1
|
Llach CD, Le GH, Badulescu S, Anmella G, Hasan HA, Giménez-Palomo A, Pacchiarotti I, Vieta E, McIntyre RS, Rosenblat JD, Mansur RB. Extracellular vesicles in mood disorders: A systematic review of human studies. Eur Neuropsychopharmacol 2025; 94:59-75. [PMID: 40057988 DOI: 10.1016/j.euroneuro.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 05/02/2025]
Abstract
Extracellular vesicles (EVs) are small, membrane-bound particles that are naturally released by nearly all cell types in the body. They serve as molecular biosignatures, reflecting the state of their cells of origin and providing a non-invasive peripheral marker of central nervous system (CNS) activity under physiological and pathological conditions. We conducted a systematic review (ID: CRD42024528824) of studies investigating the use of EVs in mood disorders within clinical populations. We screened articles indexed in PubMed, EMBASE, Scopus, ISI Web of Science, and APA PsycInfo from January 2010 to October 2024. Available research has focused on four key areas: (1) EV cargo as mechanistic and diagnostic biomarkers; (2) EV cargo as predictive or tracking biomarkers for antidepressant response; (3) EV cargo and neuroimaging correlates; and (4) EV physical properties. Most studies examined major depressive disorder (MDD), with others addressing bipolar disorder (BD), adolescent depression, postpartum depression, and late-life depression. Notably, only 35,55 % of the studies utilized brain-derived EVs. Through analyses of EV-derived miRNA, proteins, mtDNA, and metabolites, these studies have explored neural mitochondrial function, brain insulin resistance, neurogenesis, neuroinflammation, and blood-brain barrier permeability in the context of mood disorders. Some EV-derived markers demonstrated diagnostic and predictive potential. This review discusses key findings, limitations of current research, and future directions for leveraging EVs in the study of mood disorders.
Collapse
Affiliation(s)
- Cristian-Daniel Llach
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.
| | - Gia Han Le
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Sebastian Badulescu
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Gerard Anmella
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Research Networking Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III (ISCIII);; Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Hayder Ali Hasan
- Department of Neurosciences, Psychiatry and Pediatric Psychiatry, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj, Napoca, Romania
| | - Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabella Pacchiarotti
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Research Networking Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III (ISCIII);; Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Research Networking Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III (ISCIII);; Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Roger S McIntyre
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Rodrigo B Mansur
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| |
Collapse
|
2
|
Lei X, Xie XN, Yang JX, Li YM. The emerging role of extracellular vesicles in the diagnosis and treatment of autism spectrum disorders. Psychiatry Res 2024; 337:115954. [PMID: 38744180 DOI: 10.1016/j.psychres.2024.115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by restricted, repetitive behavioral patterns and deficits in social interactions. The prevalence of ASD has continued to rise in recent years. However, the etiology and pathophysiology of ASD remain largely unknown. Currently, the diagnosis of ASD relies on behavior measures, and there is a lack of reliable and objective biomarkers. In addition, there are still no effective pharmacologic therapies for the core symptoms of ASD. Extracellular vesicles (EVs) are lipid bilayer nanovesicles secreted by almost all types of cells. EVs play a vital role in cell-cell communications and are known to bear various biological functions. Emerging evidence demonstrated that EVs are involved in many physiological and pathological processes throughout the body and the content in EVs can reflect the status of the originating cells. EVs have demonstrated the potential of broad applications for the diagnosis and treatment of various brain diseases, suggesting that EVs may have also played a role in the pathological process of ASD. Besides, EVs can be utilized as therapeutic agents for their endogenous substances and biological functions. Additionally, EVs can serve as drug delivery tools as nano-sized vesicles with inherent targeting ability. Here, we discuss the potential of EVs to be considered as promising diagnostic biomarkers and their potential therapeutic applications for ASD.
