1
|
Terry-Lorenzo RT, Fan RH, Khin NA, Singh JB. Therapeutic potential of D-amino acid oxidase inhibitors for cognitive impairment associated with schizophrenia: learnings from luvadaxistat. Int J Neuropsychopharmacol 2024; 28:pyae066. [PMID: 39756412 PMCID: PMC11712274 DOI: 10.1093/ijnp/pyae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) has been proposed to underlie the pathophysiology of schizophrenia, suggesting that promoting NMDAR activity may alleviate the negative or cognitive symptoms associated with schizophrenia. To circumvent excitotoxicity that may accompany direct agonism of the glutamate binding site on the NMDAR, therapeutic trials have focused on targeting the glycine binding site on the NMDAR. Direct administration of either glycine or D-serine, both of which are endogenous coagonists at the NMDAR glycine site, has yielded mixed outcomes across an array of clinical trials investigating different doses or patient populations. Furthermore, directly administering D-serine and glycine is challenging, and thus attention has turned to alternative, indirect methods that increase endogenous D-serine and glycine levels in the brain, such as D-amino acid oxidase (DAAO) inhibitors and glycine transporter 1 inhibitors, respectively. In this review, we provide an overview of the evidence supporting the potential of NMDAR modulators in general, and DAAO inhibitors in particular, as potential adjunctive treatments for schizophrenia. We also discuss the preclinical and clinical data related to luvadaxistat, an investigational highly selective and potent DAAO inhibitor that was under development for the treatment of the cognitive impairment associated with schizophrenia.
Collapse
Affiliation(s)
| | - Reuben H Fan
- Neurocrine Biosciences, Inc., San Diego, CA, United States
| | - Ni A Khin
- Neurocrine Biosciences, Inc., San Diego, CA, United States
| | | |
Collapse
|
2
|
Fradley R, Goetghebeur P, Miller D, Burley R, Almond S, Gruart I Massó A, Delgado García JM, Zhu B, Howley E, Neill JC, Grayson B, Gaskin P, Carlton M, Gray I, Serrats J, Davies CH. Luvadaxistat: A Novel Potent and Selective D-Amino Acid Oxidase Inhibitor Improves Cognitive and Social Deficits in Rodent Models for Schizophrenia. Neurochem Res 2023; 48:3027-3041. [PMID: 37289348 PMCID: PMC10471729 DOI: 10.1007/s11064-023-03956-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptor hypofunctionality is a well-studied hypothesis for schizophrenia pathophysiology, and daily dosing of the NMDA receptor co-agonist, D-serine, in clinical trials has shown positive effects in patients. Therefore, inhibition of D-amino acid oxidase (DAAO) has the potential to be a new therapeutic approach for the treatment of schizophrenia. TAK-831 (luvadaxistat), a novel, highly potent inhibitor of DAAO, significantly increases D-serine levels in the rodent brain, plasma, and cerebrospinal fluid. This study shows luvadaxistat to be efficacious in animal tests of cognition and in a translational animal model for cognitive impairment in schizophrenia. This is demonstrated when luvadaxistat is dosed alone and in conjunction with a typical antipsychotic. When dosed chronically, there is a suggestion of change in synaptic plasticity as seen by a leftward shift in the maximum efficacious dose in several studies. This is suggestive of enhanced activation of NMDA receptors in the brain and confirmed by modulation of long-term potentiation after chronic dosing. DAAO is highly expressed in the cerebellum, an area of increasing interest for schizophrenia, and luvadaxistat was shown to be efficacious in a cerebellar-dependent associative learning task. While luvadaxistat ameliorated the deficit seen in sociability in two different negative symptom tests of social interaction, it failed to show an effect in endpoints of negative symptoms in clinical trials. These results suggest that luvadaxistat potentially could be used to improve cognitive impairment in patients with schizophrenia, which is not well addressed with current antipsychotic medications.
