), Complutense University and Technical University of Madrid, Madrid, Spain
| | - M. Di Forti
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | | | - C. Iyegbe
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - A. Jablensky
- Centre for Clinical Research in Neuropsychiatry, The University of Western Australia, Perth, Western Australia, Australia
| | - R. Jones
- Division of Psychiatry, University College London, London, UK
| | - M.-H. Hall
- Psychology Research Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - R. Kahn
- Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L. Kalaydjieva
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - E. Kravariti
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - K. Lin
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - C. McDonald
- Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, Ireland
| | - A. M. McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK
| | | | - M. Picchioni
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - J. Powell
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - A. Presman
- Division of Psychiatry, University College London, London, UK
| | - D. Rujescu
- Department of Psychiatry, Ludwig-Maximilians University of Munich, Munich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Halle Wittenberg, Halle, Germany
| | - K. Schulze
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - M. Shaikh
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
- North East London Foundation Trust, London, UK
| | - J. H. Thygesen
- Division of Psychiatry, University College London, London, UK
| | - T. Toulopoulou
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychology, Bilkent University, Main Campus, Bilkent, Ankara, Turkey
- Department of Psychology, the University of Hong Kong, Pokfulam Rd, Hong Kong SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, The Hong Kong Jockey Club Building for Interdisciplinary Research, Hong Kong SAR, China
| | - N. Van Haren
- Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. Van Os
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychiatry and Psychology, Maastricht University Medical Centre, EURON, Maastricht, The Netherlands
| | - M. Walshe
- Division of Psychiatry, University College London, London, UK
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | | | - R. M. Murray
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
| | - E. Bramon
- Division of Psychiatry, University College London, London, UK
- Institute of Psychiatry Psychology and Neuroscience at King’s College London and South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
5
|
Gene polymorphisms of DISC1 is associated with schizophrenia: Evidence from a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:64-73. [PMID: 29031911 DOI: 10.1016/j.pnpbp.2017.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/08/2017] [Accepted: 10/08/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Previous studies suggest an association between Disrupted in schizophrenia 1 (DISC1) polymorphisms and schizophrenia (SCZ). However, the available data are often inconsistent, regarding the difference in sample size, ethnicity, genotyping method, etc. Thus, we carried out a meta-analysis to determine whether DISC1 polymorphisms contributed susceptibility to SCZ. METHODS A methodical literature review was operated using the English and Chinese core electronic databases. Odds ratios (ORs) with 95% confidence intervals (CIs) were applied to determine the correlation between DISC1 gene polymorphisms and SCZ susceptibility. Subgroup analyses were carried out by stratification of ethnicity. P values were Bonferroni adjusted to account for multiple testing. Publication bias was evaluated by funnel plots, Egger's test and the trim and fill method. RESULTS Meta-analyses results suggested that DISC1 polymorphisms (rs821616 and rs821597) increased SCZ risk in overall populations. In subgroups of ethnicity, DISC1 polymorphisms (rs821616 and rs821597) was associated with susceptibility to SCZ among the Chinese population (for rs821616: TT+AT vs. AA: OR=1.338, 95% CI=1.124-1.592, P=0.001; T vs. A: OR=1.300, 95% CI=1.124-1.504, P<0.000; for rs821597: AA+AG vs. GG: OR=1.508, 95% CI=1.268-1.794, P<0.001; A vs. G: OR=1.345, 95% CI=1.184-1.527, P<0.001). A positive correlation was also observed between the single marker rs821616 and SCZ among the Japanese population in the recessive model (TT vs. AT+AA: OR=1.524, 95% CI=1.185-1.959, P=0.001). There was no significant relationship between other DISC1 polymorphisms (rs3738401, rs2273890, rs3738398, rs3738402, rs2492367, rs843979, rs3737597, rs4658971, rs1538979, rs1000731 and rs3738399) and SCZ. CONCLUSIONS DISC1 polymorphisms increased a risk of SCZ, especially in the Chinese population. In order to further corroborate our findings, large well-designed epidemiological studies are needed.