Collapse
Affiliation(s)
- Xue Lei
- Clinical Nursing Teaching and Research Section, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Public Health, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xue-Ni Xie
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Jia-Xin Yang
- Clinical Nursing Teaching and Research Section, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Ya-Min Li
- Clinical Nursing Teaching and Research Section, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
3
|
del Valle E, Rubio-Sardón N, Menéndez-Pérez C, Martínez-Pinilla E, Navarro A. Apolipoprotein D as a Potential Biomarker in Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:15631. [PMID: 37958618 PMCID: PMC10650001 DOI: 10.3390/ijms242115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Neuropsychiatric disorders (NDs) are a diverse group of pathologies, including schizophrenia or bipolar disorders, that directly affect the mental and physical health of those who suffer from them, with an incidence that is increasing worldwide. Most NDs result from a complex interaction of multiple genes and environmental factors such as stress or traumatic events, including the recent Coronavirus Disease (COVID-19) pandemic. In addition to diverse clinical presentations, these diseases are heterogeneous in their pathogenesis, brain regions affected, and clinical symptoms, making diagnosis difficult. Therefore, finding new biomarkers is essential for the detection, prognosis, response prediction, and development of new treatments for NDs. Among the most promising candidates is the apolipoprotein D (Apo D), a component of lipoproteins implicated in lipid metabolism. Evidence suggests an increase in Apo D expression in association with aging and in the presence of neuropathological processes. As a part of the cellular neuroprotective defense machinery against oxidative stress and inflammation, changes in Apo D levels have been demonstrated in neuropsychiatric conditions like schizophrenia (SZ) or bipolar disorders (BPD), not only in some brain areas but in corporal fluids, i.e., blood or serum of patients. What is not clear is whether variation in Apo D quantity could be used as an indicator to detect NDs and their progression. This review aims to provide an updated view of the clinical potential of Apo D as a possible biomarker for NDs.
Collapse
Affiliation(s)
- Eva del Valle
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Nuria Rubio-Sardón
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Carlota Menéndez-Pérez
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Ana Navarro
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
4
|
Oraki Kohshour M, Papiol S, Delalle I, Rossner MJ, Schulze TG. Extracellular vesicle approach to major psychiatric disorders. Eur Arch Psychiatry Clin Neurosci 2023; 273:1279-1293. [PMID: 36302978 PMCID: PMC10450008 DOI: 10.1007/s00406-022-01497-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
Over the last few years, extracellular vesicles (EVs) have received increasing attention as potential non-invasive diagnostic and therapeutic biomarkers for various diseases. The interest in EVs is related to their structure and content, as well as to their changing cargo in response to different stimuli. One of the potential areas of use of EVs as biomarkers is the central nervous system (CNS), in particular the brain, because EVs can cross the blood-brain barrier, exist also in peripheral tissues and have a diverse cargo. Thus, they may represent "liquid biopsies" of the CNS that can reflect brain pathophysiology without the need for invasive surgical procedures. Overall, few studies to date have examined EVs in neuropsychiatric disorders, and the present evidence appears to lack reproducibility. This situation might be due to a variety of technical obstacles related to working with EVs, such as the use of different isolation strategies, which results in non-uniform vesicular and molecular outputs. Multi-omics approaches and improvements in the standardization of isolation procedures will allow highly pure EV fractions to be obtained in which the molecular cargo, particularly microRNAs and proteins, can be identified and accurately quantified. Eventually, these advances will enable researchers to decipher disease-relevant molecular signatures of the brain-derived EVs involved in synaptic plasticity, neuronal development, neuro-immune communication, and other related pathways. This narrative review summarizes the findings of studies on EVs in major psychiatric disorders, particularly in the field of biomarkers, and discusses the respective therapeutic potential of EVs.
Collapse
Affiliation(s)
- Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336, Munich, Germany
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Neuropathology Service, Rhode Island Hospital, Lifespan Academic Medical Center, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA, 02118, USA
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336, Munich, Germany.