Collapse
Affiliation(s)
- Rosa Fradley
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | | | - David Miller
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | | | - Sarah Almond
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | | | | | - Bin Zhu
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | - Eimear Howley
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | - Jo C Neill
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Ben Grayson
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Philip Gaskin
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | - Mark Carlton
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | - Ian Gray
- Neuroscience Drug Discovery Unit, Takeda, Cambridge, UK
| | - Jordi Serrats
- Neuroscience Drug Discovery Unit, Takeda California, 9625 Towne Centre Dr, San Diego, CA, 92121, USA.
| | - Ceri H Davies
- Takeda Pharmaceuticals Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
3
|
Ewald VAM, Trapp NT, Sarrett ME, Pace BD, Wendt L, Richards JG, Gala IK, Miller JN, Wessel JR, Magnotta VA, Wemmie JA, Boes AD, Parker KL. Supra-second interval timing in bipolar disorder: examining the role of disorder sub-type, mood, and medication status. Int J Bipolar Disord 2023; 11:32. [PMID: 37779127 PMCID: PMC10542629 DOI: 10.1186/s40345-023-00312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Widely reported by bipolar disorder (BD) patients, cognitive symptoms, including deficits in executive function, memory, attention, and timing are under-studied. Work suggests that individuals with BD show impairments in interval timing tasks, including supra-second, sub-second, and implicit motor timing compared to the neuronormative population. However, how time perception differs within individuals with BD based on disorder sub-type (BDI vs II), depressed mood, or antipsychotic medication-use has not been thoroughly investigated. The present work administered a supra-second interval timing task concurrent with electroencephalography (EEG) to patients with BD and a neuronormative comparison group. As this task is known to elicit frontal theta oscillations, signal from the frontal (Fz) lead was analyzed at rest and during the task. RESULTS Results suggest that individuals with BD show impairments in supra-second interval timing and reduced frontal theta power during the task compared to neuronormative controls. However, within BD sub-groups, neither time perception nor frontal theta differed in accordance with BD sub-type, depressed mood, or antipsychotic medication use. CONCLUSIONS This work suggests that BD sub-type, depressed mood status or antipsychotic medication use does not alter timing profile or frontal theta activity. Together with previous work, these findings point to timing impairments in BD patients across a wide range of modalities and durations indicating that an altered ability to assess the passage of time may be a fundamental cognitive abnormality in BD.
Collapse
Affiliation(s)
| | - Nicholas T Trapp
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | | | - Benjamin D Pace
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
| | - Linder Wendt
- Institute for Clinical and Translational Science, The University of Iowa, Iowa City, IA, USA
| | - Jenny G Richards
- Department of Radiology, The University of Iowa, Iowa City, IA, USA
| | - Ilisa K Gala
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
| | | | - Jan R Wessel
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA
- Department of Neurology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Vincent A Magnotta
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Department of Radiology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - John A Wemmie
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Aaron D Boes
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA
- Department of Pediatrics, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Krystal L Parker
- Department of Psychiatry, The University of Iowa, 200 Hawkins Drive W276GH, Iowa City, IA, 52242-1057, USA.
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Li R, Li Q, Chu X, Li L, Li X, Li J, Yang Z, Xu M, Luo C, Zhang K. Role of cerebellar cortex in associative learning and memory in guinea pigs. Open Life Sci 2022; 17:1208-1216. [PMID: 36185409 PMCID: PMC9482424 DOI: 10.1515/biol-2022-0471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Time-related cognitive function refers to the capacity of the brain to store, extract, and process specific information. Previous studies demonstrated that the cerebellar cortex participates in advanced cognitive functions, but the role of the cerebellar cortex in cognitive functions is unclear. We established a behavioral model using classical eyeblink conditioning to study the role of the cerebellar cortex in associative learning and memory and the underlying mechanisms. We performed an investigation to determine whether eyeblink conditioning could be established by placing the stimulating electrode in the middle cerebellar peduncle. Behavior training was performed using a microcurrent pulse as a conditioned stimulus to stimulate the middle cerebellar peduncle and corneal blow as an unconditioned stimulus. After 10 consecutive days of training, a conditioned response was successfully achieved in the Delay, Trace-200-ms, and Trace-300-ms groups of guinea pigs, with acquisition rates of >60%, but the Trace-400-ms and control groups did not achieve a conditioned stimulus-related blink conditioned response. It could be a good model for studying the function of the cerebellum during the establishment of eyeblink conditioning.