Collapse
|
6
|
Smith AK, Jovanovic T, Kilaru V, Lori A, Gensler L, Lee SS, Norrholm SD, Massa N, Cuthbert B, Bradley B, Ressler KJ, Duncan E. A Gene-Based Analysis of Acoustic Startle Latency. Front Psychiatry 2017; 8:117. [PMID: 28729842 PMCID: PMC5498475 DOI: 10.3389/fpsyt.2017.00117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022] Open
Abstract
Latency of the acoustic startle response is the time required from the presentation of startling auditory stimulus until the startle response is elicited and provides an index of neural processing speed. Latency is prolonged in subjects with schizophrenia compared to controls in some but not all studies and is 68-90% heritable in baseline startle trials. In order to determine the genetic association with latency as a potential inroad into genetically based vulnerability to psychosis, we conducted a gene-based study of latency followed by an independent replication study of significant gene findings with a single-nucleotide polymorphism (SNP)-based analysis of schizophrenia and control subjects. 313 subjects from an urban population of low socioeconomic status with mixed psychiatric diagnoses were included in the gene-based study. Startle testing was conducted using a Biopac M150 system according to our published methods. Genotyping was performed with the Omni-Quad 1M or the Omni Express BeadChip. The replication study was conducted on 154 schizophrenia subjects and 123 psychiatric controls. Genetic analyses were conducted with Illumina Human Omni1-Quad and OmniExpress BeadChips. Twenty-nine SNPs were selected from four genes that were significant in the gene-based analysis and also associated with startle and/or schizophrenia in the literature. Linear regressions on latency were conducted, controlling for age, race, and diagnosis as a dichotomous variable. In the gene-based study, 2,870 genes demonstrated the evidence of association after correction for multiple comparisons (false discovery rate < 0.05). Pathway analysis of these genes revealed enrichment for relevant biological processes including neural transmission (p = 0.0029), synaptic transmission (p = 0.0032), and neuronal development (p = 0.024). The subsequent SNP-based replication analysis revealed a strong association of onset latency with the SNP rs901561 on the neuregulin gene (NRG1) in an additive model (beta = 0.21, p = 0.001), indicating that subjects with the AA and AG genotypes had slower mean latency than subjects with GG genotype. In conclusion, startle latency, a highly heritable measure that is slowed in schizophrenia, may be a useful biological probe for genetic contributions to psychotic disorders. Our analyses in two independent populations point to a significant prediction of startle latency by genetic variation in NRG1.
Collapse
Affiliation(s)
- Alicia K. Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Varun Kilaru
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Lauren Gensler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Samuel S. Lee
- Department of Emergency Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Nicholas Massa
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Bruce Cuthbert
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Erica Duncan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| |
Collapse
|
7
|
Nair AK, Sasidharan A, John JP, Mehrotra S, Kutty BM. Assessing Neurocognition via Gamified Experimental Logic: A Novel Approach to Simultaneous Acquisition of Multiple ERPs. Front Neurosci 2016; 10:1. [PMID: 26858586 PMCID: PMC4731489 DOI: 10.3389/fnins.2016.00001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/04/2016] [Indexed: 11/25/2022] Open
Abstract
The present study describes the development of a neurocognitive paradigm: “Assessing Neurocognition via Gamified Experimental Logic” (ANGEL), for performing the parametric evaluation of multiple neurocognitive functions simultaneously. ANGEL employs an audiovisual sensory motor design for the acquisition of multiple event related potentials (ERPs)—the C1, P50, MMN, N1, N170, P2, N2pc, LRP, P300, and ERN. The ANGEL paradigm allows assessment of 10 neurocognitive variables over the course of three “game” levels of increasing complexity ranging from simple passive observation to complex discrimination and response in the presence of multiple distractors. The paradigm allows assessment of several levels of rapid decision making: speeded up response vs. response-inhibition; responses to easy vs. difficult tasks; responses based on gestalt perception of clear vs. ambiguous stimuli; and finally, responses with set shifting during challenging tasks. The paradigm has been tested using 18 healthy participants from both sexes and the possibilities of varied data analyses have been presented in this paper. The ANGEL approach provides an ecologically valid assessment (as compared to existing tools) that quickly yields a very rich dataset and helps to assess multiple ERPs that can be studied extensively to assess cognitive functions in health and disease conditions.