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Khoury R, Nagy C. Running from stress: a perspective on the potential benefits of exercise-induced small extracellular vesicles for individuals with major depressive disorder. Front Mol Biosci 2023; 10:1154872. [PMID: 37398548 PMCID: PMC10309045 DOI: 10.3389/fmolb.2023.1154872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Aerobic exercise promotes beneficial effects in the brain including increased synaptic plasticity and neurogenesis and regulates neuroinflammation and stress response via the hypothalamic-pituitary-adrenal axis. Exercise can have therapeutic effects for numerous brain-related pathologies, including major depressive disorder (MDD). Beneficial effects of aerobic exercise are thought to be mediated through the release of "exerkines" including metabolites, proteins, nucleic acids, and hormones that communicate between the brain and periphery. While the specific mechanisms underlying the positive effects of aerobic exercise on MDD have not been fully elucidated, the evidence suggests that exercise may exert a direct or indirect influence on the brain via small extracellular vesicles which have been shown to transport signaling molecules including "exerkines" between cells and across the blood-brain barrier (BBB). sEVs are released by most cell types, found in numerous biofluids, and capable of crossing the BBB. sEVs have been associated with numerous brain-related functions including neuronal stress response, cell-cell communication, as well as those affected by exercise like synaptic plasticity and neurogenesis. In addition to known exerkines, they are loaded with other modulatory cargo such as microRNA (miRNA), an epigenetic regulator that regulates gene expression levels. How exercise-induced sEVs mediate exercise dependent improvements in MDD is unknown. Here, we perform a thorough survey of the current literature to elucidate the potential role of sEVs in the context of neurobiological changes seen with exercise and depression by summarizing studies on exercise and MDD, exercise and sEVs, and finally, sEVs as they relate to MDD. Moreover, we describe the links between peripheral sEV levels and their potential for infiltration into the brain. While literature suggests that aerobic exercise is protective against the development of mood disorders, there remains a scarcity of data on the therapeutic effects of exercise. Recent studies have shown that aerobic exercise does not appear to influence sEV size, but rather influence their concentration and cargo. These molecules have been independently implicated in numerous neuropsychiatric disorders. Taken together, these studies suggest that concentration of sEVs are increased post exercise, and they may contain specifically packaged protective cargo representing a novel therapeutic for MDD.
Collapse
Affiliation(s)
- Reine Khoury
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Li Y, Gui Y, Zhao M, Chen X, Li H, Tian C, Zhao H, Jiang C, Xu P, Zhang S, Ye S, Huang M. The roles of extracellular vesicles in major depressive disorder. Front Psychiatry 2023; 14:1138110. [PMID: 36970289 PMCID: PMC10033661 DOI: 10.3389/fpsyt.2023.1138110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
Major depressive disorder (MDD) is a serious mental disease characterized by depressed mood, loss of interest and suicidal ideation. Its rising prevalence has rendered MDD one of the largest contributors to the global disease burden. However, its pathophysiological mechanism is still unclear, and reliable biomarkers are lacking. Extracellular vesicles (EVs) are widely considered important mediators of intercellular communication, playing an important role in many physiological and pathological processes. Most preclinical studies focus on the related proteins and microRNAs in EVs, which can regulate energy metabolism, neurogenesis, neuro-inflammation and other pathophysiological processes in the development of MDD. The purpose of this review is to describe the current research progress of EVs in MDD and highlight their potential roles as biomarkers, therapeutic indicators and drug delivery carriers for the treatment of MDD.
Collapse
Affiliation(s)
- Ying Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Yan Gui
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Mental Health Center of Zhejiang Province, Hangzhou, China
| | - Miaomiao Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Xuanqiang Chen
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Haimei Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Chen Tian
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Haoyang Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Chaonan Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Pengfeng Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Shiyi Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Shaoyong Ye
- Henan University School of Medicine, Henan University, Kaifeng, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
- *Correspondence: Manli Huang,
| |
Collapse
|
7
|
Lu AKM, Lin JJ, Tseng HH, Wang XY, Jang FL, Chen PS, Huang CC, Hsieh S, Lin SH. DNA methylation signature aberration as potential biomarkers in treatment-resistant schizophrenia: Constructing a methylation risk score using a machine learning method. J Psychiatr Res 2023; 157:57-65. [PMID: 36442407 DOI: 10.1016/j.jpsychires.2022.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Treatment-resistant schizophrenia (TRS) is defined as a non-response to at least two trials of antipsychotic medication with an adequate dose and duration. We aimed to evaluate the discriminant abilities of DNA methylation probes and methylation risk score between treatment-resistant schizophrenia and non-treatment-resistant schizophrenia. This study recruited 96 schizophrenia patients (TRS and non-TRS) and 56 healthy controls (HC). Participants were divided into a discovery set and a validation set. In the discovery set, we conducted genome-wide methylation analysis (human MethylationEPIC 850K BeadChip) on the subject's blood DNA and discriminated significant methylation signatures, then verified these methylation signatures in the validation set. Based on genome-wide scans of TRS versus non-TRS, thirteen differentially methylated probes were identified at FDR <0.05 and >20% differences in DNA methylation β-values. Next, we selected six probes within gene coding regions (LOC404266, LOXL2, CERK, CHMP7, and SLC17A9) to conduct verification in the validation set using quantitative methylation-specific PCR (qMSP). These six methylation probes showed satisfactory discrimination between TRS patients and non-TRS patients, with an AUC ranging from 0.83 to 0.92, accuracy ranging from 77.8% to 87.3%, sensitivity ranging from 80% to 90%, and specificity ranging from 65.6% to 85%. This methylation risk score model showed satisfactory discrimination between TRS patients and non-TRS patients, with an accuracy of 88.3%. These findings support that methylation signatures may be used as an indicator of TRS vulnerability and provide a model for the clinical use of methylation to identify TRS.