Collapse
Affiliation(s)
- Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Qi Li
- Department of Rehabilitation Medicine, Tianjin Hospital Tianjin University, Jiefang South Road 406, Tianjin 300211, Tianjin, China.,Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, Tianjin, China
| | - Xiaolei Chu
- Department of Rehabilitation Medicine, Tianjin Hospital Tianjin University, Jiefang South Road 406, Tianjin 300211, Tianjin, China
| | - Lan Li
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Xiaoyi Li
- Department of Neuroelectrophysiology, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Juan Li
- Department of Using Quality Management, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Zhen Yang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Mingjing Xu
- Department of Rehabilitation, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Changlu Luo
- Department of Rehabilitation, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Kui Zhang
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| |
Collapse
|
5
|
Bernard JA. Understanding cerebellar function through network perspectives: A review of resting-state connectivity of the cerebellum. PSYCHOLOGY OF LEARNING AND MOTIVATION 2022. [DOI: 10.1016/bs.plm.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Postural sway in first-degree relatives of individuals with schizophrenia. Schizophr Res 2021; 228:319-321. [PMID: 33497906 DOI: 10.1016/j.schres.2020.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 11/20/2022]
|
7
|
Lundin NB, Kim DJ, Tullar RL, Moussa-Tooks AB, Kent JS, Newman SD, Purcell JR, Bolbecker AR, O’Donnell BF, Hetrick WP. Cerebellar Activation Deficits in Schizophrenia During an Eyeblink Conditioning Task. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgab040. [PMID: 34541537 PMCID: PMC8443466 DOI: 10.1093/schizbullopen/sgab040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cognitive dysmetria theory of psychotic disorders posits that cerebellar circuit abnormalities give rise to difficulties coordinating motor and cognitive functions. However, brain activation during cerebellar-mediated tasks is understudied in schizophrenia. Accordingly, this study examined whether individuals with schizophrenia have diminished neural activation compared to controls in key regions of the delay eyeblink conditioning (dEBC) cerebellar circuit (eg, lobule VI) and cerebellar regions associated with cognition (eg, Crus I). Participants with schizophrenia-spectrum disorders (n = 31) and healthy controls (n = 43) underwent dEBC during functional magnetic resonance imaging (fMRI). Images were normalized using the Spatially Unbiased Infratentorial Template (SUIT) of the cerebellum and brainstem. Activation contrasts of interest were "early" and "late" stages of paired tone and air puff trials minus unpaired trials. Preliminary whole brain analyses were conducted, followed by cerebellar-specific SUIT and region of interest (ROI) analyses of lobule VI and Crus I. Correlation analyses were conducted between cerebellar activation, neuropsychological test scores, and psychotic symptom scores. In controls, the largest clusters of cerebellar activation peaked in lobule VI during early dEBC and Crus I during late dEBC. The schizophrenia group showed robust cortical activation to unpaired trials but no significant conditioning-related cerebellar activation. Crus I ROI activation during late dEBC was greater in the control than schizophrenia group. Greater Crus I activation correlated with higher working memory scores in the full sample and lower positive psychotic symptom severity in schizophrenia. Findings indicate functional cerebellar abnormalities in schizophrenia which relate to psychotic symptoms, lending direct support to the cognitive dysmetria framework.
Collapse
Affiliation(s)
- Nancy B Lundin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Rachel L Tullar
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Alexandra B Moussa-Tooks
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jerillyn S Kent
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sharlene D Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, USA
| | - John R Purcell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Amanda R Bolbecker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brian F O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Lee KH, Oh H, Suh JHS, Cho KIK, Yoon YB, Shin WG, Lee TY, Kwon JS. Functional and Structural Connectivity of the Cerebellar Nuclei With the Striatum and Cerebral Cortex in First-Episode Psychosis. J Neuropsychiatry Clin Neurosci 2019; 31:143-151. [PMID: 30561280 DOI: 10.1176/appi.neuropsych.17110276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Evidence suggests that the cortico-striatal-thalamo-cortical circuitry plays an important role in schizophrenia pathophysiology. Cerebellar contribution from deep cerebellar nuclei to the circuitry has not yet been examined. The authors investigated resting-state functional connectivity (RSFC) of cerebellar output nuclei with striatal-thalamic-cortical regions in relation to white-matter integrity and regional gray-matter volumes in first-episode psychosis (FEP). Methods: Forty FEP patients and 40 age- and gender-matched healthy control subjects (HCs) participated. RSFC between cerebellar nuclei and striatal-thalamic-cortical regions was examined. Diffusion tensor imaging and volumetric scans were examined for possible structural constraints on RSFC. The authors also examined relationships between neuroimaging variables and cognitive and clinical measures. Results: FEP patients, compared with HCs, exhibited decreased RSFC between the left fastigial nucleus and right putamen, which was associated with poor letter fluency performance and lower global assessment of functioning scores. By contrast, patients showed widespread increased accumbens network connectivity in the left nucleus. The authors further observed both hypo- and hyper-RSFC between the cerebellar nuclei and fronto-parietal areas in patients, independent of striatal activity. Finally, the authors found impaired integrity of the left superior cerebellar peduncle and decreased bilateral putamen volume in patients, whereas structural-functional relationships found in HCs were absent in patients. Conclusions: This study provides evidence of disordered RSFC of cerebellar output nuclei to the striatum and neocortex at the early stage of schizophrenia. Furthermore, dysfunctional cerebellar influences on fronto-parietal areas that are independent of striatal dysfunction in patients with FEP were observed. The results suggest that cortico-striatal abnormalities in patients with FEP are produced by abnormal cerebellar influences.