Collapse
Affiliation(s)
- Ajay K Nair
- Department of Neurophysiology, National Institute of Mental Health and Neuro SciencesBengaluru, India; Multimodal Brain Image Analysis Laboratory, National Institute of Mental Health and Neuro SciencesBengaluru, India
| | - Arun Sasidharan
- Department of Neurophysiology, National Institute of Mental Health and Neuro SciencesBengaluru, India; Multimodal Brain Image Analysis Laboratory, National Institute of Mental Health and Neuro SciencesBengaluru, India
| | - John P John
- Multimodal Brain Image Analysis Laboratory, National Institute of Mental Health and Neuro SciencesBengaluru, India; Department of Psychiatry, National Institute of Mental Health and Neuro SciencesBengaluru, India; Department of Clinical Neurosciences, National Institute of Mental Health and Neuro SciencesBengaluru, India
| | - Seema Mehrotra
- Department of Clinical Psychology, National Institute of Mental Health and Neuro Sciences Bengaluru, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences Bengaluru, India
| |
Collapse
|
8
|
Ranlund S, Adams RA, Díez Á, Constante M, Dutt A, Hall MH, Maestro Carbayo A, McDonald C, Petrella S, Schulze K, Shaikh M, Walshe M, Friston K, Pinotsis D, Bramon E. Impaired prefrontal synaptic gain in people with psychosis and their relatives during the mismatch negativity. Hum Brain Mapp 2015; 37:351-65. [PMID: 26503033 PMCID: PMC4843949 DOI: 10.1002/hbm.23035] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/30/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022] Open
Abstract
The mismatch negativity (MMN) evoked potential, a preattentive brain response to a discriminable change in auditory stimulation, is significantly reduced in psychosis. Glutamatergic theories of psychosis propose that hypofunction of NMDA receptors (on pyramidal cells and inhibitory interneurons) causes a loss of synaptic gain control. We measured changes in neuronal effective connectivity underlying the MMN using dynamic causal modeling (DCM), where the gain (excitability) of superficial pyramidal cells is explicitly parameterised. EEG data were obtained during a MMN task—for 24 patients with psychosis, 25 of their first‐degree unaffected relatives, and 35 controls—and DCM was used to estimate the excitability (modeled as self‐inhibition) of (source‐specific) superficial pyramidal populations. The MMN sources, based on previous research, included primary and secondary auditory cortices, and the right inferior frontal gyrus. Both patients with psychosis and unaffected relatives (to a lesser degree) showed increased excitability in right inferior frontal gyrus across task conditions, compared to controls. Furthermore, in the same region, both patients and their relatives showed a reversal of the normal response to deviant stimuli; that is, a decrease in excitability in comparison to standard conditions. Our results suggest that psychosis and genetic risk for the illness are associated with both context‐dependent (condition‐specific) and context‐independent abnormalities of the excitability of superficial pyramidal cell populations in the MMN paradigm. These abnormalities could relate to NMDA receptor hypofunction on both pyramidal cells and inhibitory interneurons, and appear to be linked to the genetic aetiology of the illness, thereby constituting potential endophenotypes for psychosis. Hum Brain Mapp 37:351–365, 2016. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Siri Ranlund
- Division of Psychiatry, University College London, London, United Kingdom
| | - Rick A Adams
- Division of Psychiatry, University College London, London, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Álvaro Díez
- Division of Psychiatry, University College London, London, United Kingdom
| | - Miguel Constante
- Department of Psychiatry, Hospital Beatriz Angelo, Lisbon, Portugal
| | - Anirban Dutt
- The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Mei-Hua Hall
- Psychology Research Laboratory, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| | - Amparo Maestro Carbayo
- The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Colm McDonald
- Department of Psychiatry, Clinical Science Institute, National University of Ireland, Galway, Ireland
| | - Sabrina Petrella