Collapse
Affiliation(s)
- Andrew Ke-Ming Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jin-Jia Lin
- Department of Psychiatry, Chi Mei Medical Center, Tainan, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Xin-Yu Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fong-Lin Jang
- Department of Psychiatry, Chi Mei Medical Center, Tainan, Taiwan
| | - Po-See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chun Huang
- Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Shulan Hsieh
- Department of Psychology, College of Social Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Bonilla-Quintana M, Rangamani P. Can biophysical models of dendritic spines be used to explore synaptic changes associated with addiction? Phys Biol 2022; 19. [PMID: 35508164 DOI: 10.1088/1478-3975/ac6cbe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
Effective treatments that prevent or reduce drug relapse vulnerability should be developed to relieve the high burden of drug addiction on society. This will only be possible by enhancing the understanding of the molecular mechanisms underlying the neurobiology of addiction. Recent experimental data have shown that dendritic spines, small protrusions from the dendrites that receive excitatory input, of spiny neurons in the nucleus accumbens exhibit morphological changes during drug exposure and withdrawal. Moreover, these changes relate to the characteristic drug-seeking behavior of addiction. However, due to the complexity of the dendritic spines, we do not yet fully understand the processes underlying their structural changes in response to different inputs. We propose that biophysical models can enhance the current understanding of these processes by incorporating different, and sometimes, discrepant experimental data to identify the shared underlying mechanisms and generate experimentally testable hypotheses. This review aims to give an up-to-date report on biophysical models of dendritic spines, focusing on those models that describe their shape changes, which are well-known to relate to learning and memory. Moreover, it examines how these models can enhance our understanding of the effect of the drugs and the synaptic changes during withdrawal, as well as during neurodegenerative disease progression such as Alzheimer's disease.
Collapse
Affiliation(s)
- Mayte Bonilla-Quintana
- Mechanical Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0021, UNITED STATES
| | - Padmini Rangamani
- Mechanical Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0021, UNITED STATES
| |
Collapse
|
9
|
Ye M, Wang J, Pan S, Zheng L, Wang ZW, Zhu X. Nucleic acids and proteins carried by exosomes of different origins as potential biomarkers for gynecologic cancers. Mol Ther Oncolytics 2022; 24:101-113. [PMID: 35024437 PMCID: PMC8718571 DOI: 10.1016/j.omto.2021.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Exosomes are extracellular vesicles with a diameter of 30-150 nm that function in mediating intercellular communication and intercellular material exchange. The liposomal membrane of exosomes protects the cargo carried by exosomes from degradation and assists in transporting cargo to recipient cells to regulate a variety of physiological and pathological processes. The incidence of gynecologic cancers is increasing annually, which is extremely harmful to the lives and health of women because such cancers are challenging to detect at the early stage. Recently, exosomes have emerged as novel biomarkers for diagnosing and predicting the development of gynecologic cancers. In particular, non-coding RNAs (microRNAs [miRNAs], long non-coding RNAs [lncRNAs], and circular RNAs [circRNAs]) carried by exosomes have been extensively investigated in gynecologic cancers. Therefore, the purpose of this review is to focus on the potential roles of exosomes of different origins in ovarian cancer, cervical cancer, and endometrial cancer, which will help to determine the molecular mechanism of carcinogenesis.