Collapse
Affiliation(s)
- Kwang-Hyuk Lee
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| | - Hyerim Oh
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| | - Jee-Hyung S Suh
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| | - Kang Ik K Cho
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| | - Youngwoo Bryan Yoon
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| | - Won-Gyo Shin
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| | - Tae Young Lee
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| | - Jun Soo Kwon
- From the Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea (Lee, Oh, Suh, Cho, Yoon, Kwon); the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Lee, Kwon); the Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea (Cho, Shin); the Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea (Lee); and the Department of Psychiatry, Washington University, St. Louis (Yoon)
| |
Collapse
|
9
|
Moberget T, Alnæs D, Kaufmann T, Doan NT, Córdova-Palomera A, Norbom LB, Rokicki J, van der Meer D, Andreassen OA, Westlye LT. Cerebellar Gray Matter Volume Is Associated With Cognitive Function and Psychopathology in Adolescence. Biol Psychiatry 2019; 86:65-75. [PMID: 30850129 DOI: 10.1016/j.biopsych.2019.01.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Accumulating evidence supports cerebellar involvement in mental disorders, such as schizophrenia, bipolar disorder, depression, anxiety disorders, and attention-deficit/hyperactivity disorder. However, little is known about the cerebellum in developmental stages of these disorders. In particular, whether cerebellar morphology is associated with early expression of specific symptom domains remains unclear. METHODS We used machine learning to test whether cerebellar morphometric features could robustly predict general cognitive function and psychiatric symptoms in a large and well-characterized developmental community sample centered on adolescence (Philadelphia Neurodevelopmental Cohort, n = 1401, age 8-23 years). RESULTS Cerebellar morphology was associated with both general cognitive function and general psychopathology (mean correlations between predicted and observed values: r = .20 and r = .13; p < .001). Analyses of specific symptom domains revealed significant associations with rates of norm-violating behavior (r = .17; p < .001) as well as psychosis (r = .12; p < .001) and anxiety (r = .09; p = .012) symptoms. In contrast, we observed no associations with attention deficits or depressive, manic, or obsessive-compulsive symptoms. Crucially, across 52 brain-wide anatomical features, cerebellar features emerged as the most important for prediction of general psychopathology, psychotic symptoms, and norm-violating behavior. Moreover, the association between cerebellar volume and psychotic symptoms and, to a lesser extent, norm-violating behavior remained significant when adjusting for several potentially confounding factors. CONCLUSIONS The robust associations with psychiatric symptoms in the age range when these typically emerge highlight the cerebellum as a key brain structure in the development of severe mental disorders.
Collapse
Affiliation(s)
- Torgeir Moberget
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nhat Trung Doan
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aldo Córdova-Palomera
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Bonaventure Norbom
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Jaroslav Rokicki
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Prediction, Psychosis, and the Cerebellum. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:820-831. [PMID: 31495402 DOI: 10.1016/j.bpsc.2019.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/19/2022]
Abstract
An increasingly influential hypothesis posits that many of the diverse symptoms of psychosis can be viewed as reflecting dysfunctional predictive mechanisms. Indeed, to perceive something is to take a sensory input and make a prediction of the external source of that signal; thus, prediction is perhaps the most fundamental neural computation. Given the ubiquity of prediction, a more challenging problem is to specify the unique predictive role or capability of a particular brain structure. This question is relevant when considering recent claims that one aspect of the predictive deficits observed in psychotic disorders might be related to cerebellar dysfunction, a subcortical structure known to play a critical role in predictive sensorimotor control and perhaps higher-level cognitive function. Here, we review evidence bearing on this question. We first focus on clinical, behavioral, and neuroimaging findings suggesting cerebellar involvement in psychosis and, specifically, schizophrenia. We then review a relatively novel line of research exploring whether computational models of cerebellar motor function can also account for cerebellar involvement in higher-order human cognition, and in particular, language function. We end the review by highlighting some key gaps in these literatures, limitations that currently preclude strong conclusions regarding cerebellar involvement in psychosis.