- The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.,Department of Psychiatry, Clinical and Experimental Science Institute, University of Foggia, Italy
| | - Katja Schulze
- The South London and Maudsley NHS Foundation Trust, University Hospital Lewisham, London, United Kingdom
| | - Madiha Shaikh
- The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.,Neuroepidemiology and Ageing Research Unit, Imperial College, London, United Kingdom
| | - Muriel Walshe
- Division of Psychiatry, University College London, London, United Kingdom.,The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Dimitris Pinotsis
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
9
|
Malone SM, Vaidyanathan U, Basu S, Miller MB, McGue M, Iacono WG. Heritability and molecular-genetic basis of the P3 event-related brain potential: a genome-wide association study. Psychophysiology 2015; 51:1246-58. [PMID: 25387705 DOI: 10.1111/psyp.12345] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
P3 amplitude is a candidate endophenotype for disinhibitory psychopathology, psychosis, and other disorders. The present study is a comprehensive analysis of the behavioral- and molecular-genetic basis of P3 amplitude and a P3 genetic factor score in a large community sample (N = 4,211) of adolescent twins and their parents, genotyped for 527,829 single nucleotide polymorphisms (SNPs). Biometric models indicated that as much as 65% of the variance in each measure was due to additive genes. All SNPs in aggregate accounted for approximately 40% to 50% of the heritable variance. However, analyses of individual SNPs did not yield any significant associations. Analyses of individual genes did not confirm previous associations between P3 amplitude and candidate genes but did yield a novel association with myelin expression factor 2 (MYEF2). Main effects of individual variants may be too small to be detected by GWAS without larger samples.
Collapse
Affiliation(s)
- Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
10
|
Multivariate genetic determinants of EEG oscillations in schizophrenia and psychotic bipolar disorder from the BSNIP study. Transl Psychiatry 2015; 5:e588. [PMID: 26101851 PMCID: PMC4490286 DOI: 10.1038/tp.2015.76] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 01/18/2023] Open
Abstract
Schizophrenia (SZ) and psychotic bipolar disorder (PBP) are disabling psychiatric illnesses with complex and unclear etiologies. Electroencephalogram (EEG) oscillatory abnormalities in SZ and PBP probands are heritable and expressed in their relatives, but the neurobiology and genetic factors mediating these abnormalities in the psychosis dimension of either disorder are less explored. We examined the polygenic architecture of eyes-open resting state EEG frequency activity (intrinsic frequency) from 64 channels in 105 SZ, 145 PBP probands and 56 healthy controls (HCs) from the multisite BSNIP (Bipolar-Schizophrenia Network on Intermediate Phenotypes) study. One million single-nucleotide polymorphisms (SNPs) were derived from DNA. We assessed eight data-driven EEG frequency activity derived from group-independent component analysis (ICA) in conjunction with a reduced subset of 10,422 SNPs through novel multivariate association using parallel ICA (para-ICA). Genes contributing to the association were examined collectively using pathway analysis tools. Para-ICA extracted five frequency and nine SNP components, of which theta and delta activities were significantly correlated with two different gene components, comprising genes participating extensively in brain development, neurogenesis and synaptogenesis. Delta and theta abnormality was present in both SZ and PBP, while theta differed between the two disorders. Theta abnormalities were also mediated by gene clusters involved in glutamic acid pathways, cadherin and synaptic contact-based cell adhesion processes. Our data suggest plausible multifactorial genetic networks, including novel and several previously identified (DISC1) candidate risk genes, mediating low frequency delta and theta abnormalities in psychoses. The gene clusters were enriched for biological properties affecting neural circuitry and involved in brain function and/or development.