Collapse
Affiliation(s)
- Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Lihong Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
10
|
Duarte-Silva E, Oriá AC, Mendonça IP, de Melo MG, Paiva IHR, Maes M, Joca SRL, Peixoto CA. TINY IN SIZE, BIG IN IMPACT: EXTRACELLULAR VESICLES AS MODULATORS OF MOOD, ANXIETY AND NEURODEVELOPMENTAL DISORDERS. Neurosci Biobehav Rev 2022; 135:104582. [PMID: 35182538 DOI: 10.1016/j.neubiorev.2022.104582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 01/17/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
Extracellular Vesicles (EVs) are tiny vesicles used by cells as means of cellular communication, through which the function and state of a given cell can be changed. A body of evidence has suggested that EVs could be culprits in the development and progression of various types of diseases, including neurodegenerative diseases such as Multiple Sclerosis (MS) and Alzheimer's Disease (AD). Unsurprisingly, EVs have also been implicate in mood, anxiety and neurodevelopmental disorders, such as Major Depressive Disorder (MDD), anxiety disorder and Autism-Spectrum Disorder (ASD), respectively. Here, we review the state-of-art regarding the roles of EVs in the aforementioned diseases and focus on the mechanisms by which they can cause and worsen disease. Harnessing the knowledge of EVs is not only important to deliver different cargos to cells in a specific manner to treat these diseases, but also to establish reliable disease biomarkers, which will aid in the early disease diagnosis and treatment, increasing the chance of successful treatment.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, PE, Brazil; Department of Neurology, Medical Faculty, University Hospital Düsseldorf, 40255 Düsseldorf, Germany.
| | | | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Michel Gomes de Melo
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Igor Henrique R Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| | - Sâmia R L Joca
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, Brazil; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM, CNPq), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Nakano T, Takamura M, Kato TA, Kano SI. Editorial: The development of biomarkers in psychiatry. Front Psychiatry 2022; 13:1075993. [PMID: 36532193 PMCID: PMC9752023 DOI: 10.3389/fpsyt.2022.1075993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Takashi Nakano
- Department of Computational Biology, School of Medicine, Fujita Health University, Toyoake, Japan.,Division of Computational Science, International Center for Brain Science, Fujita Health University, Toyoake, Japan
| | - Masahiro Takamura
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shin-Ichi Kano
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Kano SI, Yang K, Sawa A. Making Sense of Extracellular Vesicles in Body Fluids: Promise and Challenge. Schizophr Bull 2021; 47:586-587. [PMID: 33748856 PMCID: PMC8084419 DOI: 10.1093/schbul/sbab009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shin-ichi Kano
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA,To whom correspondence should be addressed; e-mail:
| | - Kun Yang
- Johns Hopkins Schizophrenia Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Johns Hopkins Schizophrenia Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neuroscience, Biomedical Engineering, Mental Health, and Genetic Medicine, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
13
|
Konečná B, Radošinská J, Keményová P, Repiská G. Detection of disease-associated microRNAs - application for autism spectrum disorders. Rev Neurosci 2020; 31:757-769. [PMID: 32813679 DOI: 10.1515/revneuro-2020-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorders (ASD) diagnostic procedure still lacks a uniform biological marker. This review gathers the information on microRNAs (miRNAs) specifically as a possible source of biomarkers of ASD. Extracellular vesicles, and their subset of exosomes, are believed to be a tool of cell-to-cell communication, and they are increasingly considered to be carriers of such a marker. The interest in studying miRNAs in extracellular vesicles grows in all fields of study and therefore should not be omitted in the field of neurodevelopmental disorders. The summary of miRNAs associated with brain cells and ASD either studied directly in the tissue or biofluids are gathered in this review. The heterogeneity in findings from different studies points out the fact that unified methods should be established, beginning with the determination of the accurate patient and control groups, through to sample collection, processing, and storage conditions. This review, based on the available literature, proposes the standardized approach to obtain the results that would not be affected by technical factors. Nowadays, the method of high-throughput sequencing seems to be the most optimal to analyze miRNAs. This should be followed by the uniformed bioinformatics procedure to avoid misvalidation. At the end, the proper validation of the obtained results is needed. With such an approach as is described in this review, it would be possible to obtain a reliable biomarker that would characterize the presence of ASD.
Collapse
Affiliation(s)
- Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Jana Radošinská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Petra Keményová
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
| | - Gabriela Repiská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
| |
Collapse
|