Collapse
|
11
|
Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls. Mol Psychiatry 2018; 23:1512-1520. [PMID: 28507318 DOI: 10.1038/mp.2017.106] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/20/2017] [Accepted: 04/04/2017] [Indexed: 12/24/2022]
Abstract
Although cerebellar involvement across a wide range of cognitive and neuropsychiatric phenotypes is increasingly being recognized, previous large-scale studies in schizophrenia (SZ) have primarily focused on supratentorial structures. Hence, the across-sample reproducibility, regional distribution, associations with cerebrocortical morphology and effect sizes of cerebellar relative to cerebral morphological differences in SZ are unknown. We addressed these questions in 983 patients with SZ spectrum disorders and 1349 healthy controls (HCs) from 14 international samples, using state-of-the-art image analysis pipelines optimized for both the cerebellum and the cerebrum. Results showed that total cerebellar grey matter volume was robustly reduced in SZ relative to HCs (Cohens's d=-0.35), with the strongest effects in cerebellar regions showing functional connectivity with frontoparietal cortices (d=-0.40). Effect sizes for cerebellar volumes were similar to the most consistently reported cerebral structural changes in SZ (e.g., hippocampus volume and frontotemporal cortical thickness), and were highly consistent across samples. Within groups, we further observed positive correlations between cerebellar volume and cerebral cortical thickness in frontotemporal regions (i.e., overlapping with areas that also showed reductions in SZ). This cerebellocerebral structural covariance was strongest in SZ, suggesting common underlying disease processes jointly affecting the cerebellum and the cerebrum. Finally, cerebellar volume reduction in SZ was highly consistent across the included age span (16-66 years) and present already in the youngest patients, a finding that is more consistent with neurodevelopmental than neurodegenerative etiology. Taken together, these novel findings establish the cerebellum as a key node in the distributed brain networks underlying SZ.
Collapse
|
12
|
Mittal VA, Bernard JA, Northoff G. What Can Different Motor Circuits Tell Us About Psychosis? An RDoC Perspective. Schizophr Bull 2017; 43:949-955. [PMID: 28911048 PMCID: PMC5581904 DOI: 10.1093/schbul/sbx087] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Signs of motor dysfunction are evidenced across a range of psychiatric disorders including schizophrenia. Historically, these features have been neglected but emerging theoretical and methodological advancements have shed new light on the utility of considering movement abnormalities. Indeed, the National Institute of Mental Health Research Domain Criteria initiative has recently met to develop a Motor Systems Domain. This reflects a growing appreciation for the enhanced reliability and validity that can come along with evaluating disturbances relevant to psychiatric illnesses from multiple levels of analysis, and conceptualizing these domains with respect to the complexity of their role in a broader integrated system (ie, weighing contributions and interactions between the cognitive, affective, and motor domains). This article discusses motor behaviors and seeks to explain how research into basal ganglia, cerebellar, and cortico-motor circuit function/dysfunction, grounded in brain circuit-motor behavior relationships, can elucidate our understanding of pathophysiology, provide vital links to other key systems of interest, significantly improve identification and classification, and drive development of targeted individualized treatments.
Collapse
Affiliation(s)
- Vijay A Mittal
- Department of Psychology, Department of Psychiatry, Institute for Policy Research, Department of Medical Social Sciences, Northwestern University, Evanston, IL;,To whom correspondence should be addressed; Department of Psychology, Department of Psychiatry, Northwestern University, 2029 Sheridan Road, Evanston, IL 60208, US; e-mail:
| | - Jessica A Bernard
- Department of Psychology, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada;,Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, China;,Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China;,Centre for Brain and Consciousness, College for Humanities and Medicine, Taipei Medical University (TMU), Taipei, Taiwan
| |
Collapse
|
13
|
Wu B, Zhao XD, Zhang HM, Li X, Wu GY, Yang YS, Tian CY, Sui JF. Prolonged deficits of associative motor learning in cynomolgus monkeys after long-term administration of phencyclidine. Behav Brain Res 2017; 331:169-176. [PMID: 28549649 DOI: 10.1016/j.bbr.2017.05.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022]
Abstract
Phencyclidine (PCP) is a potent drug of abuse that induces sustained schizophrenia-like symptoms in humans by blocking neurotransmission at N-methyl-d-aspartate (NMDA)-type glutamate receptors. Alterations in NMDA receptor function have been linked to numerous behavioral deficits and cognitive dysfunction. Classical eye-blink conditioning (EBC), including delay (dEBC) and trace (tEBC) paradigms, provides an effective means to study the neurobiology of associative motor learning in rodents, mammals and primates. To assess whether administration of low-dosage PCP for extended periods has prolonged effect to alter associative motor learning, in this study 19 adult cynomolgus monkeys were administered PCP (0.3mg/kg, intramuscularly) or saline twice a day for 14days. Twelve-fifteen months after PCP or saline injection, monkeys received dEBC, tEBC, or pseudo-paired training for 6 or 12 successive daily sessions, respectively. The results of this study show that percentage of conditioned response (CR) in dEBC increased as a function of training sessions in both PCP-treated and control monkeys and there was no significant CR% difference between the two groups. However, the CR timing in dEBC of PCP-treated monkeys was significantly impaired, as manifested by shorter CR peak latencies than those of the control group. PCP-treated animals showed significantly lower percentage of CR in tEBC compared to controls. PCP-treated animals were also more sensitive to outside stimuli in tEBC because the UR peak latency of PCP-treated group was significantly lower than the control group. These results indicated that cynomolgus monkeys manifested prolonged deficits in associative motor learning after long-term administration of phencyclidine.