Collapse
|
11
|
Guerra López S, Martín Reyes M, Pedroso Rodríguez MDLÁ, Reyes Berazain A, Mendoza Quiñones R, Bravo Collazo TM, Días de Villarvilla T, Machado Cano MJ, Bobés León MA. [Evoked potentials N200/P300 disorders and clinical phenotype in Cuban families with paranoid schizophrenia: a family-based association study]. Medwave 2015; 15:e6112. [PMID: 25919584 DOI: 10.5867/medwave.2015.03.6112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/17/2015] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION N200 and P300 event-related evoked potentials provide sensitive measurements of sensory and cognitive function and have been used to study information processing in patients with schizophrenia and their unaffected first-degree relatives. Reduced amplitude and increased latency of N200 and P300 potentials have been consistently reported in schizophrenia. Thus, event-related evoked potentials abnormalities are promising possible biological markers for genetic vulnerability to schizophrenia. OBJECTIVE To assess the association of changes in latency, amplitude and topographic distribution of potentials N200 and P300 of patients with paranoid schizophrenia and their healthy first-degree relatives, in families with schizophrenia multiplex. METHODOLOGY We measured latency and amplitude of the N200 and P300 component of evoked potentials using an auditory odd-ball paradigm in 25 schizophrenic patients (probands) from 60 families multiply affected with paranoid schizophrenia, 23 of their non-schizophrenic first-degree relatives and 25 unrelated healthy controls, through a study of family association. RESULTS Schizophrenic patients and their relatives showed significant latency prolongation and amplitude reduction of the N200 and P300 waves compared to controls. Left-temporal as compared to right-temporal N200 and P300 were significantly smaller in schizophrenic patients and their non-schizophrenic first-degree relatives than in controls. Our results suggest that event-related evoked potentials abnormalities may serve as markers of genetic vulnerability in schizophrenia. CONCLUSIONS Confirming results of other researchers, this present study suggests that latency prolongation and amplitude reduction of the N200 and P300 waves and an altered topography at temporal sites may be a trait marker of paranoid schizophrenia.
Collapse
Affiliation(s)
- Seidel Guerra López
- Universidad Nacional del Este, Alto Paraná, Paraguay. Universidad de Integración Latinoamericana, Foz de Iguazú, Paraná, Brasil. Adress: Km. 16 Acaray, Avda. Mcal. López entre Mcal. Estigarribia y Padre Moleón, Minga Guazú Paraguay.
| | - Migdyrai Martín Reyes
- Clínica de Rehabilitación de Salud Mental, Servicio Navarro de Salud, Pamplona, Navarra, España
| | | | | | - Raúl Mendoza Quiñones
- Departamento de Neurociencias de Cuba, Centro de Neurociencias de Cuba, La Habana, Cuba
| | | | | | | | | |
Collapse
|
12
|
Wu CH, Hwang TJ, Chen YJ, Hsu YC, Lo YC, Liu CM, Hwu HG, Liu CC, Hsieh MH, Chien YL, Chen CM, Tseng WYI. Altered integrity of the right arcuate fasciculus as a trait marker of schizophrenia: a sibling study using tractography-based analysis of the whole brain. Hum Brain Mapp 2014; 36:1065-76. [PMID: 25366810 DOI: 10.1002/hbm.22686] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 10/08/2014] [Accepted: 10/27/2014] [Indexed: 11/08/2022] Open
Abstract
Trait markers of schizophrenia aid the dissection of the heterogeneous phenotypes into distinct subtypes and facilitate the genetic underpinning of the disease. The microstructural integrity of the white matter tracts could serve as a trait marker of schizophrenia, and tractography-based analysis (TBA) is the current method of choice. Manual tractography is time-consuming and limits the analysis to preselected fiber tracts. Here, we sought to identify a trait marker of schizophrenia from among 74 fiber tracts across the whole brain using a novel automatic TBA method. Thirty-one patients with schizophrenia, 31 unaffected siblings and 31 healthy controls were recruited to undergo diffusion spectrum magnetic resonance imaging at 3T. Generalized fractional anisotropy (GFA), an index reflecting tract integrity, was computed for each tract and compared among the three groups. Ten tracts were found to exhibit significant differences between the groups with a linear, stepwise order from controls to siblings to patients; they included the right arcuate fasciculus, bilateral fornices, bilateral auditory tracts, left optic radiation, the genu of the corpus callosum, and the corpus callosum to the bilateral dorsolateral prefrontal cortices, bilateral temporal poles, and bilateral hippocampi. Posthoc between-group analyses revealed that the GFA of the right arcuate fasciculus was significantly decreased in both the patients and unaffected siblings compared to the controls. Furthermore, the GFA of the right arcuate fasciculus exhibited a trend toward positive symptom scores. In conclusion, the right arcuate fasciculus may be a candidate trait marker and deserves further study to verify any genetic association.