Collapse
Affiliation(s)
- Bing Wu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China; Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xu-Dong Zhao
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui-Min Zhang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China; Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xuan Li
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China; Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Guang-Yan Wu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China; Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Ying-Shan Yang
- Hainan Jingang Biological Technology Co., Ltd., Haikou, Hainan 571100, China
| | - Chao-Yang Tian
- Hainan Jingang Biological Technology Co., Ltd., Haikou, Hainan 571100, China
| | - Jian-Feng Sui
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China; Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
14
|
Bernard JA, Goen JRM, Maldonado T. A case for motor network contributions to schizophrenia symptoms: Evidence from resting-state connectivity. Hum Brain Mapp 2017; 38:4535-4545. [PMID: 28603856 DOI: 10.1002/hbm.23680] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/27/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
Though schizophrenia (SCZ) is classically defined based on positive symptoms and the negative symptoms of the disease prove to be debilitating for many patients, motor deficits are often present as well. A growing literature highlights the importance of motor systems and networks in the disease, and it may be the case that dysfunction in motor networks relates to the pathophysiology and etiology of SCZ. To test this and build upon recent work in SCZ and in at-risk populations, we investigated cortical and cerebellar motor functional networks at rest in SCZ and controls using publically available data. We analyzed data from 82 patients and 88 controls. We found key group differences in resting-state connectivity patterns that highlight dysfunction in motor circuits and also implicate the thalamus. Furthermore, we demonstrated that in SCZ, these resting-state networks are related to both positive and negative symptom severity. Though the ventral prefrontal cortex and corticostriatal pathways more broadly have been implicated in negative symptom severity, here we extend these findings to include motor-striatal connections, as increased connectivity between the primary motor cortex and basal ganglia was associated with more severe negative symptoms. Together, these findings implicate motor networks in the symptomatology of psychosis, and we speculate that these networks may be contributing to the etiology of the disease. Overt motor deficits in SCZ may signal underlying network dysfunction that contributes to the overall disease state. Hum Brain Mapp 38:4535-4545, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica A Bernard
- Department of Psychology, Texas A&M University, Texas.,Texas A&M University Institute for Neuroscience, Texas A&M University, Texas
| | | | - Ted Maldonado
- Department of Psychology, Texas A&M University, Texas
| |
Collapse
|
15
|
Bolbecker AR, Petersen IT, Kent JS, Howell JM, O'Donnell BF, Hetrick WP. New Insights into the Nature of Cerebellar-Dependent Eyeblink Conditioning Deficits in Schizophrenia: A Hierarchical Linear Modeling Approach. Front Psychiatry 2016; 7:4. [PMID: 26834653 PMCID: PMC4725217 DOI: 10.3389/fpsyt.2016.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/11/2016] [Indexed: 11/18/2022] Open
Abstract
Evidence of cerebellar dysfunction in schizophrenia has mounted over the past several decades, emerging from neuroimaging, neuropathological, and behavioral studies. Consistent with these findings, cerebellar-dependent delay eyeblink conditioning (dEBC) deficits have been identified in schizophrenia. While repeated-measures analysis of variance is traditionally used to analyze dEBC data, hierarchical linear modeling (HLM) more reliably describes change over time by accounting for the dependence in repeated-measures data. This analysis approach is well suited to dEBC data analysis because it has less restrictive assumptions and allows unequal variances. The current study examined dEBC measured with electromyography in a single-cue tone paradigm in an age-matched sample of schizophrenia participants and healthy controls (N = 56 per group) using HLM. Subjects participated in 90 trials (10 blocks) of dEBC, during which a 400 ms tone co-terminated with a 50 ms air puff delivered to the left eye. Each block also contained 1 tone-alone trial. The resulting block averages of dEBC data were fitted to a three-parameter logistic model in HLM, revealing significant differences between schizophrenia and control groups on asymptote and inflection point, but not slope. These findings suggest that while the learning rate is not significantly different compared to controls, associative learning begins to level off later and a lower ultimate level of associative learning is achieved in schizophrenia. Given the large sample size in the present study, HLM may provide a more nuanced and definitive analysis of differences between schizophrenia and controls on dEBC.