Collapse
Affiliation(s)
- Chen-Hao Wu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Center for Optoelectronic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ranlund S, Nottage J, Shaikh M, Dutt A, Constante M, Walshe M, Hall MH, Friston K, Murray R, Bramon E. Resting EEG in psychosis and at-risk populations--a possible endophenotype? Schizophr Res 2014; 153:96-102. [PMID: 24486144 PMCID: PMC3969576 DOI: 10.1016/j.schres.2013.12.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/25/2013] [Accepted: 12/27/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND Finding reliable endophenotypes for psychosis could lead to an improved understanding of aetiology, and provide useful alternative phenotypes for genetic association studies. Resting quantitative electroencephalography (QEEG) activity has been shown to be heritable and reliable over time. However, QEEG research in patients with psychosis has shown inconsistent and even contradictory findings, and studies of at-risk populations are scarce. Hence, this study aimed to investigate whether resting QEEG activity represents a candidate endophenotype for psychosis. METHOD QEEG activity at rest was compared in four frequency bands (delta, theta, alpha, and beta), between chronic patients with psychosis (N=48), first episode patients (N=46), at-risk populations ("at risk mental state", N=33; healthy relatives of patients, N=45), and healthy controls (N=107). RESULTS Results showed that chronic patients had significantly increased resting QEEG amplitudes in delta and theta frequencies compared to healthy controls. However, first episode patients and at-risk populations did not differ from controls in these frequency bands. There were no group differences in alpha or beta frequency bands. CONCLUSION Since no abnormalities were found in first episode patients, ARMS, or healthy relatives, resting QEEG activity in the frequency bands examined is unlikely to be related to genetic predisposition to psychosis. Rather than endophenotypes, the low frequency abnormalities observed in chronic patients are probably related to illness progression and/or to the long-term effects of treatments.
Collapse
Affiliation(s)
- Siri Ranlund
- Mental Health Sciences Unit & Institute of Cognitive Neuroscience, University College London, W1W 7EJ, United Kingdom.
| | - Judith Nottage
- NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, WC2R 2LS, United Kingdom
| | - Madiha Shaikh
- NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, WC2R 2LS, United Kingdom; Department of Psychology, Royal Holloway, University of London, TW20 0EX, United Kingdom
| | - Anirban Dutt
- NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, WC2R 2LS, United Kingdom
| | - Miguel Constante
- Psychiatry Department, Hospital Beatriz Ângelo, 2674-514 Loures, Lisbon, Portugal
| | - Muriel Walshe
- Mental Health Sciences Unit & Institute of Cognitive Neuroscience, University College London, W1W 7EJ, United Kingdom; NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, WC2R 2LS, United Kingdom
| | - Mei-Hua Hall
- Psychology Research Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, WC1N 3BG, United Kingdom
| | - Robin Murray
- NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, WC2R 2LS, United Kingdom
| | - Elvira Bramon
- Mental Health Sciences Unit & Institute of Cognitive Neuroscience, University College London, W1W 7EJ, United Kingdom; NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, WC2R 2LS, United Kingdom
| |
Collapse
|
14
|
Sayın A, Yüksel N, Konac E, Yılmaz A, Doğan B, Tönge S, Sahiner S, Menevşe A. Effects of the adverse life events and Disrupted in Schizophrenia-1 (DISC1) gene polymorphisms on acute symptoms of schizophrenia. DNA Cell Biol 2013; 32:73-80. [PMID: 23347445 DOI: 10.1089/dna.2012.1894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to evaluate the effects of traumatic childhood events and recent adverse life events, as well as the Disrupted in Schizophrenia-1 (DISC1) gene polymorphisms on types of last acute symptoms of patients with schizophrenia. Hundred patients with schizophrenia were given the Childhood Trauma Questionnaire, the Social Readjustment Rating Scale, Scale for Assessment of Positive Symptoms (SAPS), Scale for Assessment of Negative Symptoms (SANS), Brief Psychiatric Rating Scale (BPRS), and Calgary Depression Scale for Schizophrenia (CDSS). The patients' and healthy controls' DISC1 gene was evaluated for the -274G>C, c.791G>A, and c.2110A>T polymorphisms. There was no statistically significant difference with regard to the DISC1 gene polymorphisms between patient and healthy control groups. No significant relationship was found between the -274G>C, c.791G>A, and c.2110A>T haplotypes and development of different acute symptoms of schizophrenia. Having a recent stressful life event significantly affected SAPS (95% confidence interval [CI]=-67.547, -21.473; p=0.00) and BPRS-1 scores (95% CI=-51.405, -6.885; p=0.01), whereas emotional abuse at childhood significantly affected SANS scores (95% CI=-37.300, -10.401; p=0.00). This study shows that features of acute symptoms in schizophrenia are not influenced by the polymorphisms on the DISC1 gene, but are influenced by recent adverse life events and emotional abuse at childhood.
Collapse
Affiliation(s)
- Aslıhan Sayın
- Department of Psychiatry, Medical Faculty, Gazi University, Ankara, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Thomson PA, Malavasi ELV, Grünewald E, Soares DC, Borkowska M, Millar JK. DISC1 genetics, biology and psychiatric illness. FRONTIERS IN BIOLOGY 2013; 8:1-31. [PMID: 23550053 PMCID: PMC3580875 DOI: 10.1007/s11515-012-1254-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain.
Collapse
Affiliation(s)
- Pippa A Thomson
- The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
16
|
Ethridge LE, Hamm JP, Shapiro JR, Summerfelt AT, Keedy SK, Stevens MC, Pearlson G, Tamminga CA, Boutros NN, Sweeney JA, Keshavan MS, Thaker G, Clementz BA. Neural activations during auditory oddball processing discriminating schizophrenia and psychotic bipolar disorder. Biol Psychiatry 2012; 72:766-74. [PMID: 22572033 PMCID: PMC3465513 DOI: 10.1016/j.biopsych.2012.03.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/04/2012] [Accepted: 03/10/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Reduced amplitude of the P300 event-related potential in auditory oddball tasks may characterize schizophrenia (SZ) but is also reported in bipolar disorder. Similarity of auditory processing abnormalities between these diagnoses is uncertain, given the frequent combination of both psychotic and nonpsychotic patients in bipolar samples; abnormalities may be restricted to psychosis. In addition, typically only latency and amplitude of brain responses at selected sensors and singular time points are used to characterize neural responses. Comprehensive quantification of brain activations involving both spatiotemporal and time-frequency analyses could better identify unique auditory oddball responses among patients with different psychotic disorders. METHODS Sixty SZ, 60 bipolar I with psychosis (BPP), and 60 healthy subjects (H) were compared on neural responses during an auditory oddball task using multisensor electroencephalography. Principal components analysis was used to reduce multisensor data before evaluating group differences on voltage and frequency of neural responses over time. RESULTS Linear discriminant analysis revealed five variables that best differentiated groups: 1) late beta activity to standard stimuli; 2) late beta/gamma activity to targets discriminated BPP from other groups; 3) midlatency theta/alpha activity to standards; 4) target-related voltage at the late N2 response discriminated both psychosis groups from H; and 5) target-related voltage during early N2 discriminated BPP from H. CONCLUSIONS Although the P300 significantly differentiated psychotic groups from H, it did not uniquely discriminate groups beyond the above variables. No variable uniquely discriminated SZ, perhaps indicating utility of this task for studying psychosis-associated neurophysiology generally and BPP specifically.