Collapse
Affiliation(s)
- Amanda R Bolbecker
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Isaac T Petersen
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Jerillyn S Kent
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Josselyn M Howell
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| |
Collapse
|
16
|
Cheng H, Newman S, Goñi J, Kent JS, Howell J, Bolbecker A, Puce A, O’Donnell BF, Hetrick WP. Nodal centrality of functional network in the differentiation of schizophrenia. Schizophr Res 2015; 168:345-52. [PMID: 26299706 PMCID: PMC4591247 DOI: 10.1016/j.schres.2015.08.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023]
Abstract
A disturbance in the integration of information during mental processing has been implicated in schizophrenia, possibly due to faulty communication within and between brain regions. Graph theoretic measures allow quantification of functional brain networks. Functional networks are derived from correlations between time courses of brain regions. Group differences between SZ and control groups have been reported for functional network properties, but the potential of such measures to classify individual cases has been little explored. We tested whether the network measure of betweenness centrality could classify persons with schizophrenia and normal controls. Functional networks were constructed for 19 schizophrenic patients and 29 non-psychiatric controls based on resting state functional MRI scans. The betweenness centrality of each node, or fraction of shortest-paths that pass through it, was calculated in order to characterize the centrality of the different regions. The nodes with high betweenness centrality agreed well with hub nodes reported in previous studies of structural and functional networks. Using a linear support vector machine algorithm, the schizophrenia group was differentiated from non-psychiatric controls using the ten nodes with the highest betweenness centrality. The classification accuracy was around 80%, and stable against connectivity thresholding. Better performance was achieved when using the ranks as feature space as opposed to the actual values of betweenness centrality. Overall, our findings suggest that changes in functional hubs are associated with schizophrenia, reflecting a variation of the underlying functional network and neuronal communications. In addition, a specific network property, betweenness centrality, can classify persons with SZ with a high level of accuracy.
Collapse
Affiliation(s)
- Hu Cheng
- Imaging Research Facility, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kent JS, Bolbecker AR, O'Donnell BF, Hetrick WP. Eyeblink Conditioning in Schizophrenia: A Critical Review. Front Psychiatry 2015; 6:146. [PMID: 26733890 PMCID: PMC4683521 DOI: 10.3389/fpsyt.2015.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022] Open
Abstract
There is accruing evidence of cerebellar abnormalities in schizophrenia. The theory of cognitive dysmetria considers cerebellar dysfunction a key component of schizophrenia. Delay eyeblink conditioning (EBC), a cerebellar-dependent translational probe, is a behavioral index of cerebellar integrity. The circuitry underlying EBC has been well characterized by non-human animal research, revealing the cerebellum as the essential circuitry for the associative learning instantiated by this task. However, there have been persistent inconsistencies in EBC findings in schizophrenia. This article thoroughly reviews published studies investigating EBC in schizophrenia, with an emphasis on possible effects of antipsychotic medication and stimulus and analysis parameters on reports of EBC performance in schizophrenia. Results indicate a consistent finding of impaired EBC performance in schizophrenia, as measured by decreased rates of conditioning, and that medication or study design confounds do not account for this impairment. Results are discussed within the context of theoretical and neurochemical models of schizophrenia.
Collapse
Affiliation(s)
- Jerillyn S Kent
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Amanda R Bolbecker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Larue D. Carter Memorial Hospital, Indianapolis, IN, USA
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Larue D. Carter Memorial Hospital, Indianapolis, IN, USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Larue D. Carter Memorial Hospital, Indianapolis, IN, USA
| |
Collapse
|
18
|
Weiss C, Disterhoft JF. Eyeblink Conditioning and Novel Object Recognition in the Rabbit: Behavioral Paradigms for Assaying Psychiatric Diseases. Front Psychiatry 2015; 6:142. [PMID: 26500564 PMCID: PMC4595794 DOI: 10.3389/fpsyt.2015.00142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Analysis of data collected from behavioral paradigms has provided important information for understanding the etiology and progression of diseases that involve neural regions mediating abnormal behavior. The trace eyeblink conditioning (EBC) paradigm is particularly suited to examine cerebro-cerebellar interactions since the paradigm requires the cerebellum, forebrain, and awareness of the stimulus contingencies. Impairments in acquiring EBC have been noted in several neuropsychiatric conditions, including schizophrenia, Alzheimer's disease (AD), progressive supranuclear palsy, and post-traumatic stress disorder. Although several species have been used to examine EBC, the rabbit is unique in its tolerance for restraint, which facilitates imaging, its relatively large skull that facilitates chronic neuronal recordings, a genetic sequence for amyloid that is identical to humans which makes it a valuable model to study AD, and in contrast to rodents, it has a striatum that is differentiated into a caudate and a putamen that facilitates analysis of diseases involving the striatum. This review focuses on EBC during schizophrenia and AD since impairments in cerebro-cerebellar connections have been hypothesized to lead to a cognitive dysmetria. We also relate EBC to conditioned avoidance responses that are more often examined for effects of antipsychotic medications, and we propose that an analysis of novel object recognition (NOR) may add to our understanding of how the underlying neural circuitry has changed during disease states. We propose that the EBC and NOR paradigms will help to determine which therapeutics are effective for treating the cognitive aspects of schizophrenia and AD, and that neuroimaging may reveal biomarkers of the diseases and help to evaluate potential therapeutics. The rabbit, thus, provides an important translational system for studying neural mechanisms mediating maladaptive behaviors that underlie some psychiatric diseases, especially cognitive impairments associated with schizophrenia and AD, and object recognition provides a simple test of memory that can corroborate the results of EBC.
Collapse
Affiliation(s)
- Craig Weiss
- Department of Physiology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - John F Disterhoft
- Department of Physiology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| |
Collapse
|
19
|
Affiliation(s)
- Deanna M. Barch
- *To whom correspondence should be addressed; Departments of Psychology, Psychiatry, and Radiology, Washington University in St. Louis, Box 1125, One Brookings Drive, St. Louis, MO 63130, US; tel: 314-935-8729 or 314-362-2608, fax: 314-935-8790, e-mail:
| |
Collapse
|
20
|
Bernard JA, Mittal VA. Cerebellar-motor dysfunction in schizophrenia and psychosis-risk: the importance of regional cerebellar analysis approaches. Front Psychiatry 2014; 5:160. [PMID: 25505424 PMCID: PMC4243486 DOI: 10.3389/fpsyt.2014.00160] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/25/2014] [Indexed: 12/21/2022] Open
Abstract
Motor abnormalities in individuals with schizophrenia and those at-risk for psychosis are well documented. An accumulating body of work has also highlighted motor abnormalities related to cerebellar dysfunction in schizophrenia including eye-blink conditioning, timing, postural control, and motor learning. We have also recently found evidence for motor dysfunction in individuals at ultra high-risk for psychosis (1-3). This is particularly relevant as the cerebellum is thought to be central to the cognitive dysmetria model of schizophrenia, and these overt motor signs may point to more general cerebellar dysfunction in the etiology of psychotic disorders. While studies have provided evidence indicative of motor cerebellar dysfunction in at-risk populations and in schizophrenia, findings with respect to the cerebellum have been mixed. One factor potentially contributing to these mixed results is the whole-structure approach taken when investigating the cerebellum. In non-human primates, there are distinct closed-loop circuits between the cerebellum, thalamus, and brain with motor and non-motor cortical regions. Recent human neuroimaging has supported this finding and indicates that there is a cerebellar functional topography (4), and this information is being missed with whole-structure approaches. Here, we review cerebellar-motor dysfunction in individuals with schizophrenia and those at-risk for psychosis. We also discuss cerebellar abnormalities in psychosis, and the cerebellar functional topography. Because of the segregated functional regions of the cerebellum, we propose that it is important to look at the structure regionally in order to better understand its role in motor dysfunction in these populations. This is analogous to approaches taken with the basal ganglia, where each region is considered separately. Such an approach is necessary to better understand cerebellar pathophysiology on a macro-structural level with respect to the pathogenesis of psychosis.
Collapse
Affiliation(s)
- Jessica A Bernard
- Department of Psychology and Neuroscience, University of Colorado Boulder , Boulder, CO , USA
| | - Vijay A Mittal
- Department of Psychology and Neuroscience, University of Colorado Boulder , Boulder, CO , USA ; Center for Neuroscience, University of Colorado Boulder , Boulder, CO , USA
| |
Collapse
|