Collapse
Affiliation(s)
- Lauren E. Ethridge
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, GA,Department of Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA
| | - Jordan P. Hamm
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, GA,Department of Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA
| | - John R. Shapiro
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, GA
| | - Ann T. Summerfelt
- Department of Psychiatry, MPRC, University of Maryland, Baltimore, MD
| | - Sarah K. Keedy
- Department of Psychiatry, University of Illinois at Chicago, Chicago IL
| | - Michael C. Stevens
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford CT, Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven CT
| | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford CT, Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven CT
| | | | - Nash N. Boutros
- Department of Psychiatry, Wayne State University, Detroit, MI
| | - John A. Sweeney
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconness Medical Center, Harvard University, Boston MA
| | - Gunvant Thaker
- Department of Psychiatry, MPRC, University of Maryland, Baltimore, MD
| | - Brett A. Clementz
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, GA,Department of Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, Corresponding author: Brett A. Clementz, Psychology Department, Psychology Building, Baldwin Street, University of Georgia, Athens, GA 30602. , phone: 706-542-3128; fax: 706-542-3275
| |
Collapse
|
17
|
Decoster J, De Hert M, Viechtbauer W, Nagels G, Myin-Germeys I, Peuskens J, van Os J, van Winkel R. Genetic association study of the P300 endophenotype in schizophrenia. Schizophr Res 2012; 141:54-9. [PMID: 22910404 DOI: 10.1016/j.schres.2012.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Although reduced amplitude of the P300 event-related potential is a well-documented intermediate phenotype of schizophrenia, little is known about its genetic underpinnings in patients with schizophrenia. This study aims to examine associations between P300 and a range of candidate genetic variants, selected from either candidate gene studies or genome-wide association studies, in a large sample of patients with schizophrenia. METHODS P300 amplitude at the midline parietal electrode and 193 single nucleotide polymorphisms (SNPs) in 67 genes were assessed in 336 patients with schizophrenia. The association between each SNP and P300 amplitude, controlled for illness duration and gender, was evaluated. Associations at p<.01 were considered of potential relevance, while Bonferroni correction was applied to determine formal statistical significance (Bonferroni-corrected threshold of significance p=.0003). RESULTS Of the 193 selected SNPs, 4 SNPs showed potentially relevant association with P300 amplitude at a significance level of p<.01. One of these SNPs, rs1045642 in ABCB1, was most convincingly associated with P300 amplitude, reaching formal (Bonferroni-corrected) significance, while there was evidence for possible association with rs1572899 in DISC-1, rs6265 in BDNF and rs1625579 in MIR137. CONCLUSION Genetic variation in ABCB1 may be associated with P300 amplitude in patients with schizophrenia. This result may encourage further efforts to elucidate the genetic underpinnings of P300 generation.
Collapse
Affiliation(s)
- Jeroen Decoster
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO BOX 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Malavasi ELV, Ogawa F, Porteous DJ, Millar JK. DISC1 variants 37W and 607F disrupt its nuclear targeting and regulatory role in ATF4-mediated transcription. Hum Mol Genet 2012; 21:2779-92. [PMID: 22422769 PMCID: PMC3363331 DOI: 10.1093/hmg/dds106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disrupted-In-Schizophrenia 1 (DISC1), a strong genetic candidate for psychiatric illness, encodes a multicompartmentalized molecular scaffold that regulates interacting proteins with key roles in neurodevelopment and plasticity. Missense DISC1 variants are associated with the risk of mental illness and with brain abnormalities in healthy carriers, but the underlying mechanisms are unclear. We examined the effect of rare and common DISC1 amino acid substitutions on subcellular targeting. We report that both the rare putatively causal variant 37W and the common variant 607F independently disrupt DISC1 nuclear targeting in a dominant-negative fashion, predicting that DISC1 nuclear expression is impaired in 37W and 607F carriers. In the nucleus, DISC1 interacts with the transcription factor Activating Transcription Factor 4 (ATF4), which is involved in the regulation of cellular stress responses, emotional behaviour and memory consolidation. At basal cAMP levels, wild-type DISC1 inhibits the transcriptional activity of ATF4, an effect that is weakened by both 37W and 607F independently, most likely as a consequence of their defective nuclear targeting. The common variant 607F additionally reduces DISC1/ATF4 interaction, which likely contributes to its weakened inhibitory effect. We also demonstrate that DISC1 modulates transcriptional responses to endoplasmic reticulum stress, and that this modulatory effect is ablated by 37W and 607F. By showing that DISC1 amino acid substitutions associated with psychiatric illness affect its regulatory function in ATF4-mediated transcription, our study highlights a potential mechanism by which these variants may impact on transcriptional events mediating cognition, emotional reactivity and stress responses, all processes of direct relevance to psychiatric illness.
Collapse
Affiliation(s)
- Elise L V Malavasi
- The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|